L1 - Introduction

* Applied Computational Intelligence with focus on machine
learning (data-driven artificial intelligence)

 Contents
— Why Machine Learning?
— Problems Machine Learning Can Solve
— Why Python?
— Essential Libraries and Tools
— Colab platform of Google
— A First Application: Classifying Iris Species

Why Machine Learning?

 Have a tremendous influence on the way of data-driven
technology

« Data-driven vs. Hand-coded rules

» Disadvantage of system based on hand-coded rules

— The logic required to make a decision is specific to a single
domain and task. Changing the task even slightly might require a
rewrite of the whole system.

— Designing rules requires a deep understanding of how a decision
should be made by a human expert, which is however tough.

— E.g., face detection (unsolved until 2001); Tough as in which way

pixels “perceived” by computer is different from how human does
2

Problems Machine Learning Can Solve;
Supervised Learning

* Those as automatic decision making processes
* Supervised Learning

— User provides the algorithm with pairs of inputs and
desired outputs, and the algorithm finds a way to
produce the desired output given an input

— Algorithm is able to create an output from an input it has
never seen before without any help from a human

— Creating a dataset of inputs and outputs is often a
laborious manual process

— Easy to understand & easy to measure its performance 3

Examples of Supervised ML Tasks

* |dentifying the zip code from handwritten digits on an
envelope (data-collection: laborious by easy & cheap)

* Determining whether a tumor is benign based on a medical
image (data-collection: expensive expert; ethical & privacy)

» Detecting fraudulent activity in credit card transactions

PN,
r -"ii.;\-.’-':- HoalE
e

- i . l'. i F
r',}.’:E":‘:-"-f-.e"ﬁ?"i':'-‘-" -::i-.":r. .,-é:: ',:":*Er_.- .{;:-r.a!“‘: Pk 35-*1

Co_BéyY BT
T EOY SIS

Do 0os VerdesPonnselie , (A
5?{3-?.',?'#-

§950 Sandts inrn BSbd S 2o
: T I
f.f. e lgiwor of ¢ f;-al:r':'*,'l

ST ,-"

Problems Machine Learning Can Solve;
Unsupervised Learning

* Only the input data is known but not the output data
* The problem is usually harder to understand and evaluate

 Example unsupervised learning examples:

— ldentifying topics in a set of blog posts (might not known
beforehand what these topics are or how many topics)

— Segmenting customers into groups with similar preferences (do
not know in advance what these groups might be)

— Detecting abnormal access patterns to a website (in this example
you only observe traffic, and you don’t know what constitutes
normal and abnormal behavior, this is an unsupervised problem)

Feature Extraction or Feature Engineering

* Need a representation that input data can be understood by
a computer — thinking your data as a table
— Each data point is a row (named as sample)
— Each property of data points is a column (named as feature)

* Features need to provide enough information
— If the only feature that you have for a patient is their last name
— No algorithm will be able to predict their gender

— If you add another feature that contains the patient’s first name,
you will have much better chance as it is often possible to tell the
gender by a person’s first name

* |mportant to know your task and your data

Why Python?

t combines the power of general-purpose programming
anguages with the ease of use of domain-specific scripting

anguages such as MATLAB

Rich of libraries: data loading, visualization, statistics,
natural language processing, image processing, efc.
scikit-learn: an open source project (http://scikit-learn.org/)

Cloud Platform CoLab of Google (free)
— Start from creating an account in google

— https://colab.research.google.com/

Hello World
print("Hello World! \nThis is my first program of Python running on ColLab.")

http://scikit-learn.org/
https://colab.research.google.com/

Essential Libraries and Tools of Python

* NumPy

— contains functionality for multidimensional arrays, high-level
mathematical functions such as linear algebra operations and the
Fourier transform, and pseudorandom number generators.

