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Solid Modeling for Fabrication

• Framework: GPU-based Solid Modeler for Complex Objects

• Purpose: using the computational power on GPU to speed up solid 
modeling operations in Layered Depth-Normal Images (LDNI) rep.

• Models in many applications have very complex shape and topology 
(e.g., microstructure design, rapid prototyping, etc.)
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Boolean Operations

• Boolean operations on models with massive 
number of triangles (Wang et al., 2010)
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941.9k Faces 497.7k Faces 213.3k Faces 780.4k Faces

1.06 sec

On GeForce GTX 580



Offsetting

• Problem Definition: 
Given a solid model H with its boundary surface approximated by the set PH of 
sample points in LDNI-representation, we compute the boundary surface of exterior 
offset (or interior offset) and represent it by a point set in LDNI-representation.

• Our Approach: 
– Fast Approximate Offsetting
– Directly offsetting solid models in LDNI representation
– Highly parallel algorithm
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Structured Point Representation - LDI
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Data Structure: Sparse vs. Compact
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Compact Representation 
can be generated by: 
Prefix-sum Scan

Two Arrays:
1) 2D Index Array
2) 1D Data Array



Offsetting by Super-Union of Balls

• Boolean operations on LDNI solids – Boolean on 1D rays
– Highly parallel and robust

• Offsetting shell PS – by union many balls
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Offsetting Result:
Exterior Offset = PH  U PS
Interior Offset = PH - PS



Offsetting by Super-Union (Cont.)

• Ray-based Computation
• Two Groups
I) By rays in the same view
II) By rays in different views
• Super-union 
Status update by
entering / leaving
samples
• Problem:
Efficient ray-sphere 
intersection detection
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Solid	of	input	model

Solid	on	 ray	formed	by	a	pair	of	Group	I	samples	

Solid	on	 ray	formed	by	a	pair	of	Group	II	samples	



Primary GPU Scheme

• Three steps algorithm:
1) For each ray in one direction in parallel

• Search the intersections between this rays and 
spheres generated by samples on the rays in the same direction

• Merging intersected 1D solids
• Storing the result in a global data buffer array

2) For each ray in one direction in parallel
• Search the intersections between this ray and spheres centered at the rays in other 

directions
• Merging intersected 1D solids into the existing 1D solid on this ray

3) Rebuild the index array and the resultant data array (by Prefix-sum Scan)
• Reconstruct normal vectors on the resultant samples

– Orientation-aware Principal Component Analysis (PCA)
– Carry on the neighborhoods of a sample
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GPU-based Algorithm: Spatial Hashing

• Bottleneck of primary GPU algorithm – Step 2) taking 80%-85% time
• Searching too many rays in other directions: (2m) x (2r / w)
• Redundancy: not every ray has sample fall in the range
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Solution:
- Sorting samples from 

other rays by their coordinate 
in the yoz plane
- Building spatial hashing 

bins around ray in x direction
- Step 2) can be conducted 

by only searching samples in 
these bins

Result: search only
(2r / w) x (2r / w) bins 



• Computation cost on each ray: O((2r/w)2) – the search range
• Slow, when r is very large  
• Offsetting with large distance r can be decomposed into n

successive offsetting with smaller distance ri where r = nri
(Rossignac & Requicha, 1986)

• Computational cost is reduced to 1/n
O(n(2ri/w)2) = O((2r/w)2)/n

• At the downside, performing offsets too 
many times in succession
=> Large approximation error
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Successive Offsetting for Large Offset
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Offsetting Results
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Offsetting on Different Models



Current Development
• Not only the framework of our kernel, we also develop

an interface for users to interact between the 
SolidWorks (a commercial CAD tool) and our 
framework

• Increase the utility of our work



Boolean Operations
• Union (∪) / Intersection (∩) / Subtraction (/)

LDNI Resolution 1024	× 1024

Models Femur	∩ Scaffold	(832	cells)

GPU Memory Usage 27.3MB

*Operation Time (sec) 3.71s

LDNI Resolution 1024	× 1024

Models Femur	/	(FemurOff /	Scaffold)

GPU Memory Usage 49.6MB

*Operations Time (sec) 4.07s

*Included scaffolding and sampling time



Offsetting

Growing Offset

LDNI Res 2048	× 2048

Offset value 10	×𝜀

Face Num. 70K

GPU Memory Usage 32.8	MB

Operation Time (sec) 4.602s

Shrinking Offset

LDNI Resolution 2048	× 2048

Offset value -15	× 𝜀

Face Num. 70K

GPU Memory Usage 84.1	MB

Operation Time (sec) 8.14s

• Able to hollow a model

*𝜀	 = 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑤𝑖𝑑𝑡ℎ

𝑆ℎ𝑟𝑖𝑛𝑘

𝐺𝑟𝑜𝑤



Scaffolding
LDNI Res 1024 × 1024
Cell Num. 8 x 13 x 8 (832)

