
L3 – Supervised Learning II

• Supervised Machine Learning Algorithms

– Decision Trees

– Ensembles of Decision Trees

– Kernel Based Support Vector Machines

– Neural Networks (Deep Learning)

• Decision Function

• Predicting Probabilities
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Decision Trees

• To get the right answer by asking few if / else questions

– Can learn these questions from data

– These questions are called tests

– Continues form: Is the feature i large than value a?

2How to build a decision-free for this dataset?



• Building decision trees

– Recursive partitioning of the data until all data in a region sharing 

the same target value

– A leaf of the tree (after construction) is called pure
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• Actually similar to kD-tree used in kNN-classifier

• Prediction: 

– Checking which region of the feature space the query point lies in 

– Predicting the majority target in that region

• Regression:

– Similar technique to find the region as above

– Output is the mean target of the training points in the leaf
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• Controlling complexity of decision trees

– Presence of pure leaves = 100% accurate on the training set
from sklearn.tree import DecisionTreeClassifier

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, stratify=cancer.target, 

random_state=42)

tree = DecisionTreeClassifier(random_state=0)

tree.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))

– Prevent overfitting (two methods)

• Stop the creation of the tree earlier (pre-pruning) 

(by setting max_depth)

tree = DecisionTreeClassifier(max_depth=4, random_state=0)

tree.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y_test)))

• Build the tree but then collapsing nodes with little info (post-pruning)

(not implemented in scikit-learn) 5



• Analyzing decision trees

– Visualize the tree using the export_graphviz function
from sklearn.tree import export_graphviz

export_graphviz(tree, out_file="tree.dot", class_names=["malignant", "benign"], 

feature_names=cancer.feature_names, impurity=False, filled=True)

– Can read this file and visualize it (as a good example of a 

machine learning algorithm that can be explained to nonexperts)
import graphviz

with open("tree.dot") as f:

dot_graph = f.read()

display(graphviz.Source(dot_graph))

• Feature importance in tree (0: useless; 1: perfectly contribute)
def plot_feature_importances_cancer(model):

n_features = cancer.data.shape[1]

plt.barh(range(n_features), model.feature_importances_, align='center')

plt.yticks(np.arange(n_features), cancer.feature_names)

plt.xlabel("Feature importance")      plt.ylabel("Feature")     plt.ylim(-1, n_features)

plot_feature_importances_cancer(tree)
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– A feature has a low value in feature_importance_ doesn't mean 

the feature is uninformative

– It only means that the feature was not picked by the tree (likely 

because another feature encodes the same information).

• Regression Tree

– Similar to classification trees

– Not able to extrapolation (i.e., making predictions outside the 

range of the training data) 7

X[0] is not used at all. 

But the relation 

between X[1] and the 

output class is not 

monotonous, meaning 

we cannot say “a high 

value of X[1] means 

class 0, and a low 

value means class 1”
(or vice versa).



– Using a dataset of historical computer memory (RAM) prices
import os

import pandas as pd

ram_prices = pd.read_csv(os.path.join(mglearn.datasets.DATA_PATH, "ram_price.csv"))

plt.semilogy(ram_prices.date, ram_prices.price)

plt.xlabel("Year")

plt.ylabel("Price in $/Mbyte")

– Training data (before year 2000); Test data (after 2000)
from sklearn.tree import DecisionTreeRegressor

# use historical data to forecast prices after the year 2000

data_train = ram_prices[ram_prices.date < 2000]

data_test = ram_prices[ram_prices.date >= 2000]

# predict prices based on date

X_train = data_train.date[:, np.newaxis]

# we use a log-transform to get a simpler relationship of data to target

y_train = np.log(data_train.price)

tree = DecisionTreeRegressor().fit(X_train, y_train)

linear_reg = LinearRegression().fit(X_train, y_train)
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# predict on all data

X_all = ram_prices.date[:, np.newaxis]

pred_tree = tree.predict(X_all)

pred_lr = linear_reg.predict(X_all)

