
L11 – GPU-based Solid Modeling for
Manufacturing

• Introduction
• Related Work
• Structured Point Representation
• Boolean Operations
• Offsetting by Super-Union of Balls
• Solid Modeling for Rapid Fabrication
• Fast Solid Modeling for Feed-rate Optimization

1

Solid Modeling for Fabrication

• Framework: GPU-based Solid Modeler for Complex Objects

• Purpose: using the computational power on GPU to speed up solid
modeling operations in Layered Depth-Normal Images (LDNI) rep.

• Models in many applications have very complex shape and topology
(e.g., microstructure design, rapid prototyping, etc.)

2

Boolean Operations

• Boolean operations on models with massive
number of triangles (Wang et al., 2010)

3

941.9k Faces 497.7k Faces 213.3k Faces 780.4k Faces

1.06 sec

On GeForce GTX 580

Offsetting

• Problem Definition:
Given a solid model H with its boundary surface approximated by the set PH of
sample points in LDNI-representation, we compute the boundary surface of exterior
offset (or interior offset) and represent it by a point set in LDNI-representation.

• Our Approach:
– Fast Approximate Offsetting
– Directly offsetting solid models in LDNI representation
– Highly parallel algorithm

4

Structured Point Representation - LDI

5

y-LDI

x-
LD
I

x

y

6 dx1 n1x n1y n1z

dx2

dx3

dx4

dx5

dx6

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

n5x n5y n5z

n6x n6y n6z

4 dy1 n1x n1y n1z

dy2

dy3

dy4

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

dx1

dx6

dy
1

Sampled depth on x-LDNI coupled with surface normal
Sampled depth on y-LDNI coupled with surface normal

Data Structure: Sparse vs. Compact

6

Compact Representation
can be generated by:
Prefix-sum Scan

Two Arrays:
1) 2D Index Array
2) 1D Data Array

Offsetting by Super-Union of Balls

• Boolean operations on LDNI solids – Boolean on 1D rays
– Highly parallel and robust

• Offsetting shell PS – by union many balls

7y-Viewing	Plane

x-
Vi
ew

in
g	
Pl
an
e

Offsetting Result:
Exterior Offset = PH U PS
Interior Offset = PH - PS

Offsetting by Super-Union (Cont.)

• Ray-based Computation
• Two Groups
I) By rays in the same view
II) By rays in different views
• Super-union
Status update by
entering / leaving
samples
• Problem:
Efficient ray-sphere
intersection detection

8

y-Viewing	Plane

x-
Vi
ew

in
g	
Pl
an
e

Solid	of	input	model

Solid	on	 ray	formed	by	a	pair	of	Group	I	samples	

Solid	on	 ray	formed	by	a	pair	of	Group	II	samples	

Primary GPU Scheme

• Three steps algorithm:
1) For each ray in one direction in parallel

• Search the intersections between this rays and
spheres generated by samples on the rays in the same direction

• Merging intersected 1D solids
• Storing the result in a global data buffer array

2) For each ray in one direction in parallel
• Search the intersections between this ray and spheres centered at the rays in other

directions
• Merging intersected 1D solids into the existing 1D solid on this ray

3) Rebuild the index array and the resultant data array (by Prefix-sum Scan)
• Reconstruct normal vectors on the resultant samples

– Orientation-aware Principal Component Analysis (PCA)
– Carry on the neighborhoods of a sample

9

GPU-based Algorithm: Spatial Hashing

• Bottleneck of primary GPU algorithm – Step 2) taking 80%-85% time
• Searching too many rays in other directions: (2m) x (2r / w)
• Redundancy: not every ray has sample fall in the range

10

x

y

z

w

m
w

Solution:
- Sorting samples from

other rays by their coordinate
in the yoz plane
- Building spatial hashing

bins around ray in x direction
- Step 2) can be conducted

by only searching samples in
these bins

Result: search only
(2r / w) x (2r / w) bins

• Computation cost on each ray: O((2r/w)2) – the search range
• Slow, when r is very large
• Offsetting with large distance r can be decomposed into n

successive offsetting with smaller distance ri where r = nri
(Rossignac & Requicha, 1986)

• Computational cost is reduced to 1/n
O(n(2ri/w)2) = O((2r/w)2)/n

• At the downside, performing offsets too
many times in succession
=> Large approximation error

11

Successive Offsetting for Large Offset

12

Offsetting Results

13

Offsetting on Different Models

Current Development
• Not only the framework of our kernel, we also develop

an interface for users to interact between the
SolidWorks (a commercial CAD tool) and our
framework

• Increase the utility of our work

Boolean Operations
• Union (∪) / Intersection (∩) / Subtraction (/)

LDNI Resolution 1024	× 1024

Models Femur	∩ Scaffold	(832	cells)

