L5 – Unsupervised Learning: Clustering

- Different clustering techniques are to be learned here
 - k-Means Clustering
 - Agglomerative Clustering
 - DBSCAN
- Comparing and evaluating different clustering algorithms
- Summary of clustering methods

k-Means Clustering

- One of the simplest and most commonly used clustering algorithms
 - Function: find cluster centers that are representative of certain regions of the data
- Alternating between two steps:
 - Assigning each data point to the closest cluster center
 - Setting each cluster center as the mean of the data points that are assigned to
- The following example illustrates the algorithm on a synthetic dataset:

mglearn.plots.plot_kmeans_algorithm()

• Given new points, k-means will assign each to the closest cluster center

 Can show the boundaries of the cluster centers already learned mglearn.plots.plot_kmeans_boundaries()

- Learning by k-means can be conducted simply

from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

generate synthetic two-dimensional data

```
X, y = make_blobs(random_state=1)
```

build the clustering model

```
kmeans = KMeans(n_clusters=3)
```

kmeans.fit(X)

- Find each training sample's cluster label

print("Cluster memberships:\n{}".format(kmeans.labels_))

- Assign cluster labels to new points

running predict on the training set returns the same result as labels_ print(kmeans.predict(X)) • Running again may result in a different numbering of clusters because of the random nature of initialization

- The cluster centers are stored in the cluster_centers_ attribute mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o') mglearn.discrete_scatter(kmeans.cluster_centers_[:, 0],

kmeans.cluster_centers_[:, 1], [0, 1, 2], markers='^', markeredgewidth=2)

• We can also use more or fewer cluster centers

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
# using two cluster centers:
```

```
kmeans = KMeans(n_clusters=2)
```

```
kmeans.fit(X)
```

```
assignments = kmeans.labels_
```

```
mglearn.discrete_scatter(X[:, 0], X[:, 1],
assignments, ax=axes[0])
```

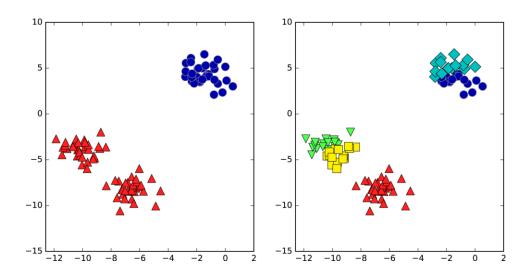
using five cluster centers:

```
kmeans = KMeans(n_clusters=5)
```

```
kmeans.fit(X)
```

```
assignments = kmeans.labels_
```

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[1])



- Failure cases of k-means
 - Even if you know the "right" number of clusters, it still may not be able to recover them
 - As each cluster is defined solely by its center, each cluster can only be a convex shape (i.e., only simple shape can be captured)
 - Assume all clusters have the same "diameter" in some sense

X_varied, y_varied = make_blobs(n_samples=200, cluster_std=[1.0, 2.5, 0.5], random_state=170) y_pred = KMeans(n_clusters=3, random_state=0).fit_predict(X_varied) mglearn.discrete_scatter(X_varied[:, 0], X_varied[:, 1], y_pred) plt.legend(["cluster 0", "cluster 1", "cluster 2"], loc='best') plt.xlabel("Feature 0") plt.ylabel("Feature 1")

- Also assume that all directions are equally important (see below)

generate some random cluster data

X, y = make_blobs(random_state=170, n_samples=600)

rng = np.random.RandomState(74)

transform the data to be stretched

transformation = rng.normal(size=(2, 2))

X = np.dot(X, transformation)

cluster the data into three clusters

kmeans = KMeans(n_clusters=3)

kmeans.fit(X)

y_pred = kmeans.predict(X)

plot the cluster assignments and cluster centers

mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')

mglearn.discrete_scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2],

markers='^', markeredgewidth=2)

plt.xlabel("Feature 0") plt.ylabel("Feature 1")

- Also performs poorly if the clusters have more complex shapes

generate synthetic two_moons data (with less noise this time)

from sklearn.datasets import make_moons

```
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
```

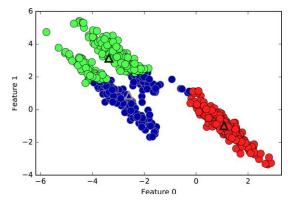
cluster the data into two clusters

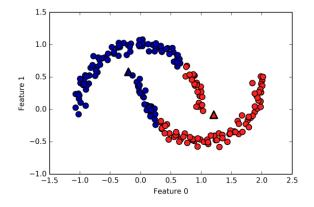
kmeans = KMeans(n_clusters=2) kmeans.fit(X)

y_pred = kmeans.predict(X)

plot the cluster assignments and cluster centers

