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Types of Curve Equations

* Implicit: Describe a curve by a equation relating to (x,y,z) coordinates
— Advantages: X*+y*=R* z=0
« Compact; Easy to check if a point belongs to the curve
« Easy to handle topological change
— Disadvantages:
« Difficult for curve evaluation
« Difficult for partial curve definition

 Parametric: represent the (x,y,z) coordinates as a function of a single
parameter (e.g., t as time for the trajectory of a moving path)
— Advantages: X=Rcost, y=Rsint, z=0 (0<t<2n7)
« Easy for curve evaluation
« Convenient for partial curve definition
 Many others such as easy for manipulation, intersection. 2



* Obtained by cutting a cone with a plane

— Circle or Circular arc

— Ellipse or Elliptic Arc

— Parabola

— Hyperbola

— Arbitrary Conics
(non-canonical form)

circle
ellipse
7 £\ parabola

hyperbola

......................

Conic Sections

Conic Sections

forming ellipses, parabolas, and hyperbolas respectively.




Circle, Ellipse, and Parabola

, "’ (b0
Cireular are: ® %= FEro:d +a
y=Esin9+ 5
. =0 (Fl=8=82)

The circular arc which lies on the xy plane with the center (@, &, 0) and radius E.
ttecomes a full circle when 81 =0 and 82 = 21

Elhptic arc: X =acosd

T v = bsind
o L
@m z=0 (Bl=8<82)

The elliptic arc which lies on the zv plane with the center (0, 0, 00, z- and y-axis
are the major and minor axes with length of a and b respectively. Becomes a full
ellipse when 81 =0 and 92 = 27

Parabola:

X=u
Y = Clé
z=0 (—m<u<w)

& parabola symmetric with y-axis, ¢ a constant. The two end points of a partial
curve determines the range of parameter u.



Hyperbola

Take two pomts F and F' and a strictly positive value 2a.

The locus of all pomts D such that abs([D,F| - |D.F'[) = 2a 1s a hyperbola.

Here abs(x) means absolute value of x.

We choose the line FF' as x-axis and the perpendicular bisector of the segment [F F'] as y-a=s.
We give F and F' resp. coordmates (c,0) and (-c,0).

F’ o %
Let b2 =02 — a2,
2 2

Implicit form: :—2 - ;—2 =]

z=0
Parametric: x =a%cosh(u)

y=hegirh(u)

z=10 (ul S =u2)

(cosh(u) = (v + eW)/2; sink(u) = (e — eW)/2)



Non-canonical conics

A general ellipse

=% %)
O

The slanted ellipse can be obtained by rotating the reference ellipse at the origin (x =

acost, y=hsind, z=0 by ¢ about the z-axiz and then moved by Xc in z-direction and
Yo in y-direction. After these two transformations, a point (x, v, 0) on the reference
ellipse 15 moved to a new point (x*, v*, 2% on the new ellipze, related as:

[z*, v* ¥ 1|T=Trans(¥c, Yo, 0)eEotiz, ¢iw[=, v, 0, 1]T

[ xcosg—ysin g+ Xc | [acosfcosg— bsin Bsin g+ X |
xsin ¢+ voosg+ e acosdd sth @+ ban Hoos g+ 1o
0 0
1 1




Cubic Polynomial Curve

Definition
Pu)=[xu)y(u)z(u)] T =ag+autau’+au® (0<u<H)
Major Drawback:
— a,, 44, 85, 3, are simply algebraic vector coefficients;
— they do not reveal any relationship with the shape of the curve itself.

— In other words, the change of the curve’s shape cannot be intuitively
anticipated from changes in their values.

Data fitting? How?

