
L4 – Unsupervised Learning: 

Preprocessing and Transformation

• In unsupervised learning, the learning algorithm is just 

shown the input data and asked to extract knowledge

• Type I: transformations of the dataset

– Create a new representation of the data which might be easier for 

humans or other machine learning algorithms to understand

– E.g., converting a high-dimensional representation of the data 

into a new way to represent this data that summarizes the 

essential characteristics with fewer features.

• Type II: clustering

– Partition data into distinct groups of similar items

– e.g., divide all faces into groups of faces that look similar
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Challenges in Unsupervised Learning

• A major challenge: evaluating whether the algorithm 

learned something useful

– Unsupervised algorithms are used often in an exploratory setting 

when a data scientist wants to understand the data better

– Another common application for unsupervised algorithms is as a 

preprocessing step for supervised algorithms

• To improve the accuracy of supervised algorithms

• Can lead to reduced memory and time consumption

• We start from discussing some simple preprocessing 

methods that often come in handy
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Preprocessing and Scaling

• Neural networks and SVMs are very sensitive to the scaling 

of the data
mglearn.plots.plot_scaling()

• Different types of scaling

– MinMaxScaler

Shift data into [0,1] for all features

– StandardScaler

Ensure that for each feature the mean is 0 and the variance is 1

– RobustScaler

Using the median & quartiles rather than mean & variance – can ignore data 

points are very different from the rest (i.e., outliers)

– Normalizer: make the feature vector has a Euclidean length of 1 3



• Use MinMaxScaler for preprocessing data for kernel SVM

– Step 1) Constructing the scaler 

– Step 2) Fitting the scaler

– Step 3) Transform the dataset

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)

print(X_train.shape) print(X_test.shape)

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() scaler.fit(X_train)

# transform data

X_train_scaled = scaler.transform(X_train)

# print dataset properties before and after scaling

print("transformed shape: {}".format(X_train_scaled.shape))

print("per-feature minimum before scaling:\n {}".format(X_train.min(axis=0)))

print("per-feature maximum before scaling:\n {}".format(X_train.max(axis=0)))

print("per-feature minimum after scaling:\n {}".format(X_train_scaled.min(axis=0)))

print("per-feature maximum after scaling:\n {}".format(X_train_scaled.max(axis=0))) 4



• When applying the same transform to the test dataset

– The method always subtracts the training set minimum and divides by the 

training set range, which might be different from the minimum and range for the 

test set

– Consequence: the minimum and the maximum are not 0 and 1

# transform test data

X_test_scaled = scaler.transform(X_test)

# print test data properties after scaling

print("per-feature minimum after scaling:\n{}".format(X_test_scaled.min(axis=0)))

print("per-feature maximum after scaling:\n{}".format(X_test_scaled.max(axis=0)))

– It is important to apply exactly the same transformation to the training set and 

the test set for the supervised model to work on the test set

– What if the scaling is given in an incorrect way? See the example below
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from sklearn.datasets import make_blobs

import matplotlib.pyplot as plt 

# make synthetic data

X, _ = make_blobs(n_samples=50, centers=5, random_state=4, cluster_std=2)

# split it into training and test sets

X_train, X_test = train_test_split(X, random_state=5, test_size=.1)

# plot the training and test sets

fig, axes = plt.subplots(1, 3, figsize=(13, 4))

axes[0].scatter(X_train[:, 0], X_train[:, 1], c=mglearn.cm2(0), label="Training set", s=60)

axes[0].scatter(X_test[:, 0], X_test[:, 1], marker='^', c=mglearn.cm2(1), label="Test set", s=60)

axes[0].legend(loc='upper left') axes[0].set_title("Original Data")

# scale the data using MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(X_train)

X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test)

# visualize the properly scaled data

axes[1].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c=mglearn.cm2(0), label="Training set", s=60)

axes[1].scatter(X_test_scaled[:, 0], X_test_scaled[:, 1], marker='^’, c=mglearn.cm2(1), label="Test set", s=60)

axes[1].set_title("Scaled Data") 6



# rescale the test set separately, so test set min is 0 and test set max is 1

# DO NOT DO THIS! For illustration purposes only.

test_scaler = MinMaxScaler()

test_scaler.fit(X_test)