Face Num. 7.6K/per cell

GPU Memory Usage 151 MB

Operation Time (sec) 3.46s

• Union 
operations 
applied on 
instances of a 
model at the 
same time



Super-Union

Components 32

Total Face Num. 161K

Resolution 4096	× 4096

GPU Memory Usage 232.6MB

Operation Time (sec) 1.88s

• Union operations 
applied on multiple 
different models at 
the same time

• Overlapped or 
intersected objects 
can be converted 
into one solid



Contouring

• Convert LDNI 
back to B-rep 
representation

• For further 
operations 
that require 
boundary 
information

Offset in LDNI à Mesh
LDNI Res 1024 × 1024
Face Num. 338K

Time (sec) 0.11s

Boolean of LDNI àMesh
LDNI Res 1024 × 1024
Face Num. 513K

Time (sec) 0.23s

[Link	of	source	code]



• Fused Deposition Modeling (FDM)
• StereoLithography Apparatus (SLA)

– Contours are needed
• Mask-projection SLA 

– Direct binary image projection
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Downstream Apps



Problem with Existing Approaches (by B-rep)
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Height	=	1.77		inch Height	=	1.78		inch Height	=	1.79		inch

Height	=	1.80		inch Height	=	1.81	inch

Generated by Commercial Software for FDM



Problem of Conventional B-rep Modeler
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• Numerical robustness
• Computation in IEEE arithmetic
– Limited precision of floating-point arithmetic

• Geometry becomes inexact after intersection
• Geometric predicates
– Correct?
– Intersected models? 
– Membership classification?

• Exact representation? 
– Multiple precision arithmetic library
– Plane-based representation 



How to provide reliable information for fast 
fabrication?

• Slicing or Modeling (by LDNI-rep) in image space
• Fabrication in image space – Mask-Projection based SLA
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LDNI Res

Image Size 2000	x	132x	2000

Time (sec) 9.13s



Reliable Slicing in Image Space
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Binary	Image	Sampling	by	using	 the	
concept	of	r-regular	to	guarantee	
the	topological	 faithful

In	the	Stages	2	and	3,	the	self-
intersection	must	be	prevented	by	
the	stick-concept	when	sliding	on	
the	edges

v1 v2 v3 v4 v5

v6 v7 v8

v1

v8



degenerate	contour intersection

Self-intersection-free Contours
• Without snapping the contours on the edge-sticks, self-intersection 

happens



Topological Faithful Contouring Result
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Pu	Huang,	Charlie	 C.L.	Wang,	and	Yong	Chen,	"Intersection-free	and	topologically	 faithful	slicing	of	implicit	solid",	
ASME	Journal	of	Computing	 and	Information	Science	in	Engineering,	vol.13,	no.2,	021009	(13	pages),	June	2013.



Supporting Structure?
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FDM Mask-projection SLA 



Algorithms for Generating Supporter

• FDM’s supporter is based on Reliable & Robust Region Subtraction

• Dilation and erosion must be applied to remove those self-supported 
regions

• Numerical pruning as a post-processing step is needed
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Algorithms for Generating Supporter

• SLA is based on Region Subtraction but using Anchor Maps

• Anchor maps are used to represent regions and also take the region 
subtraction

• Scanning orders:
– Grid Nodes
– Grid edges
– Remaining region

• Linking anchor points by bridges 
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Linking Anchors by Bridges
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• One approach is based on Minimal Spanning Tree (MST)
• Another is based on closest neighbor search 
• Which is better? The latter one.
• For building a long bridge, the mechanical stiffness is not 

good.



Linking Anchors by Bridges (cont.)

• Anchors are located in different heights
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Anchor	1 Anchor	3

Top	layer

Top	layer

Top	layer

Bottom	layer

Anchor	2

Top	layer

Bottom	layer

Anchor	4

Bottom	layer

Top	layer

Building	direction
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Pu	Huang,	Charlie	 C.L.	Wang,	and	Yong	Chen,	"Algorithms	for	layered	manufacturing	in	image	space",	
Book	Chapter,	ASME	Advances	 in	Computers	 and	Information	in	Engineering	Research,	2014.