— A NumPy array looks like
import numpy as np
x = np.array([[1, 2, 3], [4, 5, 6]])
print("x:\n{}".format(x))
print(x[O, 1]) #4 Anatomy of an array

axis =1
-
axis =2
1 0 O | |The axesofan The shape of an / - all elements must b of
010 array describe array is a tuple the same dtype (datatype)
00 1 the order of indicating the
indexing into the number of - the default dtype is float
axis=0 100 array, e.g., elements along 0
0 1 0 | |axis=0refersio each axis. An ; arrays constructed from
- s ist of mixed dtype will be
00 1 the flr_st index existing array a upcast to the "greatest”
coordinate, has an attribute common type
100 axis=1 the a.shape which
010 second, etc. contains this tuple. 1

shape=(8,3)

* SciPy: collection of functions for scientific computing

— Advanced linear algebra routines, mathematical function
optimization, signal processing, special mathematical functions,
and statistical distributions.

— Most important for us is scipy.sparse: provides sparse matrices
from scipy import sparse

Create a 2D NumPy array with a diagonal of ones, and zeros everywhere else

eye = np.eye(4)

print("NumPy array:\n{}".format(eye))

https://en.wikipedia.org/wiki/Sparse_matrix

Convert the NumPy array to a SciPy sparse matrix in CSR format; only nonzero entries are stored
sparse_matrix = sparse.csr_matrix(eye)
print("\nSciPy sparse CSR matrix:\n{}".format(sparse_matrix))

— Usually it is not possible to create dense representations of
sparse data (as not fit into memory), so we need to create sparse
representations directly (http://www.scipy-lectures.org/).

9

https://en.wikipedia.org/wiki/Sparse_matrix
http://www.scipy-lectures.org/

» matplotlib: the primary scientific plotting library in Python

— It provides functions for making publication-quality visualizations
such as line charts, histograms, scatter plots, and so on.

%matplotlib inline

import matplotlib.pyplot as plt

Generate a sequence of numbers from -10 to 10 with 100 steps in between
x = np.linspace(-10, 10, 100)

Create a second array using sine

y = np.sin(x)
The plot function makes a line chart of one array against another
plt.plot(x, y, marker="x")

* pandas: a Python library for data wrangling and analysis

— Simply put, a pandas data structure as DataFrame is a table,
similar to an Excel spreadsheet.

— provides a great range of methods to modify and operate on this
table (i.e., SQL-like queries and joins of tables)
10

* pandas (continue):

— In contrast to NumPy, which requires that all entries in an array
be of the same type, pandas allows each column to have a
separate type (for example, integers, dates, floating-point
numbers, and strings).

— It can import from a great variety of file formats and databases,

like SQL, Excel files, and comma-separated values (CSV) files.

import pandas as pd

from IPython.display import display

create a simple dataset of people

data = {Name": ['John", "Anna", "Peter", "Linda"],
'Location’ : ['New York", "Paris”, "Berlin", "London"],
'Age’ : [24, 13, 53, 33]

}

data_pandas = pd.DataFrame(data)

IPython.display allows "pretty printing" of dataframes
in the Jupyter notebook

display(data_pandas) 11

Select all rows that have an age column
greater than 30
display(data_pandas[data_pandas.Age > 30])

Python 2 vs. Python 3

* Python 2 is no longer actively developed
* Migrate to Python 3 if you have old code in Python 2

import sys

print("Python version: {}".format(sys.version))

import pandas as pd

print("pandas version: {}".format(pd.__version__))

import matplotlib

print("matplotlib version: {}".format(matplotlib.__version__))
import numpy as np

print("NumPy version: {}".format(np.__version__))

import scipy as sp

print("SciPy version: {}".format(sp.__version__))

import IPython

print("IPython version: {}".format(IPython.__version__))
import sklearn

print("scikit-learn version: {}".format(sklearn.__version__))

12

First Application: Classifying Iris Species

Data contains the measurements of some irises that have
been previously identified by an expert botanist
— Belonging to the species setosa, versicolor, or virginica

— For these measurements, one can be certain of which species
each iris belongs to

— Qur goal: to build a machine learning model that can predict the
species for a new iris.

