L4 — Unsupervised Learning:
Preprocessing and Transformation

* In unsupervised learning, the learning algorithm is just
shown the input data and asked to extract knowledge

* Type I: transformations of the dataset

— Create a new representation of the data which might be easier for
humans or other machine learning algorithms to understand

— E.g., converting a high-dimensional representation of the data
Into a new way to represent this data that summarizes the
essential characteristics with fewer features.

 Type ll: clustering
— Partition data into distinct groups of similar items
— e.g., divide all faces into groups of faces that look similar )



Challenges in Unsupervised Learning

A major challenge: evaluating whether the algorithm
learned something useful

— Unsupervised algorithms are used often in an exploratory setting
when a data scientist wants to understand the data better

— Another common application for unsupervised algorithms is as a
preprocessing step for supervised algorithms
 To improve the accuracy of supervised algorithms
* Can lead to reduced memory and time consumption

» We start from discussing some simple preprocessing
methods that often come in handy



Preprocessing and Scaling

* Neural networks and SVMs are very sensitive to the scaling
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« Use MinMaxScaler for preprocessing data for kernel SVM
— Step 1) Constructing the scaler
— Step 2) Fitting the scaler
— Step 3) Transform the dataset

from sklearn.datasets import load_breast_cancer

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)
print(X_train.shape) print(X_test.shape)

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() scaler.fit(X_train)

# transform data
X_train_scaled = scaler.transform(X_train)
# print dataset properties before and after scaling
print("transformed shape: {}".format(X_train_scaled.shape))
print("per-feature minimum before scaling:\n {}".format(X_train.min(axis=0)))
print("per-feature maximum before scaling:\n {}".format(X_train.max(axis=0)))
(

(

print("per-feature minimum after scaling:\n {}".format(X_train_scaled.min(axis=0)))
print("per-feature maximum after scaling:\n {}".format(X_train_scaled.max(axis=0)))



* When applying the same transform to the test dataset

— The method always subtracts the training set minimum and divides by the
training set range, which might be different from the minimum and range for the
test set

— Consequence: the minimum and the maximum are not 0 and 1
# transform test data
X_test_scaled = scaler.transform(X_test)
# print test data properties after scaling
print("per-feature minimum after scaling:\n{}".format(X_test_scaled.min(axis=0)))
print("per-feature maximum after scaling:\n{}".format(X_test_scaled.max(axis=0)))

— ltis important to apply exactly the same transformation to the training set and
the test set for the supervised model to work on the test set

— What if the scaling is given in an incorrect way? See the example below



from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# make synthetic data

X, _ = make_blobs(n_samples=50, centers=5, random_state=4, cluster_std=2)

# split it into training and test sets

X_train, X_test = train_test_split(X, random_state=5, test_size=.1)

# plot the training and test sets

fig, axes = plt.subplots(1, 3, figsize=(13, 4))

axes|0].scatter(X_train[:, 0], X_train[:, 1], c=mglearn.cm2(0), label="Training set", s=60)
axes|0].scatter(X_test[:, 0], X_test[:, 1], marker=""", c=mglearn.cm2(1), label="Test set", s=60)
axes|[0].legend(loc="upper left)) axes|0].set_title("Original Data")

# scale the data using MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(X_train)

X_train_scaled = scaler.transform(X_train) X_test_scaled = scaler.transform(X_test)

# visualize the properly scaled data

axes[1].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c=mglearn.cm2(0), label="Training set", s=60)

axes[1].scatter(X_test_scaled[:, 0], X_test_scaled[:, 1], marker=""", c=mglearn.cm2(1), label="Test set", s=60)

axes[1].set_title("Scaled Data")
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# rescale the test set separately, so test set min is 0 and test set max is 1

# DO NOT DO THIS! For illustration purposes only.
test_scaler = MinMaxScaler()

test_scaler.fit(X_test)

X_test_scaled_badly = test_scaler.transform(X_test)

