L8 — Differential Geometry of Surfaces

 We will discuss intrinsic properties of surfaces independent
its parameterization

* Topics to be covered including:
— Tangent plane and surface normal
— First fundamental form | (metric)
— Second fundamental form |l (curvature)
— Principal curvatures
— Gaussian and mean curvatures
— Euler’s theorem



Tangent Plane and Surface Normal

Consider a curve u=u(t) v=v(t) in the parametric domain of a parametric
surface r=r(u, v), then r=r(t)=r(u(t), v(t)) is a parametric curve lying on
the surface r.

z

r(u, v) Using the chain rule on

r(t)=r(u(t), v(t)
2> #(t) = i + ry0

r(u(®), v(t)

The tangent plane at point p can be considered as a union of the tangent
vectors of the form in above equation for all r(t) (i.e., many curves) passing
through p. : N
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Tangent Plane and Surface Normal (cont.)

» The equation of the tangent plane at r(u,, v,) is

(p - r(uy, vp)) - N(up, v,) =0
« Definition: A regular (ordinary) point p on a parametric surface is
defined as a point where r, x r, # 0. Apointwithr,xr, = 01s
called a singular point.

* Implicit surface f(x,y,z)=0, the unit normal vector is given by
v
N
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First Fundamental Form | (Metric)

* |f we define the parametric curve by a curve u=u(t) v=v(t) on a
parametric surface r=r(u,v)
dr

dt
=/ (ryu +1r,v) - (ryu + r,v)de

= VEdu? + 2Fdudv + Gdv? (v u = %, V= %)

du dv

ds = dt = r”E-I_r”E dt

where
E=r,-r,, F=7r,-r,,G=1,1,
* E, F, G are call the first fundamental form coefficients and play
important role in many intrinsic properties of a surface



First Fundamental Form | (cont.)

» Definition: The first fundamental form is defined as
I = (ds)?=dr-dr = Edu® + 2Fdudv + Gdv?

which can also be rewritten as (@axb)-(cxd)
G — F? =(a - c)(b - d)-(a- d)(b - c)

I—lEd + Fd 2+E dv)?
—E( u V) 5 (dv)

« \We can then have
E=r,-r,>0
(ry X rv)2= (ry X1y) - (ry X1y)
— (ru'ru)(rv'rv)_(ru'rv)z =EG—F*>0
 Conclusion: we know that | is positive definite, provided that the

surface is regular (since I = 0 and | = 0 if and only if du=0 and
dv=0 at the same time)



Example I: Let's compute the arc length ofacurve u = t, v = t for
0 <t < 1 on a hyperbolic paraboloid r(u, v)=(u, v, uv)" where 0 <
u,v < 1.

Solution: r, = (1,0,v)!, r, = (0,1,u)’

E=r, - ry=1+v4G=r,r,=1+u*,F=r, -r, = uv.

and along the curve the first fundamental form coefficients are
E=1+t%G=1+t?F =t>

Thus
ds = VEUZ + 2Fuv + Gvedt =2 + 4t2dt = 2 /tz + - dt
The arc length ,f

s= 2 /tz +-dt = [t /tz +-+-log(t +

= \/§+%log(\/§+\/§)




First Fundamental Form | (Angle)

 The angle between two curves on a parametric surface

ri =1 (t), v1(8)), 1y = r(uz(t), v, (¢))
can be evaluated by tacking the inner product of their tangent vectors.
drl ¢ drz

ldr||[|dr.||
_ EdulduZ + F(duldvz + dvlduZ) + deldvz
VEdu? + 2Fdu,dv, + Gdv?\Edu? + 2Fdu,dv, + Gdv?
 As a result, the orthogonality condition for r; and 7, is
Edu,du, + F(du,dv, + dv,du,) + Gdv,dv, =0

* In particular, the angle of two iso-parametric curves is
ry Ty ry Ty

”ru”“rv” B \/ru ) ru\/rv Ty
Thus, the iso-parametric curves are orthogonal if F = 0.
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First Fundamental Form | (Area)

 The area of a small parallelogram with 4 vertices
r(u,v), r(u+ ou,v), r(u,v+ o6v), r(u+ éu, v+ ov)

r(u,v + 6v)

SA r(u + éu, v+ 6v)
r(u,v)
r(u + du, v)
IS approximated by

S0A = ||r du X r,év|| = \/EG — F26udv

( (ru X rv)z =(1'u ) ru)(rv ) rv) — (ru ) rv)z)
Or in different form as
dA = \EG — F2dudv




Example II: Let's compute the area of a region on the hyperbolic
paraboloid. The region is bounded by positive u and v axes and a
quarter circle u? + v? = 1 as shown.