# undo log-transform

price_tree = np.exp(pred_tree)

price_lr = np.exp(pred_lr)

plt.semilogy(data_train.date, data_train.price, label="Training data")

plt.semilogy(data_test.date, data_test.price, label="Test data")

plt.semilogy(ram_prices.date, price_tree, label="Tree prediction")

plt.semilogy(ram_prices.date, price_lr, label="Linear prediction")

plt.legend()

•Parameters: 

– max_depth, max_leaf_nodes, or min_samples_leaf

•Strengths: easy to visualize and invariant to scale of data

•Weaknesses: easy to overfit (even after pre-pruning)
9

Cannot extrapolate the 

training dataset



Ensembles of Decision Trees

• Ensembles – means combining multiple ML methods, e.g.
1) Random Forest

2) Gradient Boosted Decision Trees

• Random Forest

– A collection of decision-trees, where each is slightly different

– Idea Behind: 

• Each tree might do a relatively good job in a local region but likely overfit 

on part of the data

• We reduce the amount of overfitting by averaging their results

– Two strategies for realizing random

• Selecting random data points to build a tree

• Selecting random features in each split test
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• Building Random Forests (both regression / classification)

– n_estimators: the number of trees to build

– For each tree, generate bootstrap samples of our data 

• From our n_samples data points repeatedly draw an example randomly 

n_samples times to result a dataset as big as the original dataset

• Note that the same sample can be picked multiple times

– When generating each node for a tree 

• Instead of looking for the best test for each node, the algorithm randomly

select a subset of features (controlled by the max_features parameter)

• Each node in a tree can make a decision by a different subset of features

• Results of the above randomization:

– A high max_features: the trees in the random forest will be similar

– A low max_features: the trees are quite different but each tree 

might need to be very deep in order to fit the data well

• For regression: we can average the results from all trees
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• For classification, a “soft voting” strategy is adopted

– Each tree provides a probability for each possible output label.

– The probabilities predicted by all the trees are averaged, and the 

class with the highest probability is predicted.

• Try a random forest with 5 trees to the two_moons dataset
from sklearn.ensemble import RandomForestClassifier

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)

forest = RandomForestClassifier(n_estimators=5, random_state=2)

forest.fit(X_train, y_train)

fig, axes = plt.subplots(2, 3, figsize=(20, 10))

for i, (ax, tree) in enumerate(zip(axes.ravel(), forest.estimators_)):

ax.set_title("Tree {}".format(i))

mglearn.plots.plot_tree_partition(X_train, y_train, tree, ax=ax)

mglearn.plots.plot_2d_separator(forest, X_train, fill=True, ax=axes[-1, -1], alpha=.4)

axes[-1, -1].set_title("Random Forest")         mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)
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Can find the decision 

boundaries learned by the 

five trees are quite different 

• Can have error (by 

bootstrap sampling)

• Overfit less than any of 

the trees individually



• Analyze the overfitting on a random forest with 100 trees on breast 

cancer dataset
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

forest = RandomForestClassifier(n_estimators=100, random_state=0)

forest.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(forest.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(forest.score(X_test, y_test)))

• Similar to decision tree, the random forest also provides feature 

importance
plot_feature_importances_cancer(forest)

– The random forest gives nonzero importance to many more features than a 

single tree

– The randomness of a random forest let it capture a much broader picture of the 

data than a single tree

• Random Forest outperforms in general (unless needs compact rep.) 