— Parameterization (Uniform, Chordal Length)
— Least-Square Solution

Why not quadric?
P(u) =a, + a,u + a,u? 0<u<1)



Cubic Polynomial Curve
Py = [z{u) y(u) z{u)] T= ag + aju + agu? + az? D= =1)

An example: the parabola {z=cu?, y=u, == 0}

x(1s) 0 0 < 0
vz = |00+ |1 |u+ | 0fu2+ [0 (0= =1)
Zig) 0 0 0 0
Piu) ag a & x

Lpplication:
Given two 3D points Py, Py, and their respective tangent vectors P’y and Py, find a
cubic curve to interpolate therm

P,

Pu = Pli[]:l = Ay ap — Pu
P1=P{1]=Hu+ﬂl+ﬂg+ﬂg E|1=P~|:|

P’u = P’I:D:I = . Ay — —3P|:| R 3].:'1 i EP’U - 1:”1
P"l :P’|:1:|:HD+232+3F|3 33:2P0_2P1+P,|]+ P:Il

Pl:’u:l = Pu i P1|:|1.1 i I:-BPD I 3]_:'1 = 2].:'0 o ].:"1'111_12 B I:EPQ = 2]_:'1 & ]_:'1|:|+ P’1]u3 |:|:| o I:I



Quadric Polynomial Curve
Piuy = [=(u) y(u) z(u)] T= ap + agu + agu? (D= =1)

An example: the parabola {x=cu?, y=u, =0}

x5 0 0 £

vz |= (0 + (1 [u+ [0 |2 (0=u=1)
z(1) 0 0 0

Piu) ap a ™

Why 1tz use 15 limited:
Given two 3D points Py, P, and their respective tangent vectors P’y and Py, find a
cubic curve to interpolate them.

Py

P|:| = P{D:I = dy Ay = Pu
Py=P(01=a ’ a =P,

[ o —— — — —
P1=P{1)=P|:|+Pr|:|+ﬂj ' I Elg=P1—P|:|—P’|:| ] I

P =P'(1)= Py + 2a L= @1 -Pyz |



Continuity

Measures the degree of “smoothness” of a curve.

CO continuous — position continuous
C' continuous — slope continuous

C2 continuous - curvature continuous

3 )

C'is the minimum acceptable curve for engineering design. Cubic
polynomial is the lowest-degree polynomial that can guarantee the
generation of C,, C,, and C, curves. Higher order curves tend to oscillate
about control points.

Cy | That's reason why cubic polynomial is always used.

10



Hermite Curve

« Definition
P(u) = fO(u)P0 + f1(u)P1 + f2(u)P0’+ f3(u)P1° (0 <u < 1)
« Benefits:

— If the designer changes PO or P1, he immediately knows what effect it will have
on the shape - the end point moves.

— Similarly, if he modifies PO’ or P1’, he knows at least the tangent direction at
that end point will change accordingly.

* Deficiency

— Itis not easy and not intuitive to predict curve shape according to changes in
magnitude of the tangents PO’ or P1’.

11



Hermite Curve

Py

The cubic curve that interpolates the two points By, Py and their tangents abowe 13
Plu) =P+ Pout+ (3P + 3P - 2P - P+ 2P - 2P, + P+ P'wd (0 =w =1)

Fearrange the above equation around Fy, Py, Py, P'1, we have the Hermite curve:

P(u) = (1-3u®+2u?) Py + (3u?-2u) Py + (u-2u*tu’) P’y + (-u+u) Py

. 1‘ . :

fo(u) fi(u) H(u) fa(u)

P(u) = f(u)Py + fi(w)P; + £()P’; + £w)P* (D=u=1)

so now the curve 13 represented as linear combianation of Py, P, PPy, Py, which are called
geametric caefficients. The four functions (), fi{u), f(u), &i{u) are called the dlending
Junctians. That 15, geometric coefficients are blended together by the blending functions. 12



Effect Tangents’ Directions on a Hermite Curve

Change of tangent direction at point
P




Effect Tangents’ Magnitude on a Hermite Curve

Ky: magnitude of tangent at p,

K,: magnitude of tangent at p,

The tangent directions at p, and p, are fixed.

