
L2 – Supervised Learning I

• Classification and Regression

• Generalization, Overfitting and Underfitting

• Supervised Machine Learning Algorithms

– K-Nearest Neighbors

– Linear Models

– Naïve Bayes Classifiers

1



Classification and Regression

• Classification: to predict a class label for an input

– Binary classification for distinguishing between two classes

(e.g., if this email is spam?)

– Multiclass classification for more then two classes

(e.g., given text to detect its language type from a predefined list)

• Regression: to predict a continuous / floating-point number 

– E.g., predicting a person’s annual income from their education, 

their age, and where they live.

• How to distinguish between classification and regression?

2



Generalization

• Being able to make accurate predictions on unseen data, it 

is named as generalize from the training set to the test set.

– We usually build a model can make accurate prediction on the 

training set (which may go wrong on some cases in test set)

– With very complex models, can always be accurate on training 

set

3

To predict if a customer will buy a boat

A data scientist makes a rule:

Customer older than 45 & has less 

than 3 kids or not divorced

Or who are 66, 52, 53 or 58 years old

Accurate but does it make sense?



Overfitting vs. Underfitting

• We need to predict accurately on new data

– 100% accurate on a training set has less meaning

– The only measure of whether an algorithm will perform well on 

new data is the evaluation on the test set.

• We expect simple models to generalize better to new data

– Overfitting: building a model too complex for the amount of info.

(e.g., as what the data scientist proposed above)

– Underfitting: choosing too simple a model do badly even on 

training data

(e.g., define a rule such as: “everybody who owns a house buys 

boat”; you might not be able to capture all the aspects in the data)
4



• There is trade-off between overfitting and underfitting

– Model complexity is intimately tied to the variation of inputs

– The larger variety of data points your date set contains, the more 

complex a model you can use without overfitting 

• Never under-estimate the power of more data

5

Considering again the rule of data 

scientist as:

Customer older than 45 & has less than 3 

kids or not divorced

If we saw 10,000 more rows of customer 

data, and all of them compile with the rule

We would be much more likely to believe 

this to be a good rule than when it was 

developed using only the 12 rows in the 

table above



Sample Datasets for Studying Supervised 

Learning Algorithms

• forget dataset: a synthetic two-class classification dataset
# generate dataset

X, y = mglearn.datasets.make_forge()

# plot dataset

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

plt.legend(["Class 0", "Class 1"], loc=4)

plt.xlabel("First feature”)          plt.ylabel("Second feature")

print("X.shape: {}".format(X.shape))

• wave dataset: a single input feature with a continuous 

target variable (or response)
X, y = mglearn.datasets.make_wave(n_samples=40)

plt.plot(X, y, 'o')

plt.ylim(-3, 3)

plt.xlabel("Feature")

plt.ylabel("Target”) 6



• Simple & low-dimensional datasets

– Can be easily visualized

– However, any intuition derived from datasets with few features 

(low-dimensional datasets) might not hold in datasets with many 

features (high-dimensional datasets)

• Wisconsin Breast Cancer dataset (benign vs. malignant)
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

print("cancer.keys(): \n{}".format(cancer.keys()))

• Boston Housing dataset (to predict the median value of 

homes in different regions in the 1970s)
from sklearn.datasets import load_boston

boston = load_boston()

print("Data shape: {}".format(boston.data.shape))

X, y = mglearn.datasets.load_extended_boston()

print("X.shape: {}".format(X.shape)) 7

We can look at all products (also called 

interactions) between 13 features:

i.e., not only consider crime rate and highway 

accessibility as features but also the product of 

crime rate and highway accessibility as features.



k-Nearest Neighbors

• Simplest machine learning algorithm 

– Building the model consists of only storing the training dataset

– Algorithm finds the closest data points (by different dist. metrics)

• Simplest version: consider exactly one nearest neighbor
mglearn.plots.plot_knn_classification(n_neighbors=1)

• Voting version: consider more than one neighbors 

(specified by parameter “n_neighbors”)
mglearn.plots.plot_knn_classification(n_neighbors=3)

– Voting can also be applied to multi-class classification

– We count how many neighbors belong to each class and predict 

the most common class
8



• We test the kNN classifier on the forge dataset

– First, split our data into a training and a test set

– Next, import and instantiate the class

– Third, fit the classifier using the training set (i.e., storing the set)