# visualize wrongly scaled data
axes[2].scatter(X_train_scaled[:, 0], X_train_scaled[:, 1],
c=mglearn.cm2(0), label="training set", s=60)

axes|2].scatter(X_test_scaled_badly[:, 0], X_test_scaled_badly[:, 1], marker=""", c=mglearn.cm2(1),

label="test set", s=60)
axes[2].set_title("Improperly Scaled Data")
for ax in axes:
ax.set_xlabel("Feature 0")
ax.set_ylabel("Feature 1")
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Shortcut and Efficient Alternatives

» Often, you want to fit a model on some dataset, and then
transform it

— There is an alternative as fit_transform, which is more efficient in

some models (although may not be the case for all models)

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

# calling fit and transform in sequence (using method chaining)
X_scaled = scaler fit(X_train).transform(X_train)

# same result, but more efficient computation

X_scaled_d = scaler.fit_transform(X_train)

— After this, it is time to study the effectiveness of preprocessing on
supervised learning



 See the effect of using the MinMaxScaler on learning SVC

from sklearn.svm import SVC

cancer = load_breast_cancer()

X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=0)
svm = SVC(C=100)

svm.fit(X_train, y_train)

print("Test set accuracy: {:.2f}".format(svm.score(X_test, y_test)))

— After fitting on the original data, see the result on scaled dataset
# preprocessing using 0-1 scaling
scaler = MinMaxScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)
# learning an SVM on the scaled training data
svm.fit(X_train_scaled, y_train)
# scoring on the scaled test set
print("Scaled test set accuracy: {:.2f}".format(svm.score(X_test_scaled, y_test)))

— As we can see, the effect of scaling the data is quite significant
— Try different other preprocessing method (e.g., RobustScaler)
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Dimensionality Reduction, Feature
Extraction, and Manifold Learning

* Motivations for unsupervised learning in the mode of
transformation
— Visualization
— Compressing the data
— Finding a representation that is more informative for further
processing
* Algorithms to be learned here
— Principal Component Analysis (PCA)
— Non-Negative Matrix Factorization (NMF)
— Manifold Learning with t-SNE

10



Principal Component Analysis (PCA)

A method that rotates the dataset in a way such that
— The rotated features are statistically uncorrelated
— Followed by selecting only a subset of the new features

mglearn.plots.plot_pca_illustration() -
* Principal components * |
— Main direction of variance et s B
— Usually sorted by the importance |
— Head or tail of an arrow | — \
is less important :

First principal component
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* Applying PCA to the cancer dataset for visualization

— For a high-dimensional dataset, per-class feature histogram is

often used for visualization

fig, axes = plt.subplots(15, 2, figsize=(10, 20))

malignant = cancer.data[cancer.target == 0]

benign = cancer.data[cancer.target == 1]

ax = axes.ravel()

for i in range(30):
_, bins = np.histogram(cancer.data[:, i], bins=50)
ax[i].hist(malignant[:, i], bins=bins, color=mglearn.cm3(0), alpha=.5)
ax[i].hist(benignl[:, i], bins=bins, color=mglearn.cm3(2), alpha=.5)
ax[i].set_title(cancer.feature_namesii])
ax[i].set_yticks(())

ax[0].set_xlabel("Feature magnitude")

ax[0].set_ylabel("Frequency")

ax[0].legend(["malignant", "benign"], loc="best")

fig.tight_layout()

— Which does not show anything about the interactions between
variables and how these relate to the classes
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— Before applying PCA, need to scaling dataset
cancer = load_breast_cancer()
scaler = StandardScaler()
scaler fit(cancer.data)
X_scaled = scaler.transform(cancer.data)

— Need to specify how many components we want to keep

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(X_scaled)

X_pca = pca.transform(X_scaled)

print("Original shape: {}".format(str(X_scaled.shape)))
print("Reduced shape: {}".format(str(X_pca.shape)))

plt.figure(figsize=(8, 8))

mglearn.discrete_scatter(X_pcal[:, 0], X_pca[:, 1], cancer.target)
plt.legend(cancer.target_names, loc="best")

plt.gca().set_aspect("equal”)

plt.xlabel("First principal component”) plt.ylabel("Second principal component"”)