• Can run on multiple cores (the n_jobs parameter); and parameters as

– max_features = sqrt(n_features) for classification 

– max_features = n_features for regression 13



Gradient Boosted Regression Trees

• Gradient boosting works by building trees in a serial 

manner, where each tree tries to correct the previous one

– No randomization in gradient boosted regression trees

– Idea behind: to combine many simple models (e.g., shallow trees 

– of depth one to five)

– Generally a bit more sensitive to parameter than random forest

– But can be more accurate if parameters are set correctly

• Major parameters:

– learning_rate: a higher value can make stronger correction (i.e., 

allowing for more complex models)

– n_estimators: the number of trees 
14



• By default, 100 trees of maximum depth 3 and learning rate of 0.1 

are used
from sklearn.ensemble import GradientBoostingClassifier

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

gbrt = GradientBoostingClassifier(random_state=0)

gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

• Stronger pre-pruning can be applied by limiting the maximum depth
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)

gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))

• Or lowering the learning rate
gbrt = GradientBoostingClassifier(random_state=0, learning_rate=0.01)

gbrt.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(gbrt.score(X_train, y_train)))

print("Accuracy on test set: {:.3f}".format(gbrt.score(X_test, y_test)))
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Both methods can 

effectively decrease the 

model complexity, i.e., 

• Reduced accuracy on 

the training dataset

• Enhanced accuracy on 

the test dataset



• Visualize the feature importance
gbrt = GradientBoostingClassifier(random_state=0, max_depth=1)

gbrt.fit(X_train, y_train)

plot_feature_importances_cancer(gbrt)

– The gradient boosting completely ignored some of the features

– A common strategy: trying random forest first – more robust

• Strengths & Weakness

– Gradient boosted decision trees are among the most powerful 

and widely used models for supervised learning

– But they require careful tuning of the parameters

• Two parameters n_estimators & learning_rate are highly interconnected

• Strategy: to fit n_estimators depending on the time and memory budget, 

then search over different learning_rates

• Another parameter max_depth: usually set very low for gradient boosted 

models – often not deeper than five splits.
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Kernelized Support Vector Machines

• Comparing to linear support vector machine

– Allows for more complex models

– Math (Ch.12 of https://web.stanford.edu/~hastie/ElemStatLearn/)

• Linear models and nonlinear features
from sklearn.svm import LinearSVC

from sklearn.datasets import make_blobs

X, y = make_blobs(centers=4, random_state=8)

y = y % 2

linear_svm = LinearSVC().fit(X, y)

mglearn.plots.plot_2d_separator(linear_svm, X)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1") 17

Decision boundary found by a linear SVM

https://web.stanford.edu/~hastie/ElemStatLearn/


• By adding the square of the second feature

– 2D points (feature0, feature1) => 3D points (feature0, feature1, feature0**2)

X_new = np.hstack([X, X[:, 1:] ** 2])     # add the squared second feature

from mpl_toolkits.mplot3d import Axes3D, axes3d

figure = plt.figure()   # visualize in 3D

ax = Axes3D(figure, elev=-152, azim=-26)

# plot first all the points with y == 0, then all with y == 1

mask = y == 0

ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b', cmap=mglearn.cm2, s=60, 

edgecolor='k')

ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^', cmap=mglearn.cm2, 

s=60, edgecolor='k')

ax.set_xlabel("feature0")          ax.set_ylabel("feature1")          ax.set_zlabel("feature1 ** 2")

linear_svm_3d = LinearSVC().fit(X_new, y)

coef, intercept = linear_svm_3d.coef_.ravel(), linear_svm_3d.intercept_

xx = np.linspace(X_new[:, 0].min() - 2, X_new[:, 0].max() + 2, 50)

yy = np.linspace(X_new[:, 1].min() - 2, X_new[:, 1].max() + 2, 50)

XX, YY = np.meshgrid(xx, yy)

ZZ = (coef[0] * XX + coef[1] * YY + intercept) / -coef[2]

ax.plot_surface(XX, YY, ZZ, rstride=8, cstride=8, alpha=0.3)   # show linear decision boundary 18