– Last, call the predict method and evaluate the generalize

from sklearn.model_selection import train_test_split

X, y = mglearn.datasets.make_forge()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

from sklearn.neighbors import KNeighborsClassifier

clf = KNeighborsClassifier(n_neighbors=3)

clf.fit(X_train, y_train)

print("Test set predictions: {}".format(clf.predict(X_test)))

print("Test set accuracy: {:.2f}".format(clf.score(X_test, y_test)))

9



• Analyzing kNN classifier

– A best way is to visualize the decision boundary

fig, axes = plt.subplots(1, 3, figsize=(10, 3))

for n_neighbors, ax in zip([1, 3, 9], axes):

# the fit method returns the object self, so we can instantiate

# and fit in one line

clf = KNeighborsClassifier(n_neighbors=n_neighbors).fit(X, y)

mglearn.plots.plot_2d_separator(clf, X, fill=True, eps=0.5, ax=ax, alpha=.4)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)

ax.set_title("{} neighbor(s)".format(n_neighbors))

ax.set_xlabel("feature 0")

ax.set_ylabel("feature 1”)

axes[0].legend(loc=3)

– Considering more and more neighbors leads to a smoother 

decision boundary (i.e., lower model complexity)

– Using fewer neighbors corresponds to high model complexity
10



• We can now study and confirm the connection between model 

complexity and generalization (on real-world data) 
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(

cancer.data, cancer.target, stratify=cancer.target, random_state=66)

training_accuracy = [] test_accuracy = []

neighbors_settings = range(1, 11) # try n_neighbors from 1 to 10

for n_neighbors in neighbors_settings:

# build the model

clf = KNeighborsClassifier(n_neighbors=n_neighbors)

clf.fit(X_train, y_train)

# record training set accuracy

training_accuracy.append(clf.score(X_train, y_train))

# record generalization accuracy

test_accuracy.append(clf.score(X_test, y_test))

11



plt.plot(neighbors_settings, training_accuracy, label="training accuracy")

plt.plot(neighbors_settings, test_accuracy, label="test accuracy")

plt.ylabel("Accuracy")

plt.xlabel("n_neighbors")

plt.legend()

• While real-world plots are rarely very smooth, we can still recognize 

some of the characteristics of overfitting and underfitting

• When more neighbors are considered, the model becomes simpler 

and the training accuracy drops.

12



k-Neighbors Regression

• There is also a regression variant of the kNN algorithm

– Using single neighbor, the prediction gives the nearest neighbor’s 

value as target.

– Using more neighbors, the prediction is the average or mean.
mglearn.plots.plot_knn_regression(n_neighbors=3)

• The kNN algorithm for regression is implemented in the 

KNeighborsRegressor class in scikit-learn
from sklearn.neighbors import KNeighborsRegressor

X, y = mglearn.datasets.make_wave(n_samples=40)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

reg = KNeighborsRegressor(n_neighbors=3)

reg.fit(X_train, y_train)

print("Test set predictions:\n{}".format(reg.predict(X_test)))
13



• We can also evaluate the model using the score method

– For regression, returns the R2 score between [0, 1]

– 1 stands for a perfect prediction; 0 corresponds to a constant 

model that just predicts the mean of the training set responses.
fig, axes = plt.subplots(1, 3, figsize=(15, 4))

# create 1,000 data points, evenly spaced between -3 and 3

line = np.linspace(-3, 3, 1000).reshape(-1, 1)

for n_neighbors, ax in zip([1, 3, 9], axes):

# make predictions using 1, 3, or 9 neighbors

reg = KNeighborsRegressor(n_neighbors=n_neighbors)

reg.fit(X_train, y_train)

ax.plot(line, reg.predict(line))

ax.plot(X_train, y_train, '^', c=mglearn.cm2(0), markersize=8)

ax.plot(X_test, y_test, 'v', c=mglearn.cm2(1), markersize=8)

ax.set_title("{} neighbor(s)\n train score: {:.2f} test score: {:.2f}".format(n_neighbors, 

reg.score(X_train, y_train),reg.score(X_test, y_test)))

ax.set_xlabel("Feature")  

ax.set_ylabel("Target")

axes[0].legend(["Model predictions", "Training data/target", "Test data/target"], loc="best") 14



Analysis of kNN Classifier

• Two important parameters:

– Number of neighbors

– How you measure distance between data points

• Drawbacks:

– When the training set is very large, prediction can be slow

– Often does not perform well on datasets with many features 

(hundreds or more), and it does particularly badly with datasets 

where most features are 0 most of the time (so-called sparse 

datasets).

