
L6 – Differential Geometry of Curves

• We will discuss local properties of curves 

independent of a possible embedding into a surface

• Topics to be covered including:

– Parametric curves and arc length

– Principal normal and curvature

– Binormal vector and torsion

– Frenet-Serret formulae
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Parametric Curves

• A curve in R3 is given by the parametric representation

𝒓 = 𝒓 𝑡 =

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

𝑡 ∈ [𝑎, 𝑏] ⊂ 𝑅

where x(t), y(t) and z(t) are differentiable functions of t.

• A curve r(t) that satisfies

ሶ𝒓 𝑡 =

ሶ𝑥 (𝑡)
ሶ𝑦(𝑡)
ሶ𝑧(𝑡)

≠ 0 𝑡 ∈ [𝑎, 𝑏]

is called a regular curve
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Arc Length

• Considering a segment of 𝒓 𝑡 between 

P and Q (i.e., as points 𝒓 𝑡 and 

𝒓 𝑡 + Δ𝑡 respectively), its length Δ𝑠 can be approximated 

as

Δ𝑠 ≈ Δ𝒓 = 𝒓 𝑡 + Δ𝑡 − 𝒓 𝑡

≈
𝑑𝒓

𝑑𝑡
Δ𝑡 +

𝑑2𝒓

𝑑𝑡2
(Δ𝑡)2 (by Taylor expansion)

≈
𝑑𝒓

𝑑𝑡
Δ𝑡

to the first order approximation.
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• As point Q approaches P on the curve (i.e., Δ𝑡 → 0), the 

length Δ𝑠 becomes the differential arc length of the curve 

as 

𝑑𝑠 =
𝑑𝒓

𝑑𝑡
𝑑𝑡 = ሶ𝒓 𝑑𝑡 = ሶ𝒓 ∙ ሶ𝒓𝑑𝑡

• The length of the curve can be computed as

𝑠 𝑡 = න
𝑡0

𝑡

𝑑𝑠 = න
𝑡0

𝑡

ሶ𝒓 ∙ ሶ𝒓𝑑𝑡

= න
𝑡0

𝑡

ሶ𝑥2(𝑡) + ሶ𝑦2(𝑡) + ሶ𝑧2(𝑡)𝑑𝑡

• The vector dr/dt is called the tangent vector at point P, 

whose magnitude is derived from above as ሶ𝒓 =
𝑑𝑠

𝑑𝑡
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• Hence the unit tangent vector become 

𝒕 =
ሶ𝒓

ሶ𝒓
=

ൗ𝑑𝒓
𝑑𝑡

ൗ𝑑𝑠
𝑑𝑡

=
𝑑𝒓

𝑑𝑠
≡ 𝒓′

• We list some useful formulae of derivatives between s and t

below.

ሶ𝑠 =
𝑑𝑠

𝑑𝑡
= ሶ𝒓 = ሶ𝒓 ∙ ሶ𝒓 ሷ𝑠 =

𝑑 ሶ𝑠

𝑑𝑡
=

ሶ𝒓 ∙ ሷ𝒓

ሶ𝒓 ∙ ሶ𝒓

𝑡′ =
𝑑𝑡

𝑑𝑠
=

1

ሶ𝒓
=

1

ሶ𝒓 ∙ ሶ𝒓
𝑡′′ =

𝑑𝑡′

𝑑𝑠
= −

ሶ𝒓 ∙ ሷ𝒓

( ሶ𝒓 ∙ ሶ𝒓)2
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Regularity of Parametric Curves

• A point 𝒓(𝑡) is defined as the regular point if ሶ𝒓(𝑡) ≠ 0; 

otherwise, it is called a singular point.

• A parameterization 𝒓 = 𝒓 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 𝑇 of a 

curve defined in the interval I is called an allowable

representation if it satisfies:

– The mapping: 𝑡 → 𝒓 𝑡 = 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 𝑇 is one-to-one;

– The vector function 𝒓 = 𝒓 𝑡 is of class 𝑟 ≥ 1 in the interval I; 

– ሶ𝒓(𝑡) ≠ 0 for all 𝑡 ∈ 𝐼.

Such a curve is called a regular curve.
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Regularity of Implicit Curves

• A point (x0,y0) of a planar implicit curve f(x,y)=0 is said to 
be singular if f(x0,y0) = fx(x0,y0) = fy(x0,y0) = 0.

