
L10 – Layered Depth Normal Images

• Introduction

• Related Work

• Structured Point Representation

• Boolean Operations

• Conclusion

1



Introduction

• Purpose: using the computational power on GPU to speed 

up solid modeling operations

• Models in many applications are with very complex shape

and topology

– virtual sculpting

– microstructure design

– rapid prototyping, etc.

2

Skull bones in 
human skeleton

A test part built by SLA



Introduction (cont.)

• Boolean operations on models with massive 

number of triangles (Wang et al., 2010)

3

941.9k Faces 497.7k Faces 213.3k Faces 780.4k Faces

1.06 sec

On GeForce GTX 580



Introduction (cont.)

• Market available solid modelers: e.g., ACIS using B-rep 

(speed? and robustness?)

• Existing free academic library: CGAL using complex data 

structure (speed?)

• Volumetric Representation is a good choice because of 

robustness

– How to efficiently convert from and to B-rep?

– How to effectively map to GPU?

• Our idea: ray-rep by Layered Depth-Normal Images (LDNI) 

on GPU

4



Layered Depth-Normal Images

5

y-LDI

x
-L

D
I

x

y

6 dx1 n1x n1y n1z

dx2

dx3

dx4

dx5

dx6

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

n5x n5y n5z

n6x n6y n6z

4 dy1 n1x n1y n1z

dy2

dy3

dy4

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

dx1

dx6

d
y
1

Sampled depth on x-LDNI coupled with surface normal

Sampled depth on y-LDNI coupled with surface normal



LDNI: a semi-implicit rep.

• A structure of three LDNIs sampled with rays along 

x-, y- and z-axes

• All with w x w pixels – the same resolution

• Selecting origin carefully – form sampling grids with 

w x w x w nodes 

• Semi-implicit representation – easily detect whether 

a point is inside / outside a solid

6



LDNI: Data Structure on GPU

• Stored as a list of 2D textures

• Maximum number of layers: nmax

• Special value M (e.g., ∞) – the white ones below

7

z
x

y

sampling



Sampling B-rep into LDNI

• Input: 2-manifold mesh surface of a solid model’s 
boundary

• Output: 2D textures for LDNI rep on GPU

• Similar to scan-conversion

• Accelerated on the GPU

• Two possible strategies:

– Depth-peeling using depth-buffer only

– Using stencil buffer

– Which one? Why?

8



Sampling B-rep into LDNI (cont.)

• Why not depth-peeling?

– Based on the comparison of depth values

– Only one sample is collected when the ray passing 
silhouette edge

– Lead to the ambiguous 

of inside / outside detection

– Although the samples

have been sorted

– Such ambiguity can hardly

be recovered 
9

Odd number of samples are reported 



Sampling B-rep into LDNI (cont.)

• Problem can be solved by using stencil buffer
– Multiple rendering (nmax)

– Only allow kth fragment pass

– k = 1, …, nmax

• Limitation
– Stencil buffer – only 256

– Solution: volume tiling

• Not only depth value

• But also normal
– Reason why called LDNI

10

Even number of samples are 
reported 



Sampling B-rep into LDNI (cont.)

• For a model with m triangles, the amount of data 

communication (the bottleneck of GPU-CPU computing)

• Without Shader Program

– 3m vertices – 9m x 4 bytes for position

– m normal vectors – 3m x 4 bytes

– Total 48m bytes

• With Shader Program (speed up >5 times)

– n vertices – 3n x 4 bytes for position (with n ≈ 0.5m)

– m indices – 3m x 4 bytes 

– Total 18m bytes

11



Boolean Operations on LDNI

• Inherit the simplicity of Boolean on ray-rep

• Highly parallel – computing on rays of LDNI

12

HA

HB

Union

Intersection

Subtraction



Boolean Operations on GPU

• On each ray, go through the samples on HA and HB by their 

depths (in parallel)

• nVIDIA CUDA is selected for the implementation

• To ease the implementation, LDNI rep is mapped to a 1D 

array 

– Instantly by DirectX

– But takes a relatively long time by OpenGL

• Result in a new 1D array

13



Robustness Enhancement

• A step of small interval removal

– 1D volume or gap less than ε

– ε = 10-5 as single precision float is sampled for depth

– 10-7 is almost the smallest number that can be exactly 

represented by single precision float

• The step of small interval removal can be incorporated into 

the Boolean algorithm

• Tangential-contact can be well processed

14

Merge



Contouring LDNI Solid to B-rep

• Cells are formed by the rays 

– We do not explicitly construct

– Inside / outside of nodes

are detected on-site

– Inconsistency: overcome

by majority vote

• An algorithm with two-passes

15

x

y

z



Contouring LDNI Solid to B-rep (cont.)