GPU Memory Usage 27.3MB

*Operation Time (sec) 3.71s

LDNI Resolution 1024	× 1024

Models Femur	/	(FemurOff /	Scaffold)

GPU Memory Usage 49.6MB

*Operations Time (sec) 4.07s

*Included scaffolding and sampling time

Offsetting

Growing Offset

LDNI Res 2048	× 2048

Offset value 10	×𝜀

Face Num. 70K

GPU Memory Usage 32.8	MB

Operation Time (sec) 4.602s

Shrinking Offset

LDNI Resolution 2048	× 2048

Offset value -15	× 𝜀

Face Num. 70K

GPU Memory Usage 84.1	MB

Operation Time (sec) 8.14s

• Able to hollow a model

*𝜀	 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑤𝑖𝑑𝑡ℎ

𝑆ℎ𝑟𝑖𝑛𝑘

𝐺𝑟𝑜𝑤

Scaffolding
LDNI Res 1024 × 1024
Cell Num. 8 x 13 x 8 (832)

Face Num. 7.6K/per cell

GPU Memory Usage 151 MB

Operation Time (sec) 3.46s

• Union
operations
applied on
instances of a
model at the
same time

Super-Union

Components 32

Total Face Num. 161K

Resolution 4096	× 4096

GPU Memory Usage 232.6MB

Operation Time (sec) 1.88s

• Union operations
applied on multiple
different models at
the same time

• Overlapped or
intersected objects
can be converted
into one solid

Contouring

• Convert LDNI
back to B-rep
representation

• For further
operations
that require
boundary
information

Offset in LDNI à Mesh
LDNI Res 1024 × 1024
Face Num. 338K

Time (sec) 0.11s

Boolean of LDNI àMesh
LDNI Res 1024 × 1024
Face Num. 513K

Time (sec) 0.23s

[Link	of	source	code]

• Fused Deposition Modeling (FDM)
• StereoLithography Apparatus (SLA)

– Contours are needed
• Mask-projection SLA

– Direct binary image projection

20

Downstream Apps

Problem with Existing Approaches (by B-rep)

21

22

Height	=	1.77		inch Height	=	1.78		inch Height	=	1.79		inch

Height	=	1.80		inch Height	=	1.81	inch

Generated by Commercial Software for FDM

Problem of Conventional B-rep Modeler

23

• Numerical robustness
• Computation in IEEE arithmetic
– Limited precision of floating-point arithmetic

• Geometry becomes inexact after intersection
• Geometric predicates
– Correct?
– Intersected models?
– Membership classification?

• Exact representation?
– Multiple precision arithmetic library
– Plane-based representation

How to provide reliable information for fast
fabrication?

• Slicing or Modeling (by LDNI-rep) in image space
• Fabrication in image space – Mask-Projection based SLA

24

LDNI Res

Image Size 2000	x	132x	2000

Time (sec) 9.13s

Reliable Slicing in Image Space

25

Binary	Image	Sampling	by	using	 the	
concept	of	r-regular	to	guarantee	
the	topological	 faithful

In	the	Stages	2	and	3,	the	self-
intersection	must	be	prevented	by	
the	stick-concept	when	sliding	on	
the	edges

v1 v2 v3 v4 v5

v6 v7 v8

v1

v8

degenerate	contour intersection

Self-intersection-free Contours
• Without snapping the contours on the edge-sticks, self-intersection

happens

Topological Faithful Contouring Result

27
Pu	Huang,	Charlie	 C.L.	Wang,	and	Yong	Chen,	"Intersection-free	and	topologically	 faithful	slicing	of	implicit	solid",	
ASME	Journal	of	Computing	 and	Information	Science	in	Engineering,	vol.13,	no.2,	021009	(13	pages),	June	2013.

Supporting Structure?

28

FDM Mask-projection SLA

Algorithms for Generating Supporter

• FDM’s supporter is based on Reliable & Robust Region Subtraction

• Dilation and erosion must be applied to remove those self-supported
regions

• Numerical pruning as a post-processing step is needed

29

Algorithms for Generating Supporter

• SLA is based on Region Subtraction but using Anchor Maps

• Anchor maps are used to represent regions and also take the region
subtraction

• Scanning orders:
– Grid Nodes
– Grid edges
– Remaining region

• Linking anchor points by bridges

30

31

Linking Anchors by Bridges

32

• One approach is based on Minimal Spanning Tree (MST)
• Another is based on closest neighbor search
• Which is better? The latter one.
• For building a long bridge, the mechanical stiffness is not

good.

Linking Anchors by Bridges (cont.)