X_test_scaled_badly = test_scaler.transform(X_test)

# visualize wrongly scaled data

axes[2].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1],

c=mglearn.cm2(0), label="training set", s=60)

axes[2].scatter(X_test_scaled_badly[:, 0], X_test_scaled_badly[:, 1], marker='^', c=mglearn.cm2(1), 

label="test set", s=60)

axes[2].set_title("Improperly Scaled Data")

for ax in axes:

ax.set_xlabel("Feature 0")

ax.set_ylabel("Feature 1")

fig.tight_layout()
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Shortcut and Efficient Alternatives

• Often, you want to fit a model on some dataset, and then 

transform it

– There is an alternative as fit_transform, which is more efficient in 

some models (although may not be the case for all models)
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

# calling fit and transform in sequence (using method chaining)

X_scaled = scaler.fit(X_train).transform(X_train)

# same result, but more efficient computation

X_scaled_d = scaler.fit_transform(X_train) 

– After this, it is time to study the effectiveness of preprocessing on 

supervised learning
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• See the effect of using the MinMaxScaler on learning SVC
from sklearn.svm import SVC

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)

svm = SVC(C=100)

svm.fit(X_train, y_train)

print("Test set accuracy: {:.2f}".format(svm.score(X_test, y_test)))

– After fitting on the original data, see the result on scaled dataset
# preprocessing using 0-1 scaling

scaler = MinMaxScaler()

scaler.fit(X_train)

X_train_scaled = scaler.transform(X_train)

X_test_scaled = scaler.transform(X_test)

# learning an SVM on the scaled training data

svm.fit(X_train_scaled, y_train)

# scoring on the scaled test set

print("Scaled test set accuracy: {:.2f}".format(svm.score(X_test_scaled, y_test)))

– As we can see, the effect of scaling the data is quite significant

– Try different other preprocessing method (e.g., RobustScaler) 9



Dimensionality Reduction, Feature 

Extraction, and Manifold Learning

• Motivations for unsupervised learning in the mode of 

transformation

– Visualization

– Compressing the data

– Finding a representation that is more informative for further 

processing

• Algorithms to be learned here

– Principal Component Analysis (PCA)

– Non-Negative Matrix Factorization (NMF)

– Manifold Learning with t-SNE
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Principal Component Analysis (PCA)

• A method that rotates the dataset in a way such that

– The rotated features are statistically uncorrelated

– Followed by selecting only a subset of the new features 

(according to how important they are for explaining the data)

mglearn.plots.plot_pca_illustration()

• Principal components

– Main direction of variance

– Usually sorted by the importance

– Head or tail of an arrow 

is less important 11



• Applying PCA to the cancer dataset for visualization

– For a high-dimensional dataset, per-class feature histogram is 

often used for visualization
fig, axes = plt.subplots(15, 2, figsize=(10, 20))

malignant = cancer.data[cancer.target == 0]

benign = cancer.data[cancer.target == 1]

ax = axes.ravel()

for i in range(30):

_, bins = np.histogram(cancer.data[:, i], bins=50)

ax[i].hist(malignant[:, i], bins=bins, color=mglearn.cm3(0), alpha=.5)

ax[i].hist(benign[:, i], bins=bins, color=mglearn.cm3(2), alpha=.5)

ax[i].set_title(cancer.feature_names[i])

ax[i].set_yticks(())

ax[0].set_xlabel("Feature magnitude")

ax[0].set_ylabel("Frequency")

ax[0].legend(["malignant", "benign"], loc="best")

fig.tight_layout()

– Which does not show anything about the interactions between 

variables and how these relate to the classes 12



– Before applying PCA, need to scaling dataset
cancer = load_breast_cancer() # from sklearn.datasets import load_breast_cancer

scaler = StandardScaler()

scaler.fit(cancer.data)

X_scaled = scaler.transform(cancer.data)

– Need to specify how many components we want to keep
from sklearn.decomposition import PCA

pca = PCA(n_components=2) # keep the first two principal components of the data

pca.fit(X_scaled) # fit PCA model to breast cancer data

X_pca = pca.transform(X_scaled) # transform data onto the first two principal components

print("Original shape: {}".format(str(X_scaled.shape)))

print("Reduced shape: {}".format(str(X_pca.shape)))