— As an unsupervised method, it simply looks at the correlations
13
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* Visualization in 2D is very helpful . :
— Two classes separate quite well
— Even a linear classifier can distinguish

* Downside of PCA

— The meaning of axes is hard to interpret ———
— PCs are the linear combination of the original features

— Each row in components_ corresponds to one PC (and sorted by

their importance) Al positive in PC1 means that
print("PCA component shape: {}".format(pca.components_.shape)) there is a general correlation

print("PCA components:\n{}".format(pca.components_)) between all features.
A

°
c

plt. matshow(pca.components_, cmap='viridis')
plt.yticks([0, 1], ["First component”, "Second component"])
plt.colorbar() :
plt.xticks(range(len(cancer.feature_names)), cancer.feature_names, rotation=60, ha="left)
plt.xlabel("Feature")

plt.ylabel("Principal components") 14




Eigenfaces for Feature Extraction (PCA)

* Another application of PCA is feature extraction

— ldea behind: finding a representation of your data that is better
suited to analysis than the raw representation

— Example: feature extraction on face images

from sklearn.datasets import fetch_Ifw_people
people = fetch_Ifw_people(min_faces_per_person=20, resize=0.7)
image_shape = people.images[0].shape
fig, axes = plt.subplots(2, 5, figsize=(15, 8),
subplot_kw={xticks" (), 'yticks": ()})
for target, image, ax in zip(people.target, people.images, axes.ravel()):
ax.imshow(image)
ax.set_title(people.target_names]target])
print("people.images.shape: {}".format(people.images.shape))
print("Number of classes: {}".format(len(people.target_names)))
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o Study the samples in the dataset of face images

counts = np.bincount(people.target)

for i, (count, name) in enumerate(zip(counts, people.target_names)):
print("{0:25} {1:3}".format(name, count), end=" ')
if(i+1)%3==0:
print()
— A bit skewed as containing a lot of images of Bush and Powell

— To make the data less skewed, we will only take up to 50 images
of each person (otherwise, the feature extraction would be
overwhelmed by the likelihood of Bush)

mask = np.zeros(people.target.shape, dtype=np.bool)

for target in np.unique(people.target):
mask[np.where(people.target == target)[0][:50]] = 1

X_people = people.data[mask]

y_people = people.target[mask]

X_people = X_people / 255 16



* A common task: face recognition

— One way: to build a classifier for each person
* Problem - too many classifiers and too few images for each classifier

— A solution: to use a one-nearest-neighbor classifier in pixel space

from sklearn.neighbors import KNeighborsClassifier
X_train, X_test, y_train, y_test = train_test_split(X_people, y_people, stratify=y_people, random_state=0)

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)
print("Test set score of 1-nn: {:.2f}". format(knn.score(X_test, y_test)))

* The accuracy of random draw: 1/62 = 1.6%
— kNN is only slightly better than random draw

— Reasons:
 Computing distances in the pixel space is very bad choice

« Shifting one pixel will make two images have a dramatic distance but they
are actually similar to each other 17



* Principal Component Analysis (PCA) with whitening option

— The same as using StandardScaler after the transformation
mglearn.plots.plot_pca_whitening()

— Fit the PCA object to training data and extract the first 100 PCs

pca = PCA(n_components=100, whiten=True, random_state=0).fit(X_train)
X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

print("X_train_pca.shape: {}".format(X_train_pca.shape))

— Using kNN classifier again

knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train_pca, y_train)
print("Test set score of 1-nn: {:.2f}" format(knn.score(X_test_pca, y_test)))