• Anchors are located in different heights

33

Anchor	1 Anchor	3

Top	layer

Top	layer

Top	layer

Bottom	layer

Anchor	2

Top	layer

Bottom	layer

Anchor	4

Bottom	layer

Top	layer

Building	direction

34
Pu	Huang,	Charlie	 C.L.	Wang,	and	Yong	Chen,	"Algorithms	for	layered	manufacturing	in	image	space",	
Book	Chapter,	ASME	Advances	 in	Computers	 and	Information	in	Engineering	Research,	2014.

LDNI-Based Solid Modeling

35

http://ldnibasedsolidmodeling.sourceforge.net

Problem in CNC Based Mass Production
• Mostly NOT in an open-architecture
– Difficult to online monitoring / adapting

• Too fast or Too slow
– Damage on surface / tool?
– Inefficient?

• Tool-path has been given
• Remained variables to tune:
– Feed-rate of cutter engagement
– Tuning speed

36

Problem in CNC Machining (Cont.)
• Real Scenario
– High precision parts
– CNC machine with closed system
– Big cutter – large volume removal
– Weak stiffness at spindle

• Tool-path by designed shape
• Feed-rate by intuitive decision

37

Possible	Solutions

38

• Online	adaptive	control

• Additional	setup	+	need	to	be	open-architecture	

Possible	Solutions

39

• Offline	simulation	
• Adjusting	the	feed-rates
• Could	based	on:
– Chip	thickness
– Material	removal	rate	(MRR)
– Maximal	acceleration
– Force-model

• MRR	is	employed	here
– A	simple	but	general	solution
– In	the	past,	very	coarse level
– Lacks	of	MRR	at	high	resolution

Problem	of	Robustness	(B-rep	
Modeler)

40

Problem of Conventional B-rep Modeler

41

• Numerical robustness
• Computation in IEEE arithmetic
– Limited precision of floating-point arithmetic

• Geometry becomes inexact after intersection
• Geometric predicates
– Correct?
– Intersected models?
– Membership classification?

• Exact representation?
– Multiple precision arithmetic library
– Plane-based representation

Based	on	Efficient	Boolean	Operation

42

• GPU-based	Solid	Modeling	Kernel

http://ldnibasedsolidmodeling.sourceforge.net

Appropriate	Simplification

Procedural	Simulation

Simulation	Result

Based	on	Efficient	Boolean	Operation

43

• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%

Based	on	Efficient	Boolean	Operation

44

• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%

Based	on	Efficient	Boolean	Operation

45

• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%

D	=	100mm.

Based	on	Efficient	Boolean	Operation

46

• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%

D	=	100mm.

Using	Dense	Sampling	for	Sweeping

47

• More dense sampling	results	in	better
accuracy

D(mm) Calculated	
volume

Analytic	
Volume

Error	%:

2.0 30785.7 30801.4 0.0509%

1.0 30786.5 “” 0.0482%

0.8 30786.8 “” 0.0473%

0.5 30787.0 “” 0.0467%

Challenge of Feed-Rate Variation

48

• High resolution MRR histogram – cannot change feed-rate
too frequently

• Constant MRR can only be realized when goes to infinity

Computed	 in	109	sec.	with	the	help	of	GPU-based	solid	modeling

MRR-based Feed-Rate Optimization

49

• Objective	I – The	MRR,	R(t),	is	controlled	within	[Rmin,	
Rmax]	during	the	machining.

• Objective	II – While	achieving	a	bounded	MRR	in	the	
range	mentioned	above,	the	number	of	variations	of	
feed-rates	must	be	minimized	(Crucial	&	Not	
Guaranteed	in	Prior	Research).

• To	meet	these	objectives	by	a	progressive	
segmentation	
– Generate	the	histogram	of	MRR	at	very	high	resolution;
– A	hybrid	subdivision	algorithm	is	developed	to	meet	the	
demand	of	Objective	II;
• The	given	tool-path	is	segmented	into	sub-regions	(Greedy);
• Different	feed-rates	are	assigned	to	each	sub-regions	(Objective	I).

Segmentation Algorithm

50

• Mainly three steps:
1) Selecting the next group of engagement to divide;
2) Locating a best place to conduction the subdivision;
3) Assigning feed-rates to the newly created groups of engagement.

• These three steps are repeatedly applied until
– TC1: MRRs in all engagement fall into the range of [Rmin, Rmax]
– or TC2: the number of groups has reached the allowed maximum

• This is favorable to the old CNC machines cannot process too many
blocks in G-code

• Also, too frequently change feed-rates will result in bad dynamic
performance during machining

Case	Study	(Video)

51

Case	Study

52

Case	Study

53

Smaller deviation

More	trials towards	
zero arm-roll

Ka-Chun	Chan,	and Charlie	C.L.	Wang,	"Progressive	segmentation	for	MRR-based	feed-rate	optimization	in	CNC	
machining",	2015	IEEE	International	Conference	on	Automation	Science	and	Engineering	(CASE	2015)