# plot first vs. second principal component, colored by class

plt.figure(figsize=(8, 8))

mglearn.discrete_scatter(X_pca[:, 0], X_pca[:, 1], cancer.target)

plt.legend(cancer.target_names, loc="best")

plt.gca().set_aspect("equal")

plt.xlabel("First principal component”) plt.ylabel("Second principal component")

– As an unsupervised method, it simply looks at the correlations 
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• Visualization in 2D is very helpful

– Two classes separate quite well

– Even a linear classifier can distinguish

• Downside of PCA

– The meaning of axes is hard to interpret

– PCs are the linear combination of the original features

– Each row in components_ corresponds to one PC (and sorted by 

their importance)
print("PCA component shape: {}".format(pca.components_.shape))

print("PCA components:\n{}".format(pca.components_))

plt.matshow(pca.components_, cmap='viridis')

plt.yticks([0, 1], ["First component", "Second component"])

plt.colorbar()

plt.xticks(range(len(cancer.feature_names)), cancer.feature_names, rotation=60, ha='left')

plt.xlabel("Feature")

plt.ylabel("Principal components") 14

All positive in PC1 means that 

there is a general correlation 

between all features.



Eigenfaces for Feature Extraction (PCA)

• Another application of PCA is feature extraction

– Idea behind: finding a representation of your data that is better 

suited to analysis than the raw representation

– Example: feature extraction on face images
from sklearn.datasets import fetch_lfw_people

people = fetch_lfw_people(min_faces_per_person=20, resize=0.7)

image_shape = people.images[0].shape

fig, axes = plt.subplots(2, 5, figsize=(15, 8),

subplot_kw={'xticks': (), 'yticks': ()})

for target, image, ax in zip(people.target, people.images, axes.ravel()):

ax.imshow(image)

ax.set_title(people.target_names[target])

print("people.images.shape: {}".format(people.images.shape))

print("Number of classes: {}".format(len(people.target_names)))
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• Study the samples in the dataset of face images
counts = np.bincount(people.target) # count how often each target appears

# print counts next to target names

for i, (count, name) in enumerate(zip(counts, people.target_names)):

print("{0:25} {1:3}".format(name, count), end='     ')

if (i + 1) % 3 == 0:

print()

– A bit skewed as containing a lot of images of Bush and Powell

– To make the data less skewed, we will only take up to 50 images 

of each person (otherwise, the feature extraction would be 

overwhelmed by the likelihood of Bush)
mask = np.zeros(people.target.shape, dtype=np.bool)

for target in np.unique(people.target):

mask[np.where(people.target == target)[0][:50]] = 1

X_people = people.data[mask]

y_people = people.target[mask]

# scale the grayscale values to be between 0 and 1

# instead of 0 and 255 for better numeric stability

X_people = X_people / 255 16



• A common task: face recognition

– One way: to build a classifier for each person 

• Problem - too many classifiers and too few images for each classifier

– A solution: to use a one-nearest-neighbor classifier in pixel space
from sklearn.neighbors import KNeighborsClassifier

# split the data into training and test sets

X_train, X_test, y_train, y_test = train_test_split(X_people, y_people, stratify=y_people, random_state=0)

# build a KNeighborsClassifier using one neighbor

knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train, y_train)

print("Test set score of 1-nn: {:.2f}".format(knn.score(X_test, y_test)))

• The accuracy of random draw: 1/62 = 1.6%

– kNN is only slightly better than random draw

– Reasons:

• Computing distances in the pixel space is very bad choice

• Shifting one pixel will make two images have a dramatic distance but they 

are actually similar to each other 17



• Principal Component Analysis (PCA) with whitening option

– The same as using StandardScaler after the transformation
mglearn.plots.plot_pca_whitening()

– Fit the PCA object to training data and extract the first 100 PCs
pca = PCA(n_components=100, whiten=True, random_state=0).fit(X_train)

X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

print("X_train_pca.shape: {}".format(X_train_pca.shape))