• Applying differentiation to an implicit curve, we can have

df = fx dx + fy dy = 0 (as f(x,y) = 0)

=>   dy / dx = - fx / fy (if 𝑓𝑦 ≠ 0)

• The tangent vector on the implicit curve is ±(𝑓𝑦 , −𝑓𝑥)
𝑇; 

hence the unit tangent vector is:

𝒕 = ±
(𝑓𝑦 , −𝑓𝑥)

𝑇

𝑓𝑥
2 + 𝑓𝑦

2
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Implicit Space Curve

• An implicit space curve in 3D is defined as the intersection 

of two implicit surfaces

ቊ
𝑓 𝑥, 𝑦, 𝑧 = 0

𝑔 𝑥, 𝑦, 𝑧 = 0

• The normal vectors of these implicit surface are: 𝛻𝑓, 𝛻𝑔

• The unit tangent vector is

𝑡 = ±
𝛻𝑓×𝛻𝑔

𝛻𝑓×𝛻𝑔

with 𝛻 = (
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
)𝑇.
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Principal Normal and Osculating Plane

• If 𝒓(𝑠) is an arc length parameterized curve, 𝒓′(𝑠) is a unit 

vector with 𝒓′ ∙ 𝒓′ = 1

• Differentiating this, we obtain 𝒓′ ∙ 𝒓′′ = 0 (i.e., 𝒓′ ⊥ 𝒓′′)

• The unit vector

𝒏 =
𝒓′′(𝑠)

𝒓′′(𝑠)
=

𝒕′(𝑠)

𝒕′(𝑠)

is called the unit principal normal vector at s.

• The plane determined by t(s) and n(s) is called the 

osculating plane at s.
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Curvature

• From the right, we have

𝒓′ 𝑠 + ∆𝑠 − 𝒓′(𝑠) = ∆𝜃 when ∆𝑠 → 0

=> 𝒓′′ 𝑠 = lim
∆𝑠→0

∆𝜃

∆𝑠
= lim

∆𝑠→0

∆𝜃

𝜌∆𝜃
=

1

𝜌
= 𝜅

𝜅 is called the curvature and its reciprocal 𝜌 is called radius of 

curvature at s. 

• It follows that: 𝒓′′ = 𝒕′ = 𝜅𝒏

• The vector 𝜿 = 𝒓′′ = 𝒕′ is called the curvature vector.
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Non-Arc-Length Parameterized Curve

ሶ𝒓 =
𝑑𝒓

𝑑𝑠

𝑑𝑠

𝑑𝑡
= 𝒕𝜈

• 𝜈 = 𝑑𝑠/𝑑𝑡 defining the parametric speed, that is

ሶ𝒓 = 𝜈 = 𝑑𝑠/𝑑𝑡

ሷ𝒓 =
𝑑

𝑑𝑡
𝒕𝜈 = 𝜈2

𝑑𝒕

𝑑𝑠
+ 𝒕

𝑑𝜈

𝑑𝑡
= 𝜅𝑣2𝒏 + 𝒕

𝑑𝜈

𝑑𝑡
• Then, we have

ሶ𝒓 × ሷ𝒓 = 𝜅𝜈3𝒕 × 𝒏

As 𝒕
𝑑𝜈

𝑑𝑡
is parallel to ሶ𝒓, the 2nd term eliminated.
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• For the planar curve, we can give the curvature k a sign by 

defining the normal vector such that (t, n, ez) for a right-

hand screw, where ez = (0, 0, 1)T.

• According to this, we have

𝒏 = 𝒆𝑧 × 𝒕 =
(− ሶ𝑦, ሶ𝑥)𝑇

ሶ𝑥𝟐 + ሶ𝑦𝟐

• Hence from ሶ𝒓 × ሷ𝒓 we have

𝜅 =
( ሶ𝒓 × ሷ𝒓) ∙ 𝒆𝑧

𝜈3
=

ሶ𝑥 ሷ𝑦 − ሶ𝑦 ሷ𝑥

( ሶ𝑥𝟐 + ሶ𝑦𝟐)3/2
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Curvatures for Parametric & Implicit Curves

• For a space curve, we can have 

ሶ𝒓 × ሷ𝒓 = 𝜅𝜈3𝒕 × 𝒏 =>    𝜅 =
ሶ𝒓× ሷ𝒓

𝜈 3 =
ሶ𝒓× ሷ𝒓

ሶ𝒓 3

• For a planar curve f(x,y)=0, we have

𝒏 = 𝒆𝑧 × 𝒕 =
(𝑓𝑥, 𝑓𝑦)

𝑇

𝑓𝑥
2 + 𝑓𝑦

2

=
𝛻𝑓

𝛻𝑓

• We now start to derive the formula for curvature as follows.
𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑠
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑠

with dx/ds and dy/ds to be further determined.
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𝒓′′ = 𝒕′ = 𝜅𝒏 = 𝜅
𝛻𝑓

𝛻𝑓
𝒕 =

(𝑓𝑦,−𝑓𝑥)
𝑇

𝑓𝑥
2+𝑓𝑦

2
=

(𝑓𝑦,−𝑓𝑥)
𝑇

𝛻𝑓

𝒓′ = 𝒕 =
𝑑𝒓

𝑑𝑠
𝑑𝑥

𝑑𝑠
=

𝑓𝑦

𝛻𝑓
the x−comp. of t

𝑑𝑦

𝑑𝑠
=

−𝑓𝑥
𝛻𝑓

(the y−comp. of t)