— An example of classification problem
— For a particular data point, the species it
belongs to is called its label. Sepal |

13

Meet the Data

« \What we used is the Iris dataset

from sklearn.datasets import load_iris
iris_dataset = load_iris()
print("Keys of iris_dataset: \n{}".format(iris_dataset.keys()))

print(iris_dataset[DESCR'[:193] + "\n...")

print("Target names: {}".format(iris_dataset['target_names))
print("Feature names: \n{}\n".format(iris_dataset[feature_names'))

print("Type of data: {}".format(type(iris_dataset['data')))
print("Shape of data: {\n".format(iris_dataset['data'’].shape))
print("First five rows of data:\n{}".format(iris_dataset['data'][:10]))

print("Type of target: {}".format(type(iris_dataset['target])))
print("Shape of target: {}\n".format(iris_dataset['target'].shape))
print("Target:\n{}".format(iris_dataset['target))

Target:
0 means sefosa
1 means versicolor
2 means virginica

14

Measuring Success: Training & Testing

Cannot use the training data to evaluate the performance

To assess the model’'s performance, we show it new data
(data that it hasn’t seen before) for which we have labels

Splitting the labeled data we have collected into two parts:

— One part of the data is used to build our machine learning model,
and is called the training data or training set. (around 75%)

— The rest of the data will be used to assess how well the model
works: this is called the test data, test set, or hold-out set.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data’], iris_dataset['target’], random_state=0)

print("X_train shape: {}".format(X_train.shape)) print("y_train shape: {}".format(y_train.shape))

print("X_test shape: {}".format(X_test.shape)) print("y_test shape: {}".format(y_test.shape)) 15

First Things First: Look at Your Data

» Before building a machine learning model it is often a good
idea to inspect the data

— Check if the desired information contained in the data
— A good way to find abnormalities and peculiarities

One of the best ways to inspect data is to visualize it
— by using a scatter plot (not work for high-dim., need pair plot)

create dataframe from data in X_train

label the columns using the strings in iris_dataset.feature_names
iris_dataframe = pd.DataFrame(X_train, columns=iris_dataset.feature_names)
create a scatter matrix from the dataframe, color by y_train

pd.plotting.scatter_matrix(iris_dataframe, c=y_train, figsize=(15, 15), marker="0', hist_kwds={'bins". 20},
s=60, alpha=.8, cmap=mglearn.cm3)

— Note that, diagonal is filled with histograms of each feature. 4

Building First Model: k-Nearest Neighbors

* Here we use a k-nearest neighbors (knn) classifier

— The most important parameter is # of neighbors

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)

— The knn object encapsulates the algorithm that will be used to

build the model from the training data =~ e,
knn.fit(X_train, y_train) bl |
. . ~ L
— Making predictions)
X_new = np.array([[5, 2.9, 1, 0.2]))

e
Class A

Class B

print("X_new.shape: {}".format(X_new.shape))

Calculate Distance

L

Class A
Class B

**“{.
KK L 4 AA

.

M. A A
A A A

X-Axis

Finding Neighbors & Voting for Labels

prediction = knn.predict(X_new)
print("Prediction: {}".format(prediction))
print("Predicted target name: {}".format(iris_dataset['target_names'][prediction]))

é

» K=3
AL A

Class A
Class B

A A

X-Axis

17

Evaluating the Model

* This is where the test set that we created earlier comes In.

— This data was not used to build the model, but we do know what
the correct species is for each iris in the test set.

— Therefore, we can make a prediction for each iris in the test data
and compare it against its label (the known species).

— We can measure how well the model works by computing the
accuracy, which is the fraction of flowers for which the right

species was predicted:
y_pred = knn.predict(X_test)
print("Test set predictions:\n {}".format(y_pred))

print("Test set score (by mean): {:.2f}".format(np.mean(y_pred ==y_test)))

print("Test set score (by knn.score): {:.2f}".format(knn.score(X_test, y_test)))
18

Summary and Outlook

* Introduction of machine learning (data-driven artificial
intelligence)

 Contents
— Why Machine Learning?
— Problems Machine Learning Can Solve
— Why Python?
— Essential Libraries and Tools
— Colab platform of Google
— A First Application: Classifying Iris Species
— Splitting labeled set into training (75%) and test (25%) datasets

19

Course Assessment Scheme

* Four Assignments (70% in total)
— Assignment 1: Data preparation (10%)
— Assignment 2: Supervised learning (20%)
— Assignment 3: Unsupervised learning (20%)
— Assignment 4: Algorithm chain (20%)

* Final Examination (30%)

20

Course Project Description