• First Pass: construct vertex table
– Vertices are constructed in the boundary cells

– A vertex in the cell [i, j, k] is given a unique ID

ID = (i (w - 2)2 + j (w - 2) + k)

– Position: determined by a position minimizing QEF
• Therefore, sharp features can be reconstructed

• Second Pass: construct face table
– Check the edge of cells – if there is an inside/outside change 

– A quadrilateral face by linking vertices in its four neighboring 
cells – by outputting the vertex IDs

16



Experimental Results

• Statistics of sampling and memory usage

– The tests are conducted at the resolution of 256 x 256

– On a consumer level PC with Intel Core 2 Quad CPU Q6600 
2.4GHz + 4GB RAM and GeForce GTX295

17

Model Faces Vertices Sampling Memory

Buddha 498k 249k 0.484s 42MB

Truss 942k 467k 1.015s 146MB

Bunny 70k 35k 0.094s 32MB

Dragon 277k 128k 0.295s 36MB

Truss2 1,026k 510k 1.059s 118MB



Experimental Results (cont.)

18

Bunny: 70k faces
Truss2: 1,026k faces

Intersection: 0.077s Contouring: 0.625s



Experimental Results (cont.)

19

Dragon: 277k faces
Bunny: 70k faces

Subtraction: 0.030s

Contouring: 1.216 sec



Experimental Results (cont.)

20

Mickey: 42.9k faces
Octa-flower: 15.8k faces
Union: 0.016 sec
Contouring: 0.686 sec

Success in Tangential 
Contact Case



Testing on ACIS and CGAL

Example ACIS CGAL GPU
Sampling

GPU 
Boolean

GPU 
Contouring

Mickey &
Octa-flower

66.409 sec Fail 0.422 sec 0.030 sec 1.216 sec

Box & 
Sphere

43.388 sec 0.864 sec 0.125 sec 0.016 sec 0.484 sec

Others Fail Fail < 2 sec < 0.2 sec < 1.5 sec

21

 For comparison

 An implementation using ACIS R15

 An implementation using CGAL ver 3.4

Charlie C.L. Wang, Yuen-Shan Leung, and Yong Chen, "Solid modeling of polyhedral objects by 
Layered Depth-Normal Images on the GPU", Computer-Aided Design, vol.42, no.6, pp.535-544, June 
2010.

[Video]

https://www.youtube.com/watch?v=Oe3rUWWn06Y


Limitation on Current Implementation

• Memory Usage

– Processing a dense manner

– LDNI is actually sparse (could be improved)

• Rotation sensitive

– Need a continuous representation

• Lack of other solid modeling operations

22



Data Structure: Sparse vs. Compact

23

Compact Representation 

can be generated by: 

Prefix-sum Scan

Two Arrays:

1) 2D Index Array

2) 1D Data Array



Surface Modeling from Multi-Material 

Volumetric Data

24



hRay-rep: Extended Ray-rep for Heterogeneous 

Solids

• Regions with different materials are presented in different 

colors

25y-Viewing Plane

x-
V

ie
w

in
g 

P
la

n
e

Region with Material 1

Region with Material 2

Region with Material 3



Converting Multi-Material Volumetric Data 

into a hRay-rep

26y-Viewing Plane

x-
V

ie
w

in
g 

P
la

n
e



Mesh Generation on hRay-rep of Heterogeneous 

Solid Using Octree

• The step of octree construction takes the majority of 

computing time, which however can be processed in 

parallel easily.

27



Other Results

28



29



30

Bone model with six 

different material regions



31



32



Other Solid Modeling Operations

• Offsetting: parallel implementation on CPU with multiple 

cores (6.35 sec on 8-cores)

33400k faces



Other Solid Modeling Operations

• Minkowski Sum: parallel implementation on CPU with 

multiple cores (14.46 sec on 8-cores)

34



Parallel Computing of General Convolution 

Surface

• Samples are 

from three 

groups

35

y-Viewing Plane

x-
V

ie
w

in
g 

P
la

n
e

Solid on ray formed by a pair of Group I samples 

Solid on ray formed by a pair of Group II samples 

Solid on ray formed by a pair of Group III samples 



Super-Ellipsoid

• Analytically evaluated 

• Covering many shapes

36

Charlie C.L. Wang, "Computing on rays: a parallel approach for surface mesh modeling from multi-
material volumetric data", Computers in Industry, vol.62, no.7, pp.660-671, September 2011.


