L6 — Differential Geometry of Curves

 \We will discuss local properties of curves
independent of a possible embedding into a surface

* Topics to be covered including:
— Parametric curves and arc length
— Principal normal and curvature
— Binormal vector and torsion
— Frenet-Serret formulae



Parametric Curves

 Acurve in R3is given by the parametric representation

x(t)

r=r()=|y()

Z(t)

t € [a,b] CR

where x(t), y(t) and z(t) are differentiable functions of t.
 Acurve r(t) that satisfies

r(t) =

Is called a regular curve

)
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z(t)

* 0 t € |a,b]



P

Arc Length AN

Q
« Considering a segment of r(t) between o/ T(+40 ‘
P and Q (i.e., as points r(t) and X
r(t + At) respectively), its length As can be approximated
as
As = | Arll = ||r(t + At) — r(t)|]

~y
~y

At + — (At) ” (by Taylor expansion)

E
to the first order approximation.



* As point Q approaches P on the curve (i.e., At — 0), the
length As becomes the differential arc length of the curve
as

dr
ds = | —|| dt = ||7||dt = V1 - 7dt

dt
* The length of the curve can be computed as

S(t)—f ds—f\/ﬁdt

f JX2(0) + y2(0) + 22(t)dt

 The vector dr/dt Is called the tangent vector at point P,

: : : . ds
whose magnitude is derived from above as ||7|| = —



* Hence the unit tangent vector become

i dr/dt ﬂ _

7l ~ ds/ " ds

{ = ——

« We list some useful formulae of derivatives between s and t
below.
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Regularity of Parametric Curves

* Apoint r(t) is defined as the regular point if (t) # O;
otherwise, it is called a singular point.

» Aparameterization r = r(t) = (x(t), y(t),z(t))" of a
curve defined in the interval | is called an allowable
representation if it satisfies:

— The mapping: t = r(t) = (x(t), y(t), z(t))" is one-to-one;
— The vector function = r(t) is of class r = 1 in the interval I
— |l#(t)]| = 0forall t €1.

Such a curve is called a regular curve.



Regularity of Implicit Curves

* Apoint (X,,Y,) of a planar implicit curve f(x,y)=0 is said to
be singular if f(Xq,Yo) = f(X0:¥0) = T,(X0,Y0) = O.
* Applying differentiation to an implicit curve, we can have
di=f,dx+f,dy=0 (asf(xy)=0)
=> dy/dx=-f./f, (ff, #0)
* The tangent vector on the implicit curve is +(f,,, — O
hence the unit tangent vector is:

t =+ (fyr _fx)T
[+ 5




Implicit Space Curve

 An implicit space curve in 3D is defined as the intersection
of two implicit surfaces

{f (x,y,2) =0

g(x,y,z) =0

 The normal vectors of these implicit surface are: Vf, Vg
 The unit tangent vector is

t =+ VixXVg
IVfxvgll
. 9 9 0
with 7 = (ax’ay’az)T'



Principal Normal and Osculating Plane

If r(s) is an arc length parameterized curve, ' (s) is a unit
vectorwithr' - ' =1

Differentiating this, we obtainr’ - " = 0 (i.e., v’ L 1")
The unit vector

s ()
TSRS

Is called the unit principal normal vector at s.

The plane determined by t(s) and n(s) is called the
osculating plane at s.




Curvature

* From the right, we have

|r'(s + As) — r'(s)|| = A6 when As — 0

AO AO 1

=> I — 1 —_— 1 —_— T — T
I ()1 Aly—?o As Alér—{lo pAl  p .

K Is called the curvature and its reciprocal p is called radius of
curvature at s.

e |tfollowsthat.r’’ =t' = kn
e Thevectork = 1r"" = t' is called the curvature vector.




Non-Arc-Length Parameterized Curve

. dr ds _
T asdt
* v = ds/dt defining the parametric speed, that is
7|l = v =ds/dt
d dt dv dv
. — 2 : — 2 :
r—dt(tv) Vv P tdt Kv‘n tdt

* Then, we have
rXr=xvitxn

As t% is parallel to 7, the 2" term eliminated.



Inflection
Point

* For the planar curve, we can give the curvature k a sign by
defining the normal vector such that (t, n, e,) for a right-
hand screw, where e, = (0, 0, 1),

* According to this, we have
_ )"
VaZ +y?

n=e,xt

 Hence from r X ¥ we have
(rxr)-e, Xy — yX

v3 _ (xz 1 3',2)3/2




Curvatures for Parametric & Implicit Curves

 For a space curve, we can have

L _ lix#]| ||
rXr=xvitxn = k= ERRTRTE
 Fora planar curve f(x,y)=0, we have
e xt St _ VS
IVl

J+f

* We now start to derive the formula for curvature as follows.

df_afdx_l_afdy
ds Oxds 0dyds

with dx/ds and dy/ds to be further determined.
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Binormal Vector and Torsion

« Let’s define a unit binormal vector b such that (t, n, b) form
a right-handed screw:

b=txXxn t=nXb mn=>bxXt

 For the arbitrary speed curve, we can have
rXr . d dt ,
b = <7l b =$(txn) =$xn+txn
=knXn+txn =txn
 Since nisaunitvector(n-n =1),wehaven-n' =0
indicating thatm L n' (i.e., n’ is // to the plane (b, t))

=>n'=ut+ b




Torsion

« Byb' =t xn’, wecould have
b'=tx(ut+7b) =1(txXb)=—-1n

* The coefficient T is called the torsion and measures how much
the curve deviates from the osculating plane (n, t)
T=-n-b’

(e xT) = () 2

K K K K r!’ !

7

with (r'r"'r""") =r" - (" x r"") a triple scalar product.
* The torsion for an arbitrary speed curve is given by

B (r7°'r)

C(F X)X i)

T



Frenet-Serret Formulae

* From the above analysis, have:t’' = kn & b’ = —tn
n=Mbxt) =b'xXt+bxt
=—mXt+bXkn=—kxt+1b

t' 0 Kk 0\ /t
We then obtain => (n’) = (—}c 0 r) (n)
b’ 0 —1t 0/ \b

* The equations k = k(s) and T = t(s) are called intrinsic
equations of the curve



Frenet-Serret Formulae (cont.)

* For arbitrary speed curve, the Frenet-Serret formulae are

given by
t 0 vk 0\ [/t
(1’1) = (—UK 0 vr) (n)
b 0 —vt 0 b

with v = % = ||r|| the parametric speed.
. Asssignment' Given the intrinsic equations of circular helix

K(s) = and 7(s) == wherec = \/az + B2

C2

Please derlve the parametric equations of circular helix.