• As a function of the original features by feature extension

– The linear SVM model is not actually linear anymore

– Not a line but more of an ellipse
ZZ = YY ** 2

dec = linear_svm_3d.decision_function(np.c_[XX.ravel(), YY.ravel(), ZZ.ravel()])

plt.contourf(XX, YY, dec.reshape(XX.shape), levels=[dec.min(), 0, dec.max()],

cmap=mglearn.cm2, alpha=0.5)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

plt.xlabel("Feature 0")       

plt.ylabel("Feature 1")

• Kernel trick

– Lesson learned: Adding nonlinear features to the representation 

of our data can make linear models much more powerful

– Mapping your data into a higher-dimensional space:

• The polynomial kernel (e.g., feature1 ** 2 * feature2 ** 5)

• The radial basis function (RBF) kernel (also known as Gaussian kernel)
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• Kernel-base Support Vector Machine (SVM)

– Only a subset of the training points matter for defining the 

decision boundary: the ones lie on the border between classes

– Distance between data points is measured by Gaussian kernel:

from sklearn.svm import SVC

X, y = mglearn.tools.make_handcrafted_dataset()

svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X, y)

mglearn.plots.plot_2d_separator(svm, X, eps=.5)

mglearn.discrete_scatter(X[:, 0], X[:, 1], y)

# plot support vectors

sv = svm.support_vectors_

# class labels of support vectors are given by the sign of the dual coefficients

sv_labels = svm.dual_coef_.ravel() > 0

mglearn.discrete_scatter(sv[:, 0], sv[:, 1], sv_labels, s=15, markeredgewidth=3)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1") 20

The SVM yields a very 

smooth and nonlinear 

(not a straight line) 

boundary.



• Tuning SVM parameters

– gamma: corresponds to the inverse of the width of Gaussian 

– C: a regularization parameter (similar to the linear model)
fig, axes = plt.subplots(3, 3, figsize=(15, 10))

for ax, C in zip(axes, [-1, 0, 3]):

for a, gamma in zip(ax, range(-1, 2)):

mglearn.plots.plot_svm(log_C=C, log_gamma=gamma, ax=a)

axes[0, 0].legend(["class 0", "class 1", "sv class 0", "sv class 1"], ncol=4, loc=(.9, 1.2))

– From Left to Right: a low value of gamma means the boundary 

will vary slowly (a less complex model); high value more complex

– From Top to Bottom: Increasing C allows the support vectors to 

have a stronger influence on the model and makes the decision 

boundary bend to correctly classify them

– Default value: C=1 and gamma = 1/n_features

– While SVM often perform quite well, they very sensitive to: 1) the 

settings of parameters and 2) the scaling of the data
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• Default value leads to very poor performance
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

svc = SVC(kernel='rbf', C=1, gamma=1/30.0)  # there are 30 features

svc.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(svc.score(X_train, y_train)))

print("Accuracy on test set: {:.2f}".format(svc.score(X_test, y_test)))

– In particular, they require all features to vary on a similar scale

– Let’s check by the following code (displaying the min / max 

values of all features)
plt.boxplot(X_train)

plt.yscale("symlog")

plt.xlabel("Feature index")

plt.ylabel("Feature magnitude")

– This can be somewhat of a problem for other models (like linear)

– But it can has devastating effects for the kernel SVM

– Any solution? Re-scaling each feature so that they are all 

approximately on the same scale
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• Preprocessing data for SVMs

– Re-scaling the training set
# compute the minimum value per feature on the training set

min_on_training = X_train.min(axis=0)

# compute the range of each feature (max - min) on the training set

range_on_training = (X_train - min_on_training).max(axis=0)

# subtract the min, and divide by range;    # afterward, min=0 and max=1 for each feature

X_train_scaled = (X_train - min_on_training) / range_on_training

print("Minimum for each feature\n{}".format(X_train_scaled.min(axis=0)))

print("Maximum for each feature\n {}".format(X_train_scaled.max(axis=0)))

– Using the same transformation on the test set and evaluate again
X_test_scaled = (X_test - min_on_training) / range_on_training

svc = SVC(kernel='rbf', C=1, gamma=1/30.0)

svc.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.3f}".format(svc.score(X_train_scaled, y_train)))

print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))