```
plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=mglearn.cm2, s=60, edgecolor='k')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],
            marker='^', c=[mglearn.cm2(0), mglearn.cm2(1)], s=100, linewidth=2, edgecolor='k')
plt.xlabel("Feature 0") plt.ylabel("Feature 1")
```





- Vector Quantization (Seeing k-means as Decomposition)
 - PCA tries to find directions of maximum variance in the data
 - NMF tries to find additive components, which of correspond to "extremes" of "parts" of the data
 - k-means tries to represent each data point using a cluster center
- See a side-by-side comparison on the face dataset

from sklearn.datasets import fetch_lfw_people from sklearn.model_selection import train_test_split from sklearn.decomposition import NMF from sklearn.decomposition import PCA from sklearn.cluster import KMeans

```
people = fetch_lfw_people(min_faces_per_person=20, resize=0.7)
```

```
mask = np.zeros(people.target.shape, dtype=np.bool)
```

for target in np.unique(people.target):

```
mask[np.where(people.target == target)[0][:50]] = 1
```

```
X_people = people.data[mask]
```

```
y_people = people.target[mask]
```

```
# scale the grayscale values to be between 0 and 1
# instead of 0 and 255 for better numeric stability
X_people = X_people / 255
print(X_people.shape)
print(y_people.shape)
```

```
X_train, X_test, y_train, y_test = train_test_split(X_people, y_people, stratify=y_people, random_state=0)

nmf = NMF(n_components=100, random_state=0)

pca = PCA(n_components=100, random_state=0)

pca.fit(X_train)

kmeans = KMeans(n_clusters=100, random_state=0)

kmeans.fit(X_train)

X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test))

X_reconstructed_kmeans = kmeans.cluster_centers_[kmeans.predict(X_test)]

X_reconstructed_nmf = np.dot(nmf.transform(X_test), nmf.components_)

print("Learning completed!")
```

import matplotlib.pyplot as plt image_shape = people.images[0].shape fig, axes = plt.subplots(3, 5, figsize=(8, 8), subplot_kw={'xticks': (), 'yticks': ()})

fig.suptitle("Extracted Components")

for ax, comp_kmeans, comp_pca, comp_nmf in zip(

```
axes.T, kmeans.cluster_centers_, pca.components_, nmf.components_):

ax[0].imshow(comp_kmeans.reshape(image_shape))

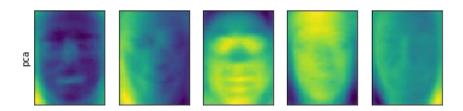
ax[1].imshow(comp_pca.reshape(image_shape), cmap='viridis')

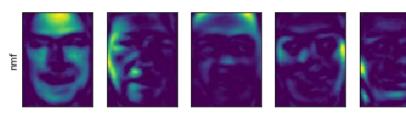
ax[2].imshow(comp_nmf.reshape(image_shape))

axes[0, 0].set_ylabel("kmeans")

axes[1, 0].set_ylabel("pca")

axes[2, 0].set_ylabel("nmf")
```





• See also reconstructions of faces using 100 components

fig, axes = plt.subplots(4, 5, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(8, 8))

fig.suptitle("Reconstructions")

for ax, orig, rec_kmeans, rec_pca, rec_nmf in zip(axes.T, X_test, X_reconstructed_kmeans, X_reconstructed_pca, X_reconstructed_nmf):

ax[0].imshow(orig.reshape(image_shape)) ax[1].imshow(rec_kmeans.reshape(image_shape)) ax[2].imshow(rec_pca.reshape(image_shape)) ax[3].imshow(rec_nmf.reshape(image_shape)) axes[0, 0].set_ylabel("original") axes[0, 0].set_ylabel("original") axes[1, 0].set_ylabel("kmeans") axes[2, 0].set_ylabel("pca") axes[3, 0].set_ylabel("nmf")

original means bCa h

Reconstructions

- An interesting aspect of vector quantization using *k*-means
 - We can use many more clusters than input dimensions
 - PCA or NMF cannot do this

- As a result, we can find a more expressive rep. with *k*-means