15



Linear Models

• Make a prediction using a linear function of input features

– For regression, the general prediction formula

– For a data set with a single feature

mglearn.plots.plot_linear_regression_wave()

• Linear models for regression (Link of Explanation)

– A linear for a single feature (i.e., all the fine details are lost)

– A plane when using two features

– A hyperplane in higher dimensions when using more features

(For dataset with many features, linear models can be very powerful) 16

https://scikit-learn.org/stable/modules/linear_model.html


• Linear regression finds the parameters w and b that 

minimize the mean squared error between predictions and 

true regression targets, y, on the training set.

– Linear regression has no parameters, which is a benefit

– It also has no way to control model complexity
from sklearn.linear_model import LinearRegression

X, y = mglearn.datasets.make_wave(n_samples=60)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

lr = LinearRegression().fit(X_train, y_train)

• The “slope” parameters (w) also called weights/coefficients

• The offset or intercept (b) is stored in intercept_ attribute
print("lr.coef_: {}".format(lr.coef_))

print("lr.intercept_: {}".format(lr.intercept_))

17



• Score on the wave dataset
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))

print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))

– An R2 of around 0.66 is not very good, but close scores on the 

training and test sets.

– This means likely underfitting but not overfitting.

• Score on the extended Boston Housing dataset
X, y = mglearn.datasets.load_extended_boston()

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

lr = LinearRegression().fit(X_train, y_train)

print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))

print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))

– Discrepancy between performance on the training set and the 

test set is a clear sign of overfitting

– Try an alternative as ridge regression (also a linear model) 18



Ridge Regression

• A method of regularization of ill-possed problems (Link)

– The coefficients (w) are chosen not only for well predicting but 

also to fit an additional constraint (i.e., min ||w||)

– Intuitively, this means each feature should have as little effect on 

the outcome as possible (which translates to a small slope)

• Regularization: explicitly restrict a model to avoid overfitting

– With linear regression, we were overfitting our data

– Ridge is a more restricted model (i.e., less likely to overfitting)
from sklearn.linear_model import Ridge

ridge = Ridge().fit(X_train, y_train)

print("Training set score: {:.2f}".format(ridge.score(X_train, y_train)))

print("Test set score: {:.2f}".format(ridge.score(X_test, y_test)))

19

Less complex models 

means Better generalization

https://en.wikipedia.org/wiki/Tikhonov_regularization


• How much importance the model places on simplicity vs. 

training set performance

– Can be controlled by the parameter alpha (default value 1.0)

– Increasing alpha forces coefficients to move more toward zero, 

thus might help generalization
ridge10 = Ridge(alpha=10).fit(X_train, y_train)

print("Training set score: {:.2f}".format(ridge10.score(X_train, y_train)))

print("Test set score: {:.2f}".format(ridge10.score(X_test, y_test)))

– Decreasing alpha allow coefficients to be less restricted, which 

can end up with (alpha = 0 as the standard linear regression) 
ridge01 = Ridge(alpha=0.1).fit(X_train, y_train)

print("Training set score: {:.2f}".format(ridge01.score(X_train, y_train)))

print("Test set score: {:.2f}".format(ridge01.score(X_test, y_test)))

• Plot of resultant coefficients with different alpha values (see 

the figure below)

20



plt.plot(ridge.coef_, 's', label="Ridge alpha=1")

plt.plot(ridge10.coef_, '^', label="Ridge alpha=10")

plt.plot(ridge01.coef_, 'v', label="Ridge alpha=0.1")

plt.plot(lr.coef_, 'o', label="LinearRegression")

plt.xlabel("Coefficient index")

plt.ylabel("Coefficient magnitude")

plt.hlines(0, 0, len(lr.coef_))

plt.ylim(-25, 25)

plt.legend()

21



• Another way to understand the influence of regularization is 

to fix a value of alpha but vary the amount of training data
mglearn.plots.plot_ridge_n_samples()

• Observation:

– The training score is higher than the test score for all cases

– The training score of ridge is lower than the linear regression

– The test score for ridge is better (particularly for small subsets)

• Lesson:

– With enough data, regularization becomes less important

– Interesting decrease in training performance for linear regression 

(if more data is added, it is harder to overfit or memorize the data)22



Lasso

• An alternative to Ridge but with L1 regularization

– Consequence: some coefficients are exactly zero.
from sklearn.linear_model import Lasso

lasso = Lasso().fit(X_train, y_train)

print("Training set score: {:.2f}".format(lasso.score(X_train, y_train)))

print("Test set score: {:.2f}".format(lasso.score(X_test, y_test)))

print("Number of features used: {}".format(np.sum(lasso.coef_ != 0)))

