
L1 - Introduction

• Applied Computational Intelligence with focus on machine

learning (data-driven artificial intelligence)

• Contents

– Why Machine Learning?

– Problems Machine Learning Can Solve

– Why Python?

– Essential Libraries and Tools

– CoLab platform of Google

– A First Application: Classifying Iris Species

1

Why Machine Learning?

• Have a tremendous influence on the way of data-driven

technology

• Data-driven vs. Hand-coded rules

• Disadvantage of system based on hand-coded rules

– The logic required to make a decision is specific to a single

domain and task. Changing the task even slightly might require a

rewrite of the whole system.

– Designing rules requires a deep understanding of how a decision

should be made by a human expert, which is however tough.

– E.g., face detection (unsolved until 2001); Tough as in which way

pixels “perceived” by computer is different from how human does
2

Problems Machine Learning Can Solve:

Supervised Learning

• Those as automatic decision making processes

• Supervised Learning

– User provides the algorithm with pairs of inputs and

desired outputs, and the algorithm finds a way to

produce the desired output given an input

– Algorithm is able to create an output from an input it has

never seen before without any help from a human

– Creating a dataset of inputs and outputs is often a

laborious manual process

– Easy to understand & easy to measure its performance
3

Examples of Supervised ML Tasks

• Identifying the zip code from handwritten digits on an

envelope (data-collection: laborious by easy & cheap)

• Determining whether a tumor is benign based on a medical

image (data-collection: expensive expert; ethical & privacy)

• Detecting fraudulent activity in credit card transactions

4

Problems Machine Learning Can Solve:

Unsupervised Learning

• Only the input data is known but not the output data

• The problem is usually harder to understand and evaluate

• Example unsupervised learning examples:

– Identifying topics in a set of blog posts (might not known

beforehand what these topics are or how many topics)

– Segmenting customers into groups with similar preferences (do

not know in advance what these groups might be)

– Detecting abnormal access patterns to a website (in this example

you only observe traffic, and you don’t know what constitutes

normal and abnormal behavior, this is an unsupervised problem)

5

Feature Extraction or Feature Engineering

• Need a representation that input data can be understood by

a computer – thinking your data as a table

– Each data point is a row (named as sample)

– Each property of data points is a column (named as feature)

• Features need to provide enough information

– If the only feature that you have for a patient is their last name

– No algorithm will be able to predict their gender

– If you add another feature that contains the patient’s first name,

you will have much better chance as it is often possible to tell the

gender by a person’s first name

• Important to know your task and your data
6

Why Python?

• It combines the power of general-purpose programming

languages with the ease of use of domain-specific scripting

languages such as MATLAB

• Rich of libraries: data loading, visualization, statistics,

natural language processing, image processing, etc.

• scikit-learn: an open source project (http://scikit-learn.org/)

• Cloud Platform CoLab of Google (free)

– Start from creating an account in google

– https://colab.research.google.com/
Hello World

print("Hello World! \nThis is my first program of Python running on CoLab.")
7

http://scikit-learn.org/
https://colab.research.google.com/

Essential Libraries and Tools of Python

• NumPy

– contains functionality for multidimensional arrays, high-level

mathematical functions such as linear algebra operations and the

Fourier transform, and pseudorandom number generators.

– A NumPy array looks like
import numpy as np

x = np.array([[1, 2, 3], [4, 5, 6]])

print("x:\n{}".format(x))

print(x[0, 1]) # 4

8

• SciPy: collection of functions for scientific computing

– Advanced linear algebra routines, mathematical function

optimization, signal processing, special mathematical functions,

and statistical distributions.

– Most important for us is scipy.sparse: provides sparse matrices
from scipy import sparse

Create a 2D NumPy array with a diagonal of ones, and zeros everywhere else

eye = np.eye(4)

print("NumPy array:\n{}".format(eye))

https://en.wikipedia.org/wiki/Sparse_matrix

Convert the NumPy array to a SciPy sparse matrix in CSR format; only nonzero entries are stored

sparse_matrix = sparse.csr_matrix(eye)

print("\nSciPy sparse CSR matrix:\n{}".format(sparse_matrix))

– Usually it is not possible to create dense representations of

sparse data (as not fit into memory), so we need to create sparse

representations directly (http://www.scipy-lectures.org/).
9

https://en.wikipedia.org/wiki/Sparse_matrix
http://www.scipy-lectures.org/

• matplotlib: the primary scientific plotting library in Python

– It provides functions for making publication-quality visualizations

such as line charts, histograms, scatter plots, and so on.
%matplotlib inline

import matplotlib.pyplot as plt

Generate a sequence of numbers from -10 to 10 with 100 steps in between

x = np.linspace(-10, 10, 100)

Create a second array using sine

y = np.sin(x)

The plot function makes a line chart of one array against another

plt.plot(x, y, marker="x")

• pandas: a Python library for data wrangling and analysis

– Simply put, a pandas data structure as DataFrame is a table,

similar to an Excel spreadsheet.

– provides a great range of methods to modify and operate on this

table (i.e., SQL-like queries and joins of tables)
10

• pandas (continue):

– In contrast to NumPy, which requires that all entries in an array

be of the same type, pandas allows each column to have a

separate type (for example, integers, dates, floating-point

numbers, and strings).