```
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
```

```
kmeans = KMeans(n_clusters=10, random_state=0)
```

```
kmeans.fit(X)
```

```
y_pred = kmeans.predict(X)
```

plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=60, cmap='Paired')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=60,

marker='^', c=range(kmeans.n_clusters), linewidth=2, cmap='Paired')

```
plt.xlabel("Feature 0") plt.ylabel("Feature 1")
```

print("Cluster memberships:\n{}".format(y_pred))

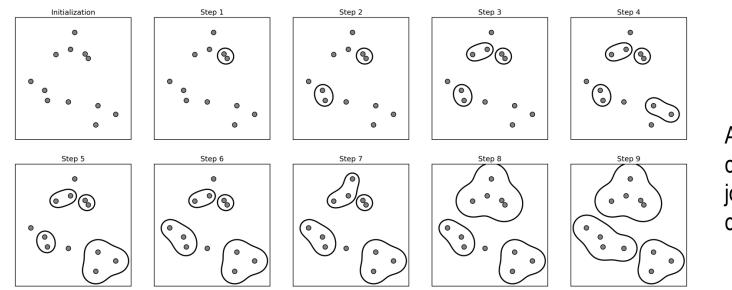
Using these 10-dimensional representation to represent original dataset with 2-dimension (i.e., transform)

distance_features = kmeans.transform(X)
print("Distance feature shape: {}".format(distance_features.shape))
print("Distance features:\n{}".format(distance_features))

- Advantages of k-means
 - Relatively easy to understand and implement
 - Runs relatively fast
- Downside of k-means
 - Relatively restrictive assumptions made on the shape of clusters
 - Requirement to specify the number of clusters you are looking for
- The following clustering algorithm can somewhat improve these properties
 - Agglomerative Clustering
 - DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

Agglomerative Clustering

- Refers to a collection of clustering algorithms all build upon the same principles
 - The algorithm starts by declaring each point its own cluster
 - Then merges the two most similar clusters iteratively
 - Until some stopping criterion is satisfied (e.g., # of clusters)



Agglomerative clustering iteratively joins the two closest clusters

- There are several linkage criteria that specify how exact the "most similar cluster" is measured
 - ward (default): picks the two clusters to merge such that the variance within all clusters increases the least – this often leads to clusters that are relatively equally sized
 - average: merges the two clusters that have the smallest average distance between all their points
 - Complete (also known as maximum linkage): merges the two clusters that have the smallest maximum distance between their points
- How to choose linkage
 - ward works on most datasets
 - If the clusters have very dissimilar cluster of members (e.g., one cluster is much bigger than all the others), average or complete might work better

- Because of the way the algorithm works, agglomerative clustering cannot make predictions for new data points.
 - As a result, use the fit_predict method instead

from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import make_blobs import matplotlib.pyplot as plt

```
X, y = make_blobs(random_state=1)

agg = AgglomerativeClustering(n_clusters=3)

assignment = agg.fit_predict(X)

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignment)

plt.legend(["Cluster 0", "Cluster 1", "Cluster 2"], loc="best")

plt.xlabel("Feature 0")

plt.ylabel("Feature 1")
```

- The methods recovers the clustering perfectly
- You need to specify the number of clusters, but how?

- Hierarchical clustering and dendrograms
 - Agglomerative clustering provides a hierarchical clustering
- Each intermediate step provides a clustering of the data mglearn.plots.plot_agglomerative()
 - Dendrogram as a good tool to visualize hierarchical clustering
 - Show data points as points on the bottom
 - Tree structure very clear for us to analyze the clustering

Import the dendrogram function and the ward clustering function from SciPy

from scipy.cluster.hierarchy import dendrogram, ward

X, y = make_blobs(random_state=0, n_samples=12)

Apply the ward clustering to the data array X

The SciPy ward function returns an array that specifies the distances bridged

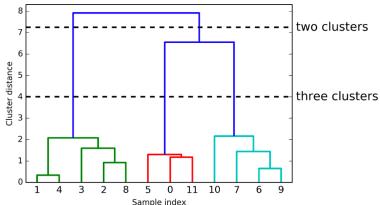
when performing Agglomerative Clustering

linkage_array = ward(X)

Now we plot the dendrogram for the linkage_array containing the distances between clusters dendrogram(linkage_array)

Mark the cuts in the tree that signify two or three clusters