– Using kNN classifier again
knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(X_train_pca, y_train)

print("Test set score of 1-nn: {:.2f}".format(knn.score(X_test_pca, y_test)))

– For image data, we can also visualize the PCs that are found
print("pca.components_.shape: {}".format(pca.components_.shape))

fix, axes = plt.subplots(3, 5, figsize=(15, 12), subplot_kw={'xticks': (), 'yticks': ()})

for i, (component, ax) in enumerate(zip(pca.components_, axes.ravel())):

ax.imshow(component.reshape(image_shape), cmap='viridis')

ax.set_title("{}. component".format((i + 1)))
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• Schematic view of PCA as decomposing an image into a 

weighted sum of components

– x0, x1, and so on are the coefficients of PCs

– They are the representation of the image in the rotated space

– A few are used, a compressed image (with coarser features) is 

obtained
mglearn.plots.plot_pca_faces(X_train, X_test, image_shape)

– From the scatter plot of the first two PCs, not too much info.
mglearn.discrete_scatter(X_train_pca[:, 0], X_train_pca[:, 1], y_train)

plt.xlabel("First principal component")

plt.ylabel("Second principal component")

– Conclusion: PCA only captures very rough characteristics
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Non-Negative Matrix Factorization (NMF)

• Similar to PCA but different unsupervised learning

– Both approximate each data as a weighted sum of components

– PCA: want components to be orthogonal

• To catch as much variance of the data as possible

– NMF: want components and coefficients to be non-negative 

• To lead to more interpretable components than PCA as negative 

components and coefficients can lead to hard-to-interpret cancellation 

effects

• In contrast to PCA, we need to ensure that our data is 

positive for NMF to be able to operate on the data
mglearn.plots.plot_nmf_illustration()

• All components in NMF play at an equal importance 20



• Applying NMF to face images

– NMF uses a random initialization
mglearn.plots.plot_nmf_faces(X_train, X_test, image_shape)

– Quality of the back-transformed data is slightly worse than PCA

– But let’s look at the components
from sklearn.decomposition import NMF

nmf = NMF(n_components=10, random_state=0)

nmf.fit(X_train)

X_train_nmf = nmf.transform(X_train)

X_test_nmf = nmf.transform(X_test)

fix, axes = plt.subplots(2, 5, figsize=(15, 12), subplot_kw={'xticks': (), 'yticks': ()})

for i, (component, ax) in enumerate(zip(nmf.components_, axes.ravel())):

ax.imshow(component.reshape(image_shape))

ax.set_title("{}. component".format(i))

– It is interesting to see some component (e.g., 1 & 7) with faces 

looking at left / right

– Let’s have a look at the faces have large coefficients for these
21



compn = 1

# sort by 1st component, plot first 10 images

inds = np.argsort(X_train_nmf[:, compn])[::-1]

fig, axes = plt.subplots(2, 5, figsize=(15, 8), subplot_kw={'xticks': (), 'yticks': ()})

fig.suptitle("Large component 1")

for i, (ind, ax) in enumerate(zip(inds, axes.ravel())):

ax.imshow(X_train[ind].reshape(image_shape))

compn = 7

# sort by 7th component, plot first 10 images

inds = np.argsort(X_train_nmf[:, compn])[::-1]

fig.suptitle("Large component 7")

fig, axes = plt.subplots(2, 5, figsize=(15, 8), subplot_kw={'xticks': (), 'yticks': ()})

for i, (ind, ax) in enumerate(zip(inds, axes.ravel())):

ax.imshow(X_train[ind].reshape(image_shape))

•Non-negative coefficients are important for applications

– Such as Audio track of multiple people speaking

– Or music with many instruments
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• Extracting patterns by NMF works best for data with 

additive structure, including audio, gene expression & text

– Let’s say that we are interested in signal that is a combination of 

three different sources
S = mglearn.datasets.make_signals()

plt.figure(figsize=(6, 1))

plt.plot(S, '-')

plt.xlabel("Time”) plt.ylabel("Signal")

– Unfortunately, we cannot observe the original signal but only an 

additive mixture of all three of them
# mix data into a 100-dimensional state

A = np.random.RandomState(0).uniform(size=(100, 3))