— For image data, we can also visualize the PCs that are found

print("pca.components_.shape: {}".format(pca.components_.shape))

fix, axes = plt.subplots(3, 5, figsize=(15, 12), subplot_kw={'xticks": (), 'yticks": ()})

for i, (component, ax) in enumerate(zip(pca.components_, axes.ravel())):
ax.imshow(component.reshape(image_shape), cmap='viridis')

ax.set_title("{}. component".format((i + 1))) 18



 Schematic view of PCA as decomposing an image into a
weighted sum of components

— Xg, X1, @nd so on are the coefficients of PCs
— They are the representation of the image in the rotated space

— A few are used, a compressed image (with coarser features) is
obtained

mglearn.plots.plot_pca_faces(X_train, X_test, image_shape)

— From the scatter plot of the first two PCs, not too much info.
mglearn.discrete_scatter(X_train_pca[;, 0], X_train_pca[;, 1], y_train)
plt.xlabel("First principal component")
plt.ylabel("Second principal component”)

— Conclusion: PCA only captures very rough characteristics
19



Non-Negative Matrix Factorization (NMF)

 Similar to PCA but different unsupervised learning
— Both approximate each data as a weighted sum of components

— PCA: want components to be orthogonal
* To catch as much variance of the data as possible

— NMF: want components and coefficients to be non-negative

* To lead to more interpretable components than PCA as negative
components and coefficients can lead to hard-to-interpret cancellation
effects

* In contrast to PCA, we need to ensure that our data is
positive for NMF to be able to operate on the data

mglearn.plots.plot_nmf_illustration()

* All components in NMF play at an equal importance 20



* Applying NMF to face images

— NMF uses a random initialization
mglearn.plots.plot_nmf_faces(X_train, X_test, image_shape)

— Quality of the back-transformed data is slightly worse than PCA

— But let’s look at the components

from sklearn.decomposition import NMF

nmf = NMF(n_components=10, random_state=0)

nmf.fit(X_train)

X_train_nmf = nmf.transform(X_train)

X_test_nmf = nmf.transform(X_test)

fix, axes = plt.subplots(2, 5, figsize=(15, 12), subplot_kw={'xticks": (), 'yticks": ()})

for i, (component, ax) in enumerate(zip(nmf.components_, axes.ravel())):
ax.imshow(component.reshape(image_shape))
ax.set_title("{}. component".format(i))

— ltis interesting to see some component (e.g., 1 & 7) with faces
looking at left / right

— Let's have a look at the faces have large coefficients for these
21



compn =1

inds = np.argsort(X_train_nmf[:, compn])[::-1]

fig, axes = plt.subplots(2, 5, figsize=(15, 8), subplot_kw={'xticks": (), 'yticks": ()})

fig.suptitle("Large component 1")

fori, (ind, ax) in enumerate(zip(inds, axes.ravel())):
ax.imshow(X_train[ind].reshape(image_shape))

compn =7

inds = np.argsort(X_train_nmf[:, compn])[::-1]

fig.suptitle("Large component 7")

fig, axes = plt.subplots(2, 5, figsize=(15, 8), subplot_kw={'xticks": (), 'yticks": ()})

fori, (ind, ax) in enumerate(zip(inds, axes.ravel())):
ax.imshow(X_train[ind].reshape(image_shape))

‘Non-negative coefficients are important for applications
— Such as Audio track of multiple people speaking

— Or music with many instruments )



o Extracting patterns by NMF works best for data with
additive structure, including audio, gene expression & text

— Let’s say that we are interested in signal that is a combination of
three different sources

S = mglearn.datasets.make_signals()
plt.figure(figsize=(6, 1))

plt.plot(S, ")

plt.xlabel("Time”) plt.ylabel("Signal")

— Unfortunately, we cannot observe the original signal but only an
additive mixture of all three of them

A = np.random.RandomState(0).uniform(size=(100, 3))
X =np.dot(S, A.T)
print("Shape of measurements: {}".format(X.shape))

— We can use NMF to recover the three signals
nmf = NMF(n_components=3, random_state=42)
S_ = nmf.fit_transform(X)
print("Recovered signal shape: {}".format(S_.shape)) 23