Solution: Again
r, = (1,0,v)!, r, = (0,1,u)"
E=r, - ry=1+v4G6=r,r,=1+u*,F=r, -1, =uv

EG—F?=0+v5 )1 +u%) —u?v?=1+u?+v?

WA= J V1 + u? + v2dudv yi7%
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Second Fundamental Form Il (Curvature)

* To quantify the curvature of a surface S, we consider a curve C on S
which pass through the point p.

 The unit tangent vector t and

the unit normal vector n of the

curve C are related by
k=dt/ds = kn =k + ki

where K, is the normal curvature vector and kj, is the geodesic
curvature vector.

kg : the component of k in the direction perpendicular to t in the surface
tangent plane

K., : the component of k in the surface normal direction
K, = kN, where k. - the normal curvature of surface at p in t direction. ,,




Second Fundamental Form |l (cont.)

By differentiating N - t = 0 along the curve with respect to s, we have

dt dN

—  N+t-—=0
ds T ds
Thus
:k _dt N]'— y dN  dr dN
LE___d_S_ a ds ds ds
Ldu +2Mdudv+Ndv
~ Edu? + 2Fdudv + Gdv?
with
L=-r,-N,, N=-r,-N,,

wdr =rydu+r,dv
dN = N,du + N,dv
~dr-dN = (ry - N,)du?
+(@ry, N, +1,-Nydudv
+(r, - N,)dv?




Second Fundamental Form |l (cont.)

* Since r, and r, are perpendicular to N, we have
r,  N=0 = ry,y, N+r,-N,=0 (forL)
r, N=0 = r,-N,+r, -N=0 (forM)
r, N=0 = r,, N+r,-N,=0 (forN)
hence: L=7r, - NM=7r,, - NNN=1r,,-N

* We define the second fundamental form Il as
Il = Ldu? + 2Mdudv + Ndv?

and L, M, N are called second fundamental form coefficients
II L+ 2MA+ NA?

I —E+2F)A+ NG?

where 1 = Z—Z is the direction of the tangent line to C at p.

k, =



By Taylor expansion, we have
r(u+du,v+dv) =r(u,v)+rydu+r,dv

Theorem: All curves lying on a surface S passing through a given
point p € S with the same tangent line have the same normal
curvature at this point.

Note that, sometimes the positive normal curvature is defined in the

opposite direction. center of curvature /’L‘%&

P center of curvature

We now start to study the local surface property by II.
Suppose two neighboring points P and Q on S
P=r(uv) and Q=r(u-+duv+dv)

+ % (ry,du? + 2rdudv + r,,dv?) + -




 Projecting the vector:
PQ =r(u+du,v+dv) —r(u,v)

1
= r du + r,dv + > (ry,du? + 2rdudv + r,,dv?) + -
onto N by using the second fundamental form, we have
PQ-N = (rydu+1,dv) - N +-11 =i
(vr,  N=1,-N=0) |
where the higher order terms are neglected. —"
* In conclusion, the local shape variation: g

— — — — —

When d = 0, it become

Ldu? + 2Mdudv + Ndv? = 0
which can be considered as a quadratic equation in terms of du, dv.
_ —-M+VM?2-LN

L

du

dv  (Assuming L # 0)



Local Shape Analysis by Second
Fundamental Form |I

« M? — LN < 0, this is no real root: No intersection between r(u,v)

and T, except the point p.
> An elliptic point /@7

e M? —LN =0andL? + M? + N? # 0, there are double roots:
The surface intersects Tp with one line

du = — % dv %
> A parabolic point n

« M? — LN > 0, there are two roots: The surface intersects its
tangent lane with two lines

_ —M+VM2-LN
N L

du
> A hyperbolic point

dv




Local Shape Analysis by Second
Fundamental Form |l (cont.)