X = np.dot(S, A.T)

print("Shape of measurements: {}".format(X.shape))

– We can use NMF to recover the three signals
nmf = NMF(n_components=3, random_state=42)

S_ = nmf.fit_transform(X)

print("Recovered signal shape: {}".format(S_.shape)) 23



– For comparison, we also apply PCA and make a comparison
pca = PCA(n_components=3)

H = pca.fit_transform(X)

models = [X, S, S_, H]

names = ['Observations (first three measurements)', 'True sources', 

'NMF recovered signals', 

'PCA recovered signals']

fig, axes = plt.subplots(4, figsize=(8, 4), 

gridspec_kw={'hspace': .5}, 

subplot_kw={'xticks': (), 'yticks': ()})

for model, name, ax in zip(models, names, axes):

ax.set_title(name)

ax.plot(model[:, :3], '-')

• There are many other algorithms can be used decompose 

each data point into a weighted sum as PCA and NMF do.

– Independent component analysis (ICA)

– Factor analysis (FA)

– Sparse coding (dictionary learning) 24



Manifold Learning with t-SNE

• The nature of method such as PCA limits its usefulness 

with the scatter plot

– Can be resolved by manifold learning algorithms (e.g., t-SNE)

– Can only be applied to training set (rather than test set later)

– Mainly used for visualization; Never for supervised learning later

• Idea behind t-SNE:

– Find a two-dimensional representation of the data that preserves 

the distance between points as best as possible

– Start with a random two-dimensional rep. for each data point

– Then try to make points that are close in the original feature 

space closer, and points that are far apart farther apart
25



• We apply the t-SNE on dataset of handwritten

– Each data point is an 8x8 gray-scale image
from sklearn.datasets import load_digits

digits = load_digits() #print(digits.images.shape)

fig, axes = plt.subplots(2, 5, figsize=(10, 5), subplot_kw={'xticks':(), 'yticks': ()})

for ax, img in zip(axes.ravel(), digits.images):

ax.imshow(img)

– Let’s first use PCA to visualize the data reduced to 2D space
pca = PCA(n_components=2) # build a PCA model

pca.fit(digits.data) # transform the digits data onto the first two principal components

digits_pca = pca.transform(digits.data)

colors = ["#476A2A", "#7851B8", "#BD3430", "#4A2D4E", "#875525", "#A83683", "#4E655E", "#853541", 

"#3A3120", "#535D8E”]    

plt.figure(figsize=(10, 10))

plt.xlim(digits_pca[:, 0].min(), digits_pca[:, 0].max())        plt.ylim(digits_pca[:, 1].min(), digits_pca[:, 1].max())

for i in range(len(digits.data)):  # actually plot the digits as text instead of using scatter

plt.text(digits_pca[i, 0], digits_pca[i, 1], str(digits.target[i]), 

color = colors[digits.target[i]], fontdict={'weight': 'bold', 'size': 9})

plt.xlabel("First principal component”)          plt.ylabel("Second principal component") 26



• Let’s apply t-SNE to the same data

– As t-SNE does not support transforming new data, the TSNE 

class has no transform method

– Instead, we call the fit_transform method
from sklearn.manifold import TSNE

tsne = TSNE(random_state=42)

# use fit_transform instead of fit, as TSNE has no transform method

digits_tsne = tsne.fit_transform(digits.data)

plt.figure(figsize=(10, 10))

plt.xlim(digits_tsne[:, 0].min(), digits_tsne[:, 0].max() + 1)

plt.ylim(digits_tsne[:, 1].min(), digits_tsne[:, 1].max() + 1)

for i in range(len(digits.data)):

# actually plot the digits as text instead of using scatter

plt.text(digits_tsne[i, 0], digits_tsne[i, 1], str(digits.target[i]), 

color = colors[digits.target[i]], fontdict={'weight': 'bold', 'size': 9})

plt.xlabel("t-SNE feature 0")

plt.xlabel("t-SNE feature 1")
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• The result of t-SNE is quite remarkable

– All the classes are quite clearly separated

– Keep in mind that this method has no knowledge of the class 

labels: completely unsupervised

• t-SNE tries to preserve the information indicating which 

points are neighbors to each other

28
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