```
ax = plt.gca()
bounds = ax.get_xbound()
ax.plot(bounds, [7.25, 7.25], '--', c='k')
ax.plot(bounds, [4, 4], '--', c='k')
ax.text(bounds[1], 7.25, ' two clusters', va='center', fontdict={'size': 15})
ax.text(bounds[1], 4, ' three clusters', va='center', fontdict={'size': 15})
plt.xlabel("Sample index")
plt.ylabel("Cluster distance")
```



- Limitation of agglomerative clustering methods
 - Still fails at separating complex shapes like the two_moons dataset
 - Which however can be successfully covered by DBSCAN introduced below

DBSCAN

- Density Based Spatial Clustering of Applications with Noise
 - Main Benefit:
 - not need to specify the number of clusters as prior
 - can capture clusters of complex shapes
 - can identify points nor part of any cluster
 - Downside:
 - slower than k-means and agglomerative clustering
 - but still scales to relatively large datasets
- Idea behind: clusters form dense regions of data, separated by regions that are relatively empty
 - Points that are within a dense region are called core samples

- Two parameters in DBSCAN: min_samples & eps
 - If there are at least min_samples many data points within a distance eps to a given data point, that data point is classified as a core sample.
 - Core samples that are closer to each other than the distance eps are put into the same cluster by DBSCAN
- Algorithm: neighborhood flooding based
 - Starting from a randomly picked point **q**
 - Find all point with distance to ${\bf q}$ less than ${\rm eps}$
 - If the pnt # less than min_samples, q is classified as noise (means that q does not belong to any cluster)
 - If the pnt # more than min_samples, **q** is labeled a core sample and assigned a new cluster label *L*.
 - All neighbors (within eps) are visited by flooding if they have not assigned a label, assign L as their label.
 - Picking another unvisited point \mathbf{q}^{next} and repeating above steps ¹⁹

- In the end of above algorithm, three kinds of points
 - Core points: only neighboring to points have the same label
 - Boundary points: neighboring to core pnts have different labels
 - Noise: not neighboring to enough number of core points
- Try DBSCAN on the synthetic dataset

from sklearn.cluster import DBSCAN

from sklearn.datasets import make_blobs

```
X, y = make_blobs(random_state=0, n_samples=12)
```

```
dbscan = DBSCAN()
```

clusters = dbscan.fit_predict(X)

print("Cluster memberships:\n{}".format(clusters))

- All data points are considered as noise
- Caused by using the default parameter for eps & min_samples
- Study the influence of parameters

import mglearn

mglearn.plots.plot_dbscan()

- Observation:
 - eps **7**, more pnts will be included in a cluster
 - min_samples **7**, fewer points will be core pnts (more restrictive)
- Setting eps implicitly controls # of clusters to be formed

from sklearn.preprocessing import StandardScaler

```
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)
```

rescale the data to zero mean and unit variance

scaler = StandardScaler()

scaler.fit(X)

```
X_scaled = scaler.transform(X)
```

dbscan = DBSCAN() #default eps=0.5; change to eps=0.2 (8 clusters); eps=0.7 (1 cluster)

```
clusters = dbscan.fit_predict(X_scaled)
```

plot the cluster assignments

```
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap='Paired', s=60)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
```

- The return of -1 needs to be carefully handled (noise)

Evaluating Different Clustering Algorithms

- Evaluate clustering with ground truth metrics to be used:
 - Adjusted Rand Index (ARI)
 - Normalized Mutual Information (NMI)
 - Both provide a quantitative measure with an optimum of 1 and a value of 0 for unrelated clustering (though the ARI can become negative)
 - How to calculate?

from sklearn.metrics.cluster import adjusted_rand_score

X, y = make_moons(n_samples=200, noise=0.05, random_state=0) # rescale the data to zero mean and unit variance scaler = StandardScaler() scaler.fit(X) X_scaled = scaler.transform(X) fig, axes = plt.subplots(1, 4, figsize=(15, 3), subplot_kw={'xticks': (), 'yticks': ()})

make a list of algorithms to use

algorithms = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2), DBSCAN()]

create a random cluster assignment for reference