– It can import from a great variety of file formats and databases,

like SQL, Excel files, and comma-separated values (CSV) files.
import pandas as pd

from IPython.display import display

create a simple dataset of people

data = {'Name': ["John", "Anna", "Peter", "Linda"],

'Location' : ["New York", "Paris", "Berlin", "London"],

'Age' : [24, 13, 53, 33]

}

data_pandas = pd.DataFrame(data)

IPython.display allows "pretty printing" of dataframes

in the Jupyter notebook

display(data_pandas) 11

Select all rows that have an age column

greater than 30

display(data_pandas[data_pandas.Age > 30])

Python 2 vs. Python 3

• Python 2 is no longer actively developed

• Migrate to Python 3 if you have old code in Python 2
import sys

print("Python version: {}".format(sys.version))

import pandas as pd

print("pandas version: {}".format(pd.__version__))

import matplotlib

print("matplotlib version: {}".format(matplotlib.__version__))

import numpy as np

print("NumPy version: {}".format(np.__version__))

import scipy as sp

print("SciPy version: {}".format(sp.__version__))

import IPython

print("IPython version: {}".format(IPython.__version__))

import sklearn

print("scikit-learn version: {}".format(sklearn.__version__)) 12

First Application: Classifying Iris Species

• Data contains the measurements of some irises that have

been previously identified by an expert botanist

– Belonging to the species setosa, versicolor, or virginica

– For these measurements, one can be certain of which species

each iris belongs to

– Our goal: to build a machine learning model that can predict the

species for a new iris.

– An example of classification problem

– For a particular data point, the species it

belongs to is called its label.
13

Meet the Data

• What we used is the Iris dataset
from sklearn.datasets import load_iris

iris_dataset = load_iris()

print("Keys of iris_dataset: \n{}".format(iris_dataset.keys()))

print(iris_dataset['DESCR'][:193] + "\n...")

print("Target names: {}".format(iris_dataset['target_names']))

print("Feature names: \n{}\n".format(iris_dataset['feature_names']))

print("Type of data: {}".format(type(iris_dataset['data'])))

print("Shape of data: {}\n".format(iris_dataset['data'].shape))

print("First five rows of data:\n{}".format(iris_dataset['data'][:10]))

print("Type of target: {}".format(type(iris_dataset['target'])))

print("Shape of target: {}\n".format(iris_dataset['target'].shape))

print("Target:\n{}".format(iris_dataset['target'])) 14

Target:

0 means setosa

1 means versicolor

2 means virginica

Measuring Success: Training & Testing

• Cannot use the training data to evaluate the performance

• To assess the model’s performance, we show it new data

(data that it hasn’t seen before) for which we have labels

• Splitting the labeled data we have collected into two parts:

– One part of the data is used to build our machine learning model,

and is called the training data or training set. (around 75%)

– The rest of the data will be used to assess how well the model

works; this is called the test data, test set, or hold-out set.
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=0)

print("X_train shape: {}".format(X_train.shape)) print("y_train shape: {}".format(y_train.shape))

print("X_test shape: {}".format(X_test.shape)) print("y_test shape: {}".format(y_test.shape)) 15

First Things First: Look at Your Data

• Before building a machine learning model it is often a good

idea to inspect the data

– Check if the desired information contained in the data

– A good way to find abnormalities and peculiarities

• One of the best ways to inspect data is to visualize it

– by using a scatter plot (not work for high-dim., need pair plot)
create dataframe from data in X_train

label the columns using the strings in iris_dataset.feature_names

iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)

create a scatter matrix from the dataframe, color by y_train

pd.plotting.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), marker='o', hist_kwds={'bins': 20},

s=60, alpha=.8, cmap=mglearn.cm3)

– Note that, diagonal is filled with histograms of each feature. 16

Building First Model: k-Nearest Neighbors

• Here we use a k-nearest neighbors (knn) classifier

– The most important parameter is # of neighbors
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=1)

– The knn object encapsulates the algorithm that will be used to

build the model from the training data
knn.fit(X_train, y_train)

– Making predictions
X_new = np.array([[5, 2.9, 1, 0.2]])

print("X_new.shape: {}".format(X_new.shape))

prediction = knn.predict(X_new)

print("Prediction: {}".format(prediction))

print("Predicted target name: {}".format(iris_dataset['target_names'][prediction]))
17

Evaluating the Model

• This is where the test set that we created earlier comes in.

– This data was not used to build the model, but we do know what

the correct species is for each iris in the test set.

– Therefore, we can make a prediction for each iris in the test data

and compare it against its label (the known species).

– We can measure how well the model works by computing the

accuracy, which is the fraction of flowers for which the right

species was predicted:
y_pred = knn.predict(X_test)

print("Test set predictions:\n {}".format(y_pred))

print("Test set score (by mean): {:.2f}".format(np.mean(y_pred == y_test)))

print("Test set score (by knn.score): {:.2f}".format(knn.score(X_test, y_test)))
18

Summary and Outlook

19

• Introduction of machine learning (data-driven artificial

intelligence)

• Contents

– Why Machine Learning?

– Problems Machine Learning Can Solve

– Why Python?

– Essential Libraries and Tools

– CoLab platform of Google

– A First Application: Classifying Iris Species

– Splitting labeled set into training (75%) and test (25%) datasets

Course Assessment Scheme

• Four Assignments (70% in total)

– Assignment 1: Data preparation (10%)

– Assignment 2: Supervised learning (20%)

– Assignment 3: Unsupervised learning (20%)

– Assignment 4: Algorithm chain (20%)

• Final Examination (30%)

20

Course Project Description

21