— For comparison, we also apply PCA and make a comparison
pca = PCA(n_components=3)
H = pca.fit_transform(X)
models = [X, S, S_, H]
names = ['Observations (first three measurements)', "True sources',
'NMF recovered Signals', Observations (first three measurements)

'PCA recovered signals'] WW N ity WLMW ﬂﬂ"‘nﬂw‘
fig, axes = plt.subplots(4, figsize=(8, 4), _ True Sources -
gridspec_kw={'hspace"; .5}, ‘ | ijdwjmww:ﬁw‘ﬂ wﬂ‘

SprlOt_sz{'XanS' ()’ lytlcksl ()}) NMF recovered signals
for model, name, ax in zip(models, names, axes): ‘ ”“‘tv.m;:m""[.m.-] R i l lm_f‘
PCA recovered signals

ax.set_title(name) - s —
ax.plot(model[:, :3], - WWWWMH ,,,”.p-{_‘

* There are many other algorithms can be used decompose
each data point into a weighted sum as PCA and NMF do.
— Independent component analysis (ICA)
— Factor analysis (FA)
— Sparse coding (dictionary learning) 24




Manifold Learning with t-SNE

* The nature of method such as PCA limits its usefulness
with the scatter plot
— Can be resolved by manifold learning algorithms (e.g., t-SNE)
— Can only be applied to training set (rather than test set later)
— Mainly used for visualization; Never for supervised learning later

 |dea behind t-SNE:

— Find a two-dimensional representation of the data that preserves
the distance between points as best as possible

— Start with a random two-dimensional rep. for each data point

— Then try to make points that are close in the original feature

space closer, and points that are far apart farther apart -



 We apply the t-SNE on dataset of handwritten

— Each data point is an 8x8 gray-scale image
from sklearn.datasets import load_digits
digits = load_digits()
fig, axes = plt.subplots(2, 5, figsize=(10, 5), subplot_kw={'xticks".(), 'yticks": ()})
for ax, img in zip(axes.ravel(), digits.images):
ax.imshow(img)

— Let's first use PCA to visualize the data reduced to 2D space
pca = PCA(n_components=2)
pca.fit(digits.data)
digits_pca = pca.transform(digits.data)

colors = ["#476A2A", "#7851B8", "#BD3430", "#4A2D4E", "#875525", "#A83683", "#4EGS5E", "#853541",
"#3A3120", "#535D8E"]

plt.figure(figsize=(10, 10))
plt.xlim(digits_pcal:, 0].min(), digits_pcal:, 0].max()) plt.ylim(digits_pcal[:, 1].min(), digits_pcal[:, 1].max())
for i in range(len(digits.data)):
plt.text(digits_pcali, 0], digits_pcal[i, 1], str(digits.target[i]),
color = colors[digits.target[i]], fontdict={'weight". 'bold", 'size". 9})
plt.xlabel("First principal component”) plt.ylabel("Second principal component") 26



o Let's apply t-SNE to the same data

— As t-SNE does not support transforming new data, the TSNE
class has no transform method

— Instead, we call the fit_transform method

from sklearn.manifold import TSNE
tsne = TSNE(random_state=42)

digits_tsne = tsne.fit_transform(digits.data)

plt.figure(figsize=(10, 10))

plt.xlim(digits_tsne[:, 0].min(), digits_tsne[:, 0].max() + 1)
plt.ylim(digits_tsne[:, 1].min(), digits_tsne[:, 1].max() + 1)
for i in range(len(digits.data)):

plt.text(digits_tsneli, 0], digits_tsne[i, 1], str(digits.target[i]),
color = colors[digits.target[i]], fontdict={'weight". 'bold", 'size": 9})
plt.xlabel("t-SNE feature 0")
plt.xlabel("t-SNE feature 1")

27



The result of t-SNE is quite remarkable
— All the classes are quite clearly separated

— Keep in mind that this method has no knowledge of the class
labels: completely unsupervised

t-SNE tries to preserve the information indicating which
points are neighbors to each other

Second principal component
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