• Then, we can try to increase C or gamma for a better fitting
svc = SVC(kernel='rbf', C=1000, gamma=1/30.0)   # training score: 0.988 and test score: 0.972
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• Summary of kernel-based SVM

– Work well on both low-dimensional and high-dimensional data

– Not scale very well with the number of samples (i.e., more 

samples will take much longer time)

– Require carefully prepared data-set (i.e., the same scale)

– Important parameters:

• The regularization parameter C

• The choice of kernel

• The kernel-specific parameters

• The parameters C and gamma needs be adjusted together as being 

strongly correlated
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Neural Networks (Deep Learning)

• Multilayer Perceptrons (MLPs) is mainly discussed here

– MLPs are also known as feed-forward neural networks

– Can be viewed as generalization of linear models that perform 

multiple stages of processing to come to a decision

• Considering the prediction by a linear regressor

display(mglearn.plots.plot_logistic_regression_graph())

• In an MLP, this process of computing weighted

sum is repeated multiple times

– First computing hidden units (intermediate step)

– Which are combined using weighted sums to yield final result 25



• The model has a lot more coefficients

– One between every input and hidden units

– One between every unit and the output

– i.e., every arrow in the right figure

• To make this model truly more powerful

– Need one extra trick: after computing a weighted sum for each 

hidden unit, a nonlinear function is applied to the result

• Rectifying nonlinearity (relu)

• Tangen hyperpolicus (tanh)

– The result of this function is then used

in the weighted sum to compute output

– The mathematical formulation as follows
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• To change the complexity of MLPs, important parameters:

– Number of nodes in the hidden layer

– Adding additional hidden layers

mglearn.plots.plot_two_hidden_layer_graph()

– Having large neural networks made up of many of these layers of 

computation is what inspired the term “deep learning”

• Tuning Neural Networks
from sklearn.neural_network import MLPClassifier

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=100, noise=0.25, random_state=3)

X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=42)

mlp = MLPClassifier(solver='lbfgs', random_state=0).fit(X_train, y_train)

mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3)

mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1") 27

We use solver = ‘lbfgs’;

By default, use 100 hidden nodes;

Learned a very nonlinear by smooth 

decision boundary.



• We can use less number of nodes by changing the fitting to
mlp = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[10])

– Somewhat more ragged

– The default nonlinearity is relu

– Decision function: 10 straight segments

– To obtain a smoother decision boundary

• Add more hidden units

• Add a second hidden layer

• Or use the tanh nonlinearity

# using one hidden layers (200 units)

mlp = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[200]).fit(X_train, y_train)

# using two hidden layers (10 units for each)

mlp = MLPClassifier(solver='lbfgs', random_state=0, hidden_layer_sizes=[10, 10]).fit(X_train, y_train)

# using two hidden layers (10 units for each and with tanh nonlinearity)

mlp = MLPClassifier(solver='lbfgs', activation='tanh', random_state=0, hidden_layer_sizes=[10, 

10]).fit(X_train, y_train) 28



• Lastly, we can also control the complexity by using an L2 

penalty to shrink the weights toward zero – alpha
fig, axes = plt.subplots(2, 4, figsize=(20, 8))

for axx, n_hidden_nodes in zip(axes, [10, 100]):

for ax, alpha in zip(axx, [0.0001, 0.01, 0.1, 1]):

mlp = MLPClassifier(solver='lbfgs', random_state=0, 

hidden_layer_sizes=[n_hidden_nodes, n_hidden_nodes], alpha=alpha)

mlp.fit(X_train, y_train)

mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)

mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)

ax.set_title("n_hidden=[{}, {}]\nalpha={:.4f}".format(n_hidden_nodes, n_hidden_nodes, alpha))