 L=M =N =0, the surface and the tangent plane have a contact of
higher order than in the above cases at the point p.

> Aflat or planar point
« [fL=0and N # 0, we can solve for dv instead of du.

« IfL =N=0and M =+ 0, we have 2ZMdudv = 0, thus the
intersection lines will be the two iso-parametric lines:

u = constl V = const2



Principal Curvatures

* From the second fundamental form, we already know
II _ L+2MA+NA?

fep ==

I  E+2FA+NG2

The normal curvature at p depends on the direction of A = Z—Z.

« The extreme value of k,, can be obtained by solving: dk,,/dA = 0.
(E+2FA+GA>)(NA+ M) — (L +2MA+NA*)(GA+F) =0

e _ L+2MA+NA*> _ NA+M

N E+2FA+GA2  GA+F
o Furthermore, since E +2FA+GA> = (E+FA) + A(F+G6)and L +
2MA+ NA?> = (L + ML) + A(M + NA), we have
D ((E + F2) + A(F + GA))(NA+ M) = ((L + MA) + A(M + NA))(GA + F)
> (E+ FA)(INA+ M) = (L + MA)(GA+ F)




* Therefore, we have
, L+2MA+NA* M+NA L+ M2A

S T 2FA+ G2 F4Gl E+FA
« Substituting A = Z—Z, we have
(L—kEE)du+ (M — kiF)dv =0
(M —kEF)du+ (N —kEG)dv =0
This is a homogeneous linear system of equations for du, dv, which will have a
nontrivial solution if and only if
L—kEE M —kEF
M —kéF N —k&G
(EG — F2)ke” — (EN + GL — 2FM)kE + (LN — M?) = 0
 The discriminant of D of this quadratic equation in k2 can be
FZ

EG — 2F ?
D=4 =2 (EM — FL)? + EN—GL—F(EM—FL)

Since EG — F# = 0, we have D = 0. The quadratic equation has real roots.

=0




o |f we set

LN—M?2 EN+GL—-2FM
= > and H =
EG-F 2(EG—F?)

The quadratic equation is simplified to
ke® —2HkE + K = 0
which has the following solutions
kmax = H +VH? — K
K min :H_\/HZ — K
are defined as the maximum and minimum principal

* K. and Kk
curvature.

* The directions for which give k..., and k.. are called principal
directions, the corresponding directions in uv-plane
_ M—kyF . L—k,E

N-k,G M—ky,F
by replacing k, with either k.. or K ...

min




« When H? = K, k_ is a double root with value equal to H and the
corresponding point of the surface is an umbilical point.

— At an umbilical point, a surface is locally a part of sphere with radius of
curvature: 1/ H

— In the special case — both K and H vanish, the point is a flat or planar point
 Acurve on surface where tangent at each point is in a principal
direction at that point is called a line of curvature

— At each (non-umbilical) point, there are two principal directions that are
orthogonal - the Iines of curvatures form an orthogonal net of lines.

— We can then from the equation of A have
(L —k,E)du+ Mdv =0
Mdu+ (N — k,G)dv =0

* The necessary condition for the parametric lines ‘
tO be ||ne Of Curvature |S F — M — O Line of curvatures



Gaussian and Mean Curvatures

« From above equation on page 19, we can easily have
K = kmaxKmin
H = (kmin *+ kmax)/2
 The sign of the Gaussian curvature coincides with the sign of LN —

a2
M? since K = ZIZ_IZZ and EG — F? > 0. Then, we have

1. K > 0, the surface is elliptic at the point;

2. K < 0,the surface is hyperbolic at the point;

3. K = 0and H # 0, the surface is parabolic at the point;

4. K =0and H = 0, the surface is flat (or planar) at the point.

 This is good for segmenting an given surface to different regions
(reverse engineering of CAD models).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3315&rep=rep1&type=pdf



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3315&rep=rep1&type=pdf

Euler’s Theorem

 The normal curvature of a surface in an arbitrary direction (in the
tangent plane) at point p can be expressed in terms of principal
curvatures k; and k, at point p and the angle between the arbitrary
direction and the principal direction corresponding to k; as:
k,(¢) = ky cos? ¢ + k, sin? ¢