Y y

T >~

10—




Bezier Curve

Definition:
P(u) = [x(u) v(u) z(w)]T= f(w)P, + (WP, + . . . + f,(0W)P,

™,
1i( 1-10) »
J

(n
£0) =B a(w=|
\

Where:
‘.’r’ 7l \.‘ n T

kj/' IT(FE—I)T

How was Bezier curve discovered?
1. Look at the desired properties
2. Start from n = 1 to arbitrary

15



Road to the Discovery of Bezer Curve

Idea: Some kind of curve that can be controlled or manipulated by a polyzon. Let this
polygon have nt+1 2D vertices {Py, P1, ..., B}. The sought curve should be 1n the form:

Piwy = [={uw) yiu) z(w)] T= () Py + fiiu) Py + . + L(n B, (D=u=1)
where fy(u), fifu), ..., &l are the blending functions we are searching for.

Desired properties:

® The curve must passes through the first vertex Py and last vertex By of the polyzon
(Hermite propertyif n=3)

® The tangent vector at the start point Py must hawve the same direction as the first
segment of the polygon. Sumlarly, the last segment gives the direction of tangent
at the last vertex B (Hermite property it n=3)

® The same curve 15 generated when the order of the vertices of the polygon 13
reversed. That 1s:

Py + 00 P+ HEWE, = Hin P, FHinR, + . HE0P,

(Because to a designer, the curve should look exactly the same, as long as the
polyzon 18 the same, regardless in which direction the vertices are thput)

® The curve should be inside the convex hull of the polyzon

(It gives the designer a safety zone. By controlling the convex hull of the control
polyzon, he knews the final curve will not go outside the convex hull)

16



step 1

step 2.

Partition of Unity

step 2.

How would vou discover Bezier Curve?

Think of the simplest case, 1e., when n=1, it has to be a line segment, and
has to be 1n this form

Pru) = (1-0 Py + uP; (02w =1)

Think of the desired convex hull property, using this classical affine theorerm:

Given nt1 real and non-negative numbers ag, &, ..., &, ifa 2 0 (0 <i<an)

®
and Eﬁ:‘ =1, then the point P=a,Py + ayP1 +. . . + a,P, 15 inside the convex
imi)

hull of the n+1 2D points Py, Py, . ., Ba

What about an arbitrary n?

((1-u) +w)*=1 (for any u)

Ezxpand inte Binomial formula:

(1w +up= i (HJ 11 ) ™

Tt
B;.(u)

The Bezier curve P(u) =Bg n(u)Py + By n(wP1 +. . + By n(u)B, 12 ins1de the convex hull

of {Pﬂ, Pl g

, Botfor any u since E B w)=((1-w+ur=1foranyu
i

17



Examples of Bezier Curves

https://www.desmos.com/calculator/cahgdxeshd

18


https://www.desmos.com/calculator/cahqdxeshd

Derivative of a Bezier curve

c@ B.G)B)

= HZ Bz',n—l (u)(PHl i F;:)

=

The right hand 1s a Bezier curve of degree (n-1), if you take n(P;, — P;) as a new control
pomnt. At u=0 and u=l1, the two ends of the Bezier curve, their tangents are n(P; — P;) and
n(P, — P..1) respectively.

F 3

(1,2)

(4.2)

un

3%(1,2)=(3,6)

3%(3,0)=(9,0)

(0,0)

> »
(6.0)

3#(2,-2)=(6,-6) 19



Naive evaluation of a Bezier curve

To evaluate a point at 21 =u, on a Bezier curve of degree n

LY .
Pu) = z ( ti{(1-1)=" P,

i=0\I

Number of multiplications and divisions:

n) _ 7.
Y=t GDepaened
3, - -
(L)t : -1
Lotz : (Bn—-2+2)n=3n% (32 iffor cubicn=13)

2> @n-1)H(n-1)+1+1

To draw the Bezier curve with 100 points
Number of nultiplications and divisions:

3n?*100 = 300n? (3200 if for cubic n=3) 20



The de Casteljau algorithm

Anexample of cubic Bezier curve (n=3):

Mumber of multiplications of a single point:
1#t tteration:  2*3 =46
2rd jteration:  2%¥2=4
3 jteration: 2%l =2
Total: 12 (ws. 32 of naive way)

For 100 points: 12%100 = 1200 (wvs. 2200 of naive way)

HMumber of multiplications of a single point:
I*t tteration:  2*n

2 jteration:  2%(n-1)

3 jteration:  2%(n-2)

i teration: 2
Total: 2*(14+2+ . +n) = n(r1) (ws. 30002 of naive way)

Save 2/3 time compared to the naive way of evaluation 21



Interpolation Using Multiple Bezier Curves

Smoothly interpolate an ordered list of points by many Bezier curves

To interpolate points @, first construct temporary points (. the two sets of points
induce 4 quadric BEezier curves that meet smoothly at the points to be interpolated.

Problem: 1. How to determine these temporary points (O ¥ By what criteria?

2. Iz quadric Bezier enough? 22



Interpolation Using A Single Bezier Curve

Given points Q,, Q,, ..., Q,,, find a Bezier curve P(u) with control points P, Py, ..., P, (n <m) so
that P(u) interpolates all the Q;.

1. Po=Qq P, = Q-

i
3)IQi — Qi
u: = =2

= jo23..,m-1
m

.Z2||Qi —Qi4|

i=

3. ej=

n
Qj—iiBi,n(uj)RH;jzz,s ..... m-1

m-1 2
4. Se(RLPy e Prg)=Sr (X0, Y1.21, %0, Y2, 20 X g, Yno1: Zna) = _Zzej
J=

s, _

[ oS,
OXi

oSy oS,
oY

0; —
0Z;

5. 0; 0 i=12,..,n-1

These are 3 independent sets of (n-1) linear equations; solve them we get control points P, P, ...,P,
whose corresponding Bezier best fit the points Q,, Q,, ..., Q, in the least-squares sense.

In-class exercise: verify it for the case of n = 3 and planar. 23



Drawbacks of Bezier curve
* High degree

— The degree is determined by the number of control points which tend to be

large for complicated curves. This causes oscillation as well as increases the
computation burden.

* Non-local modification Property

— When modifying a control point, the designer wants to see the shape change
locally around the moved control point. In Bezier curve case, moving a control

point affects the shape of the entire curve, and thus the portions on the curve
not intended to change.

— http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez9-3.himl
* |Intractable linear equations

— If we are interested in interpolation rather than just approximating a shape, we
will have to compute control points from points on the curve. This leads to

systems of linear equations, and solving such systems can be impractical when
the degree of the curve is large. 24



http://www.mat.dtu.dk/people/J.Gravesen/cagd/bez9-3.html

Why and What To Do?

The culprit is the Bezier curve’s blending functions f(u) = B; (u):
because B; (u) is non-zero in the entire parameter domain [0,1], if the
control point P, moves, it will also affect the entire curve.

What we need is some blending function f(u) such that:

1. It is non-zero over only a limited portion of the parameter

interval of the entire curve, and this limited portion is different
for each blending function. (Therefore, when P, moves, it only
affects a limited portion of the curve.)

2. It is independent of the number of control points n.

Answer: B-Splines e



Definition of B-Spline Curve

Given {Py, P, ..., Pu}, a non-periodic and uniferm B-spline curve 1s constructed
according to the following four steps.

e Step 1. Select an integer k, called the erder of the B-spline curve, usually k=4

o Step 2. Define (n+k +1) numbers tg to tyx, called kneot values:

0 0=<i<k
t=di-k+1 k<i<n
n—k+2 ne<i<=n+k

® DStep 3. Compute the nt1 blending function N y(u) recursively:

1 2ust,
0 otherwise

Ma(w) = {

(TR )M.x-ﬁu) ” (Cipe — W)Nm.xq(”)

Livi1— & Livk —lin

Nix(w) =

o Step 4. Put together:

Plu)= Z N (B £y St SE1)
i=0

26



Properties of B-Spline Curves

The order k determines the degree of the blending functions M x(u): the highest
degree p of P 1n Vjx(u) 1s p =k-1, independent of the number of control points n.