– Random initialization also affects the model
fig, axes = plt.subplots(2, 4, figsize=(20, 8))

for i, ax in enumerate(axes.ravel()):

mlp = MLPClassifier(solver='lbfgs', random_state=i, hidden_layer_sizes=[100, 100])

mlp.fit(X_train, y_train)

mglearn.plots.plot_2d_separator(mlp, X_train, fill=True, alpha=.3, ax=ax)

mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, ax=ax)

29

Larger alpha leads to 

smoother boundary



• We then understand the neural network on real-world data
print("Cancer data per-feature maxima:\n{}".format(cancer.data.max(axis=0)))

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

mlp = MLPClassifier(random_state=42)

mlp.fit(X_train, y_train)

print("Accuracy on training set: {:.2f}".format(mlp.score(X_train, y_train)))

print("Accuracy on test set: {:.2f}".format(mlp.score(X_test, y_test)))

– The accuracy is quite good, but not as good as other methods

• Likely due to scaling of the data; try to re-scale as follows

# compute the mean value per feature on the training set

mean_on_train = X_train.mean(axis=0)

# compute the standard deviation of each feature on the training set

std_on_train = X_train.std(axis=0)

# subtract the mean, and scale by inverse standard deviation; afterward, mean=0 and std=1

X_train_scaled = (X_train - mean_on_train) / std_on_train

# use THE SAME transformation (using training mean and std) on the test set

X_test_scaled = (X_test - mean_on_train) / std_on_train

– Then try MLP again as above
30



mlp = MLPClassifier(random_state=42)

mlp.fit(X_train_scaled, y_train)

print("Accuracy on training set: {:.2f}".format(mlp.score(X_train_scaled, y_train)))

print("Accuracy on test set: {:.2f}".format(mlp.score(X_test_scaled, y_test)))

•We get a warning about maximum iterations reached but not 

converged

– We can increase the number of iteration in adam algorithm for 

learning the model
mlp = MLPClassifier(max_iter=1000, random_state=42)

– Increase iteration # does not enhance generality, so we need to 

decrease the model’s complexity
mlp = MLPClassifier(max_iter=1000, alpha=1, random_state=42)

•Inspect what we learned to look at the weights in the model
plt.figure(figsize=(20, 5))

plt.imshow(mlp.coefs_[0], interpolation='none', cmap='viridis')

plt.yticks(range(30), cancer.feature_names)

plt.xlabel("Columns in weight matrix")     plt.ylabel("Input feature")

plt.colorbar() 31



• More powerful tools: keras, lasagna & tensor-flow

– Much more flexible interface and allow the usage of GPU based acceleration

• Advantages

– Able to capture info in large dataset

– Build incredibly complex model

• Disadvantage:

– Long time to train

– Need to careful preprocessing of the data

– Require “homogeneous” on the feature type; otherwise, tree-based models 

might work better

• Strategy for tuning parameters: 

– First making a network large enough to overfit

– Then improve the generalization

• Learning Algorithms: ‘adam’ (generally fine but quite sensitive to the 

scale) and ‘lbfgs’ (more robust but slower); ‘sgd’ (advanced user with 

many parameters to tune)
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Uncertain Estimates from Classifiers

• Classifiers are able to provide uncertainty estimates of predictions –

by two different functions:

1. decision_function

2. predict_proba

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.datasets import make_circles

X, y = make_circles(noise=0.25, factor=0.5, random_state=1)

# we rename the classes "blue" and "red" for illustration purposes

y_named = np.array(["blue", "red"])[y]

# we can call train_test_split with arbitrarily many arrays; all will be split in a consistent manner

X_train, X_test, y_train_named, y_test_named, y_train, y_test = train_test_split(X, y_named, y, 

random_state=0)

# build the gradient boosting model

gbrt = GradientBoostingClassifier(random_state=0)

gbrt.fit(X_train, y_train_named) 33



• The Decision function

– The return value of decision_function is of shape;