• Observation:

– Lasso does quite badly with default parameter alpha = 1.0

– This indicates that we are underfitting

– Try decrease alpha; and also increase the default max_iter
# we increase the default setting of "max_iter",

# otherwise the model would warn us that we should increase max_iter.

lasso001 = Lasso(alpha=0.01, max_iter=100000).fit(X_train, y_train) 23



• If we set alpha too low, again we remove the effect of 

regularization and overfitting (similar to LinearRegression)
lasso00001 = Lasso(alpha=0.0001, max_iter=100000).fit(X_train, y_train)

print("Training set score: {:.2f}".format(lasso00001.score(X_train, y_train)))

print("Test set score: {:.2f}".format(lasso00001.score(X_test, y_test)))

print("Number of features used: {}".format(np.sum(lasso00001.coef_ != 0)))

plt.plot(lasso.coef_, 's', label="Lasso alpha=1")

plt.plot(lasso001.coef_, '^', label="Lasso alpha=0.01")

plt.plot(lasso00001.coef_, 'v', label="Lasso alpha=0.0001")

plt.plot(ridge01.coef_, 'o', label="Ridge alpha=0.1")

plt.legend(ncol=2, loc=(0, 1.05))

plt.ylim(-25, 25)

plt.xlabel("Coefficient index")

plt.ylabel("Coefficient magnitude")

– In practice, ridge regression is usually the first choice

– For an expectation with smaller amount of feature, use Lasso

– Other option: the ElasticNet class of scikit-learn (L1 & L2) 
24



Linear Model for Classification

• A prediction is made using the following formula

– Two classes: the class +1 and the class -1

– For linear models for classification, the decision boundary is a 

linear function of the input.

– Two common linear classification:

• Logistic regression – linear_model.LogisticRegression

• Linear support vector machines (line SVMs) – svm.LinearSVC

– Algorithms mainly differ in two ways:

• Different loss functions (in many case, of little significance)

• If and what kind of regularization (more important for generalization)

– We apply both classifiers to the forge dataset below. 25

https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Support-vector_machine#Linear_SVM


• LogisticRegression

can provide

the probability

26



27



from sklearn.linear_model import LogisticRegression

from sklearn.svm import LinearSVC

X, y = mglearn.datasets.make_forge()

fig, axes = plt.subplots(1, 2, figsize=(10, 3))

for model, ax in zip([LinearSVC(), LogisticRegression()], axes):

clf = model.fit(X, y)

mglearn.plots.plot_2d_separator(clf, X, fill=False, eps=0.5, ax=ax, alpha=.7)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y, ax=ax)

ax.set_title("{}".format(clf.__class__.__name__))

ax.set_xlabel("Feature 0")

ax.set_ylabel("Feature 1")

axes[0].legend()

• Two models come up with similar boundaries

– Both can be further controlled by the strength of regularization, C

• Applying an L2 regularization

• High value of C correspond to less regularization

mglearn.plots.plot_linear_svc_regularization() 28



29

• Analyze LogisticRegression on the Breast Cancer dataset
from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, 

random_state=42)

logreg = LogisticRegression(solver='lbfgs', max_iter=10000).fit(X_train, y_train)

print("Training set score: {:.3f}".format(logreg.score(X_train, y_train)))

print("Test set score: {:.3f}".format(logreg.score(X_test, y_test)))

logreg100 = LogisticRegression(C=100, solver='lbfgs', max_iter=10000).fit(X_train, y_train)

print("Training set score: {:.3f}".format(logreg100.score(X_train, y_train)))

print("Test set score: {:.3f}".format(logreg100.score(X_test, y_test)))

logreg001 = LogisticRegression(C=0.01, 

solver='lbfgs', max_iter=10000).fit(X_train, y_train)

print("Training set score: {:.3f}".format(logreg001.score(X_train, y_train)))

print("Test set score: {:.3f}".format(logreg001.score(X_test, y_test)))

Default value of C = 1.0

Decrease the value of C



• Look at the coefficients learned by using diff. regularization para. C
plt.plot(logreg.coef_.T, 'o', label="C=1")

plt.plot(logreg100.coef_.T, '^', label="C=100")

plt.plot(logreg001.coef_.T, 'v', label="C=0.001")

plt.xticks(range(cancer.data.shape[1]), cancer.feature_names, rotation=90)

plt.hlines(0, 0, cancer.data.shape[1])

plt.ylim(-5, 5)

plt.xlabel("Feature")

plt.ylabel("Coefficient magnitude")

plt.legend()