LDNI-Based Solid Modeling
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http://ldnibasedsolidmodeling.sourceforge.net



Problem in CNC Based Mass Production
• Mostly NOT in an open-architecture
– Difficult to online monitoring / adapting

• Too fast or Too slow
– Damage on surface / tool?
– Inefficient? 

• Tool-path has been given
• Remained variables to tune:
– Feed-rate of cutter engagement
– Tuning speed
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Problem in CNC Machining (Cont.)
• Real Scenario
– High precision parts
– CNC machine with closed system
– Big cutter – large volume removal 
– Weak stiffness at spindle 

• Tool-path by designed shape
• Feed-rate by intuitive decision
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Possible	Solutions
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• Online	adaptive	control

• Additional	setup	+	need	to	be	open-architecture	



Possible	Solutions
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• Offline	simulation	
• Adjusting	the	feed-rates
• Could	based	on:
– Chip	thickness
– Material	removal	rate	(MRR)
– Maximal	acceleration
– Force-model

• MRR	is	employed	here
– A	simple	but	general	solution
– In	the	past,	very	coarse level
– Lacks	of	MRR	at	high	resolution



Problem	of	Robustness	(B-rep	
Modeler)
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Problem of Conventional B-rep Modeler
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• Numerical robustness
• Computation in IEEE arithmetic
– Limited precision of floating-point arithmetic

• Geometry becomes inexact after intersection
• Geometric predicates
– Correct?
– Intersected models? 
– Membership classification?

• Exact representation? 
– Multiple precision arithmetic library
– Plane-based representation 



Based	on	Efficient	Boolean	Operation
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• GPU-based	Solid	Modeling	Kernel

http://ldnibasedsolidmodeling.sourceforge.net

Appropriate	Simplification

Procedural	Simulation

Simulation	Result



Based	on	Efficient	Boolean	Operation
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• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%



Based	on	Efficient	Boolean	Operation
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• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
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Based	on	Efficient	Boolean	Operation
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• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
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D	=	100mm.



Based	on	Efficient	Boolean	Operation
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• Procedure
(T10D100X2.2/3.7	SAW)
G00X40Y58M03S10000
G43H10Z-12.5
G00Z-12.5
G01X40Y58F600
G01X52Y32
G01X60Y32
G00Z15.0
M99
%

D	=	100mm.



Using	Dense	Sampling	for	Sweeping
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• More dense sampling	results	in	better
accuracy

D(mm) Calculated	
volume

Analytic	
Volume

Error	%:

2.0 30785.7 30801.4 0.0509%

1.0 30786.5 “” 0.0482%

0.8 30786.8 “” 0.0473%

0.5 30787.0 “” 0.0467%



Challenge of Feed-Rate Variation
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• High resolution MRR histogram – cannot change feed-rate 
too frequently

• Constant MRR can only be realized when goes to infinity 

Computed	 in	109	sec.	with	the	help	of	GPU-based	solid	modeling



MRR-based Feed-Rate Optimization
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• Objective	I – The	MRR,	R(t),	is	controlled	within	[Rmin,	
Rmax]	during	the	machining.

• Objective	II – While	achieving	a	bounded	MRR	in	the	
range	mentioned	above,	the	number	of	variations	of	
feed-rates	must	be	minimized	(Crucial	&	Not	
Guaranteed	in	Prior	Research).

• To	meet	these	objectives	by	a	progressive	
segmentation	
– Generate	the	histogram	of	MRR	at	very	high	resolution;
– A	hybrid	subdivision	algorithm	is	developed	to	meet	the	
demand	of	Objective	II;
• The	given	tool-path	is	segmented	into	sub-regions	(Greedy);
• Different	feed-rates	are	assigned	to	each	sub-regions	(Objective	I).



Segmentation Algorithm
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• Mainly three steps:
1) Selecting the next group of engagement to divide;
2) Locating a best place to conduction the subdivision;
3) Assigning feed-rates to the newly created groups of engagement.

• These three steps are repeatedly applied until
– TC1: MRRs in all engagement fall into the range of [Rmin, Rmax]
– or TC2: the number of groups has reached the allowed maximum

• This is favorable to the old CNC machines cannot process too many 
blocks in G-code

• Also, too frequently change feed-rates will result in bad dynamic 
performance during machining 



Case	Study	(Video)
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Case	Study
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Case	Study
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Smaller deviation

More	trials towards	
zero arm-roll

Ka-Chun	Chan,	and Charlie	C.L.	Wang,	"Progressive	segmentation	for	MRR-based	feed-rate	optimization	in	CNC	
machining",	2015	IEEE	International	Conference	on	Automation	Science	and	Engineering	(CASE	2015)