All the properties enjoyed by Bezier curves. For example, the convex hull

property (Z N, (W) =1foranyu (f;; Su =¢,,,)).

i=0
The derivative of a B-spline 1s still a B-spline

d@ MJ:. (EJ-)JE;} 21

= T = ENUH':”)Q:'
i=0

where

Q=(-paf

It:u-k. i+l

The most important feature of B-spline only

Njx(u) is non-zero only in the interval [¢, =u =¢,).

Change of P; therefore only affects that portion of curve.

27



Local Control on B-Spline Curves

P3

Control point P, moves to a new position P,’; only a portion of the original curve has changed.
28



Nonuniform Rational B-Splines (NURBS)

n
2. Wi pi Nj i (U)
P(u) ="
ZWiNiK(u) for 0 <u<n-K+2
i—0 |

with knots vector {ty, t;, . . ., t .}

If weights w; =1 for all i, then it reduces to a standard B-Spline.

NURBS is the most general and popular representation.
1. All Hermite, Bezier, and B-spline are special cases of NURBS.
2. It can represent exactly conics and other special curves.
3. The weights w, add one more degree of freedom of curve manipulation.
4. It enjoys all the nice properties of standard (nonrational) B-splines (such as
affine transformation invariant and convex hull property).

29



Effect of Weights on NURBS Curve

The coefficient before control point Py 1s:

w,N, (1)

Colu) =

g W, (1)

The larger w, is, the closer curve is pulled toward P,. When w, is infinite, the curve
passes through P,: on the other hand, when »w,is 0, P, does not effect the curve at all.



Partitioning of Unity Property on NURBS
Basis Functions
Zn:Wipi Ni k (u)

Pu)="%
W;N;  (U)
0

Zn:WiNi,K(U)

WoNo k (U) N Wy N; i (U) - W, N, « (U) _ iz

. =1
2 WiN; i () D wWiNj e (u) ZOWiNi,K(u) ZOWiNi,K(U)
i=0 i=0 i i

http://fab.cba.mit.edu/classes/S62.12/docs/Piegl NURBS.pdf

31
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Take Home Questions (1)

Give the parametric curve
representation of the ellipse
shown left. (Hint: utilize

transformations.)

2. Consider the Hermite curve defined in the plane with P(0) = (2,3), P(1) =
(4, 0), P’(0) =(3,2), and P’'(1) = (3, -4).
a. Find a Bezier curve of degree 3 that represents this Hermite curve

as exactly as possible, i.e., decide the four control points of the
Bezier curve.

b. Expand both of the curve equations into polynomial form and
compare them. Are they identical?

32



Take Home Questions (2)

Determine a Bezier curve of degree 3 that approximates a quarter circle centered
at (0,0). The two end points of the quarter circle are (1,0) and (0,1). Calculate the
X and Y coordinates of the middle point of your Bezier curve and compare them
with that of the quarter circle.

Answer the following questions for a non-periodical and uniform B-spline of order
3 defined by the control points PO, P1, P2, and P3:

a. What are the knots values?

b. There are two independent curves comprising this B-spline, each defined on
the parameter range ue[0,1] and ue[1,2] respectively. Expand the B-spline
curve equation to get the separate equations of these two curves.

c. The two curve equations of b have different parameter u-ranges, i.e., for the
first curve C,(u), its parameter u-range is [0, 1], for the 2" curve C,(u), itis
[1,2]. Please do:

(1) Show that curve C,(u) is a Bezier curve. What are its control points?

(2) Lets =u - 1. Show that C,(s+1): s€[0,1] is also a Bezier curve. What
are its control points?

33