30



• Desire a more interpretable model, using L1 regularization
for C, marker in zip([0.001, 1, 100], ['o', '^', 'v']):

lr_l1 = LogisticRegression(C=C, penalty="l1").fit(X_train, y_train)

print("Training accuracy of l1 logreg with C={:.3f}: {:.2f}".format(C, lr_l1.score(X_train, y_train)))

print("Test accuracy of l1 logreg with C={:.3f}: {:.2f}".format(C, lr_l1.score(X_test, y_test)))

plt.plot(lr_l1.coef_.T, marker, label="C={:.3f}".format(C))

plt.xticks(range(cancer.data.shape[1]), 

cancer.feature_names, rotation=90)

plt.hlines(0, 0, cancer.data.shape[1])

plt.xlabel("Feature")

plt.ylabel("Coefficient magnitude")

plt.ylim(-5, 5)

plt.legend(loc=3)

31



Linear Models for Multiclass Classification

• Many linear classification models are for binary only

– Binary classifier can be extended by the one-vs.-rest approach

• A binary model is learn for each class

• To make a prediction, all binary classifiers are run on a test point

• The classifier has the highest score on its single class “wins”

– With the exception of logistic regression

• The mathematics behind multiclass logistic regression differ 

from the one-vs.-rest approach

– They also result in one coefficient vector and intercept per class

– Also choose the one with the highest score
32



from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=42)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1")

plt.legend(["Class 0", "Class 1", "Class 2"])

– Now we train a LinearSVC classifier on the dataset
linear_svm = LinearSVC().fit(X, y) # Need to add “from sklearn.svm import LinearSVC” before this line

print("Coefficient shape: ", linear_svm.coef_.shape)

print("Intercept shape: ", linear_svm.intercept_.shape)

– Let’s visualize the lines given by three binary classifiers
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

line = np.linspace(-15, 15)

for coef, intercept, color in zip(linear_svm.coef_, 

linear_svm.intercept_, mglearn.cm3.colors):

plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)

plt.ylim(-10, 15)

plt.xlim(-10, 8)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1")

plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1', 'Line class 2'], loc=(1.01, 0.3))
33



• The following code shows the predictions for all regions
mglearn.plots.plot_2d_classification(linear_svm, X, fill=True, alpha=.7)

# Source code: https://github.com/amueller/mglearn/blob/master/mglearn/plot_2d_separator.py

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

line = np.linspace(-15, 15)

for coef, intercept, color in zip(linear_svm.coef_, linear_svm.intercept_, mglearn.cm3.colors):

plt.plot(line, -(line * coef[0] + intercept) / coef[1], c=color)

plt.legend(['Class 0', 'Class 1', 'Class 2', 'Line class 0', 'Line class 1', 'Line class 2'], loc=(1.01, 0.3))

plt.xlabel("Feature 0")

plt.ylabel("Feature 1")

• Parameters in linear model

– L2 regularization (default) or L1 regularization (interpretation)

alpha in the regression models; C in LinearSVC / LogisticRegression

– Solver considering to use solver=‘sag’ option for large dataset

• Strength: Often perform well when feature # is large compared to 

sample # (i.e., high dimension space)
34

https://github.com/amueller/mglearn/blob/master/mglearn/plot_2d_separator.py


Naïve Bayes Classifiers

• Quite similar to the linear models discussed above

– Faster: Bayes models learn parameters by checking features 

individually & collect simple per-class statistics from each feature

– Continues data: GaussianNB (used on very high-Dim. Data)

– Count data (integer count of sth): MultinomialNB

– Binary data: BernoulliNB

• To make a prediction, a data point is compared to the 

statistics for each of the classes and the best matching 

class is predicted. [Link]

– Prediction formula is in the similar form as the linear models

– But training is even faster (good for very large datasets)
35

https://scikit-learn.org/stable/modules/naive_bayes.html


Nonlinear Logistic Regression 

• Linear logistic regression can fail in complex situation

– Mainly caused by the linear decision boundary

• Solution: changing the decision boundary by polynomial 

[Reading Link]

36

Input Samples Linear Logistic Regression Logistic Regression

(by quadratic polynomial)

https://scikit-learn.org/stable/modules/linear_model.html#polynomial-regression-extending-linear-models-with-basis-functions