```
random_state = np.random.RandomState(seed=0)
random_clusters = random_state.randint(low=0, high=2, size=len(X))
```

plot random assignment

axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters, cmap=mglearn.cm3, s=60)
axes[0].set_title("Random assignment - ARI: {:.2f}".format(adjusted_rand_score(y, random_clusters)))
for ax, algorithm in zip(axes[1:], algorithms):

plot the cluster assignments and cluster centers

clusters = algorithm.fit_predict(X_scaled)
ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap="Paired", s=60)
ax.set_title("{} - ARI: {:.2f}".format(algorithm.__class__.__name__, adjusted_rand_score(y, clusters)))

- A common mistake when evaluating clustering
 - to use accuracy_score instead of adjusted_rand_score, normalized_mutual_info_score
 - Reason: the value of cluster label is useless

from sklearn.metrics import accuracy_score

these two labelings of points correspond to the same clustering

clusters1 = [0, 0, 1, 1, 0] clusters2 = [1, 1, 0, 0, 1]

accuracy is zero, as none of the labels are the same

print("Accuracy: {:.2f}".format(accuracy_score(clusters1, clusters2)))

adjusted rand score is 1, as the clustering is exactly the same

print("ARI: {:.2f}".format(adjusted_rand_score(clusters1, clusters2)))

•Evaluating clustering without ground truth

- Using metrics like ARI and NMI usually only helps in developing algorithms
- Not in assessing success in an application
- Specially according to these metrics and scores, we still don't know if there is any semantic meaning in the clustering
- The only way to know whether the clustering corresponds to anything we are interested in is to analyze the clusters manually

Comparing Algorithms on Faces Dataset

- Applying different clustering algorithms to the labeled faces in the wide dataset
 - See if interesting structure can be found by any of them
 - Use eigenface rep. as produced by PCA with 100 components

from sklearn.decomposition import PCA

```
pca = PCA(n_components=100, whiten=True, random_state=0)
```

pca.fit_transform(X_people)

X_pca = pca.transform(X_people)

Analyzing the faces with DBSCAN

apply DBSCAN with default parameters

dbscan = DBSCAN()

labels = dbscan.fit_predict(X_pca)

print("Unique labels: {}".format(np.unique(labels)))

- Parameters: making eps higher or min_samples lower

```
dbscan = DBSCAN(min_samples=3)
```

labels = dbscan.fit_predict(X_pca)

print("Unique labels: {}".format(np.unique(labels)))

- Even allowing cluster with only 3 samples, still everything labeled as noise
- Increasing eps to 15 still only get one cluster
- Let's look at how many points are noises and core-samples

Count number of points in all clusters and noise.

bincount doesn't allow negative numbers, so we need to add 1.

The first number in the result corresponds to noise points.

print("Number of points per cluster: {}".format(np.bincount(labels + 1)))

- We display all noises to have a check (called outlier detection)

image_shape = people.images[0].shape

```
noise = X_people[labels==-1]
```

fig, axes = plt.subplots(3, 9, subplot_kw={'xticks': (), 'yticks': ()},

figsize=(12, 4))

for image, ax in zip(noise, axes.ravel()):

```
ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
```

- There is little we can do with the outliers, but it's good to know the reasons cause them
 - E.g., wearing hats, drinking or holding sth in front of their face
 - Let's have a look at what different values of eps result in

```
for eps in [1, 3, 5, 7, 9, 11, 13]:
```

```
print("\neps={}".format(eps))
dbscan = DBSCAN(eps=eps, min_samples=3)
labels = dbscan.fit_predict(X_pca)
```

print("Number of clusters: {}".format(len(np.unique(labels))))

print("Cluster sizes: {}".format(np.bincount(labels + 1)))

 The result for eps=7 look most interesting, with many small clusters – we then visualize all of the points in these 13 clusters