𝑑𝑓

𝑑𝑠
=
𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑠
+
𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑠
=

1

𝛻𝑓
𝑓𝑦
𝜕𝑓

𝜕𝑥
− 𝑓𝑥

𝜕𝑓

𝜕𝑦

𝑑

𝑑𝑠
=

1

𝛻𝑓
𝑓𝑦

𝜕

𝜕𝑥
− 𝑓𝑥

𝜕

𝜕𝑦

By 
𝑑𝑡

𝑑𝑠
= 𝑟′′ = 𝜅

𝛻𝑓

𝛻𝑓
, we can obtain the curvature as

𝜅 = −
𝑓𝑥𝑥𝑓𝑦

2 − 2𝑓𝑥𝑦𝑓𝑥𝑓𝑦 + 𝑓𝑦𝑦𝑓𝑥
2

(𝑓𝑥
2 + 𝑓𝑦

2)3/2
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Binormal Vector and Torsion

• Let’s define a unit binormal vector b such that (t, n, b) form 

a right-handed screw: 

𝒃 = 𝒕 × 𝒏 𝒕 = 𝒏 × 𝒃 𝒏 = 𝒃 × 𝒕

• For the arbitrary speed curve, we can have

𝒃 =
ሶ𝒓 × ሷ𝒓

ሶ𝒓 × ሷ𝒓
𝒃′ =

𝑑

𝑑𝑠
𝒕 × 𝒏 =

𝑑𝒕

𝑑𝑠
× 𝒏 + 𝒕 × 𝒏′

= 𝜅𝒏 × 𝒏 + 𝒕 × 𝒏′ = 𝒕 × 𝒏′

• Since n is a unit vector (𝒏 ⋅ 𝒏 = 1), we have 𝒏 ⋅ 𝒏′ = 0
indicating that 𝒏 ⊥ 𝒏′ (i.e., 𝒏′ is // to the plane (𝒃, 𝒕))

=> 𝒏′ = 𝜇𝒕 + 𝜏𝒃
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Torsion

• By 𝒃′ = 𝒕 × 𝒏′, we could have

𝒃′ = 𝒕 × 𝜇𝒕 + 𝜏𝒃 = 𝜏 𝒕 × 𝒃 = −𝜏𝒏

• The coefficient 𝜏 is called the torsion and measures how much 

the curve deviates from the osculating plane (𝒏, 𝒕)
𝜏 = −𝒏 ⋅ 𝒃′

= −
𝒓′′

𝜅
⋅ 𝒓′ ×

𝒓′′

𝜅

′

= −
𝒓′′

𝜅
⋅ 𝒓′ ×

𝒓′′′

𝜅
=

(𝒓′𝒓′′𝒓′′′)

𝒓′′⋅𝒓′′

with 𝒓′𝒓′′𝒓′′′ = 𝒓′ ⋅ (𝒓′′ × 𝒓′′′) a triple scalar product.

• The torsion for an arbitrary speed curve is given by

𝜏 =
( ሶ𝒓 ሷ𝒓ഺ𝒓)

( ሶ𝒓 × ሷ𝒓) ∙ ( ሶ𝒓 × ሷ𝒓)
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Frenet-Serret Formulae

• From the above analysis, have: 𝒕′ = 𝜅𝒏 &  𝒃′ = −𝜏𝒏
𝒏′ = 𝒃 × 𝒕 ′ = 𝒃′ × 𝒕 + 𝒃 × 𝒕′

= −𝜏𝒏 × 𝒕 + 𝒃 × 𝜅𝒏 = −𝜅𝒕 + 𝜏𝒃

We then obtain => 
𝒕′
𝒏′
𝒃′

=
0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

𝒕
𝒏
𝒃

• The equations 𝜅 = 𝜅(s) and 𝜏 = 𝜏(𝑠) are called intrinsic

equations of the curve
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Frenet-Serret Formulae (cont.)

• For arbitrary speed curve, the Frenet-Serret formulae are 

given by
ሶ𝒕
ሶ𝒏
ሶ𝒃

=
0 𝜐𝜅 0

−𝜐𝜅 0 𝜐𝜏
0 −𝜐𝜏 0

𝒕
𝒏
𝒃

with 𝜐 =
𝑑𝑠

𝑑𝑡
= ሶ𝒓 the parametric speed.

• Asssignment: Given the intrinsic equations of circular helix

𝜅 s =
𝛼

𝑐2
and 𝜏 s =

𝛽

𝑐2
where 𝑐 = 𝛼2 + 𝛽2

Please derive the parametric equations of circular helix.
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