– It returns one floating number for each sample

• Positive values indicate a preference for the “positive” class

• Negative values indicate a preference for the “negative” class

– The range of value can be arbitrary such hard to interpret
print("X_test.shape: {}".format(X_test.shape))

print("Decision function shape: {}".format(gbrt.decision_function(X_test).shape))

# show the first few entries of decision_function

print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6]))

print("Thresholded decision function:\n{}".format(gbrt.decision_function(X_test) > 0))

print("Predictions:\n{}".format(gbrt.predict(X_test)))

decision_function = gbrt.decision_function(X_test)

print("Decision function minimum: {:.2f} maximum: {:.2f}".format(np.min(decision_function), 

np.max(decision_function)))
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• Plot decision_function for all points in 2D by color coding
fig, axes = plt.subplots(1, 2, figsize=(13, 5))

mglearn.tools.plot_2d_separator(gbrt, X, ax=axes[0], alpha=.4, fill=True, cm=mglearn.cm2)

scores_image = mglearn.tools.plot_2d_scores(gbrt, X, ax=axes[1], alpha=.4, cm=mglearn.ReBl)

for ax in axes:

# plot training and test points

mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test, markers='^', ax=ax)

mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, markers='o', ax=ax)

ax.set_xlabel("Feature 0")

ax.set_ylabel("Feature 1")

cbar = plt.colorbar(scores_image, ax=axes.tolist())

axes[0].legend(["Test class 0", "Test class 1", "Train class 0", "Train class 1"], ncol=4, loc=(.1, 1.1))
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• Predicting Probabilities – predict_proba function

– Output is a probability for each class

– The sum of the entries for both classes is always 1
print("Shape of probabilities: {}".format(gbrt.predict_proba(X_test).shape))

# show the first few entries of predict_proba

print("Predicted probabilities:\n{}".format(gbrt.predict_proba(X_test[:6])))

fig, axes = plt.subplots(1, 2, figsize=(13, 5))

mglearn.tools.plot_2d_separator(gbrt, X, ax=axes[0], alpha=.4, fill=True, cm=mglearn.cm2)

scores_image = mglearn.tools.plot_2d_scores(gbrt, X, ax=axes[1], alpha=.5, cm=mglearn.ReBl, 

function='predict_proba')

for ax in axes: # plot training and test points

mglearn.discrete_scatter(X_test[:, 0], X_test[:, 1], y_test, markers='^', ax=ax)

mglearn.discrete_scatter(X_train[:, 0], X_train[:, 1], y_train, markers='o', ax=ax)

ax.set_xlabel("Feature 0")

ax.set_ylabel("Feature 1")

cbar = plt.colorbar(scores_image, ax=axes.tolist())

axes[0].legend(["Test class 0", "Test class 1", "Train class 0", "Train class 1"], ncol=4, loc=(.1, 1.1))
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• Uncertainty in Multiclass Classification
from sklearn.datasets import load_iris

iris = load_iris()

X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=42)

gbrt = GradientBoostingClassifier(learning_rate=0.01, random_state=0)

gbrt.fit(X_train, y_train)

print("Decision function shape: {}".format(gbrt.decision_function(X_test).shape))

# plot the first few entries of the decision function

print("Decision function:\n{}".format(gbrt.decision_function(X_test)[:6, :]))

print("Argmax of decision function:\n{}".format(np.argmax(gbrt.decision_function(X_test), axis=1)))

print("Predictions:\n{}".format(gbrt.predict(X_test)))

# show the first few entries of predict_proba

print("Predicted probabilities:\n{}".format(gbrt.predict_proba(X_test)[:6]))

# show that sums across rows are one

print("Sums: {}".format(gbrt.predict_proba(X_test)[:6].sum(axis=1)))

print("Argmax of predicted probabilities:\n{}".format(np.argmax(gbrt.predict_proba(X_test), axis=1)))

print("Predictions:\n{}".format(gbrt.predict(X_test)))
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