```
dbscan = DBSCAN(min_samples=3, eps=7)
labels = dbscan.fit_predict(X_pca)
for cluster in range(max(labels) + 1):
    mask = labels == cluster
    n_images = np.sum(mask)
    fig, axes = plt.subplots(1, n_images, figsize=(n_images * 1.5, 4), subplot_kw={'xticks': (), 'yticks': ()})
    for image, label, ax in zip(X_people[mask], y_people[mask], axes):
        ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
        ax.set_title(people.target_names[label].split()[-1])
```

- Some of the clusters correspond to people with very distinct faces
- Within each cluster, the orientation of the face is also quite fixed, as well as the facial expression
- Some cluster contains multiple people, but they share a similar orientation and expression
- As you can see, we are doing a manual analysis here, which is different from the supervised learning based on R² score or accuracy

- Analyzing the faces dataset with *k*-means
 - Much more likely to create clusters of even size
 - We can start with a low number of clusters (e.g., 10)

extract clusters with k-means

km = KMeans(n_clusters=10, random_state=0)

labels_km = km.fit_predict(X_pca)

print("Cluster sizes k-means: {}".format(np.bincount(labels_km)))

- As you can see, the cluster sized from 64 to 386, which is quite different from the result of DBSCAN
- We can further analyze the outcome of *k*-means by visualizing the cluster centers (very smooth versions of faces)

fig, axes = plt.subplots(2, 5, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(12, 4))

for center, ax in zip(km.cluster_centers_, axes.ravel()):

ax.imshow(pca.inverse_transform(center).reshape(image_shape), vmin=0, vmax=1)

The clustering seems to pick up on different orientations of the face, different expressions (the third one); see closest samples
 mglearn.plots.plot_kmeans_faces(km, pca, X_pca, X_people, y_people, people.target_names)

- Analyzing the faces dataset with agglomerative clustering
 - The same, starting from 10 clusters

extract clusters with ward agglomerative clustering

```
agglomerative = AgglomerativeClustering(n_clusters=10)
labels_agg = agglomerative.fit_predict(X_pca)
print("Cluster sizes agglomerative clustering: {}".format(np.bincount(labels_agg)))
print("ARI: {:.2f}".format(adjusted_rand_score(labels_agg, labels_km)))
```

- The result is more uneven than *k*-means but more even than DBSCAN
- ARI with a very low value means that the two clustering results of k-means and agglomerative clustering have little in common
- We can plot the dendrogram but with limited depth

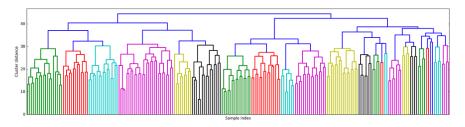
linkage_array = ward(X_pca)

```
# now we plot the dendrogram for the linkage_array; containing the distances between clusters
```

```
plt.figure(figsize=(20, 5))
```

dendrogram(linkage_array, p=7,

```
truncate_mode='level', no_labels=True)
plt.xlabel("Sample index") plt.ylabel("Cluster distance")
```



- Creating 10 clusters, we cut across the tree at the very top, where there are 10 vertical lines
- Let's visualize the 10 clusters
- Note that, there is no notation of cluster center in agglomerative clustering, we simply show the first few points in each cluster

n_clusters = 10

for cluster in range(n_clusters):

```
mask = labels_agg == cluster
```

fig, axes = plt.subplots(1, 10, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(15, 8))

axes[0].set_ylabel(np.sum(mask))

for image, label, asdf, ax in zip(X_people[mask], y_people[mask], labels_agg[mask], axes):
 ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
 ax.set_title(people.target_names[label].split()[-1], fontdict={'fontsize': 9})

- While some of the clusters seem to have a semantic theme, many of them are too large to be actually homogeneous
- Generate more clusters (e.g. 40) to obtain more homogeneous clusters (result in sth like "Hussein" and "Smiling woman")

```
# extract clusters with ward agglomerative clustering
```

```
agglomerative = AgglomerativeClustering(n_clusters=40)
labels_agg = agglomerative.fit_predict(X_pca)
print("cluster sizes agglomerative clustering: {}".format(np.bincount(labels_agg)))
n clusters = 40
for cluster in [10, 13, 19, 38, 39]: # hand-picked "interesting" clusters
      mask = labels_agg == cluster
      fig, axes = plt.subplots(1, 15, subplot kw={'xticks': (), 'yticks': ()}, figsize=(15, 8))
      cluster_size = np.sum(mask)
      axes[0].set_ylabel("#{}: {}".format(cluster, cluster_size))
      for image, label, asdf, ax in zip(X_people[mask], y_people[mask], labels_agg[mask], axes):
             ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
             ax.set title(people.target names[label].split()[-1], fontdict={'fontsize': 9})
      for i in range(cluster_size, 15):
             axes[i].set_visible(False)
```

Summary of Clustering Methods

- Each algorithm has somewhat different strengths
 - k-means allows for a characterization of clusters using the cluster means; it can be considered a decomposition method
 - DBSCAN allows for the detection of "noise points" and allows for complex cluster shapes
 - Agglomerative clustering can provide a whole hierarchy of possible partitions
 - It is hard to quantify the usefulness of an unsupervised algorithm, though this shouldn't deter you from using them to gather insight from your data.