
L5 – Unsupervised Learning: Clustering

• Different clustering techniques are to be learned here

– k-Means Clustering

– Agglomerative Clustering

– DBSCAN

• Comparing and evaluating different clustering algorithms

• Summary of clustering methods
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k-Means Clustering

• One of the simplest and most commonly used clustering 

algorithms

– Function: find cluster centers that are representative of certain 

regions of the data

• Alternating between two steps:

– Assigning each data point to the closest cluster center

– Setting each cluster center as the mean of the data points that 

are assigned to

• The following example illustrates the algorithm on a 

synthetic dataset:
mglearn.plots.plot_kmeans_algorithm()
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• Given new points, k-means will assign each to the closest 

cluster center

– Can show the boundaries of the cluster centers already learned
mglearn.plots.plot_kmeans_boundaries()

– Learning by k-means can be conducted simply
from sklearn.datasets import make_blobs

from sklearn.cluster import KMeans

# generate synthetic two-dimensional data

X, y = make_blobs(random_state=1)

# build the clustering model

kmeans = KMeans(n_clusters=3)

kmeans.fit(X)

– Find each training sample’s cluster label
print("Cluster memberships:\n{}".format(kmeans.labels_))

– Assign cluster labels to new points
# running predict on the training set returns the same result as labels_

print(kmeans.predict(X))
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• Running again may result in a different numbering of 

clusters because of the random nature of initialization

– The cluster centers are stored in the cluster_centers_ attribute
mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')

mglearn.discrete_scatter(kmeans.cluster_centers_[:, 0], 

kmeans.cluster_centers_[:, 1], [0, 1, 2], markers='^', markeredgewidth=2)

• We can also use more or fewer cluster centers
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

# using two cluster centers:

kmeans = KMeans(n_clusters=2)

kmeans.fit(X)

assignments = kmeans.labels_

mglearn.discrete_scatter(X[:, 0], X[:, 1], 

assignments, ax=axes[0])

# using five cluster centers:

kmeans = KMeans(n_clusters=5)

kmeans.fit(X)

assignments = kmeans.labels_

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignments, ax=axes[1])
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• Failure cases of k-means

– Even if you know the “right” number of clusters, it still may not be 

able to recover them

– As each cluster is defined solely by its center, each cluster can 

only be a convex shape (i.e., only simple shape can be captured)

– Assume all clusters have the same “diameter” in some sense
X_varied, y_varied = make_blobs(n_samples=200, cluster_std=[1.0, 2.5, 0.5], random_state=170)

y_pred = KMeans(n_clusters=3, random_state=0).fit_predict(X_varied)

mglearn.discrete_scatter(X_varied[:, 0], X_varied[:, 1], y_pred)

plt.legend(["cluster 0", "cluster 1", "cluster 2"], loc='best')

plt.xlabel("Feature 0") plt.ylabel("Feature 1")

– Also assume that all directions are equally important (see below)
# generate some random cluster data

X, y = make_blobs(random_state=170, n_samples=600)

rng = np.random.RandomState(74)

# transform the data to be stretched

transformation = rng.normal(size=(2, 2))

X = np.dot(X, transformation) 5



# cluster the data into three clusters

kmeans = KMeans(n_clusters=3)

kmeans.fit(X)

y_pred = kmeans.predict(X)

# plot the cluster assignments and cluster centers

mglearn.discrete_scatter(X[:, 0], X[:, 1], kmeans.labels_, markers='o')

mglearn.discrete_scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], [0, 1, 2], 

markers='^', markeredgewidth=2)

plt.xlabel("Feature 0") plt.ylabel("Feature 1")

– Also performs poorly if the clusters have more complex shapes
# generate synthetic two_moons data (with less noise this time)

from sklearn.datasets import make_moons

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# cluster the data into two clusters

kmeans = KMeans(n_clusters=2) kmeans.fit(X)      

y_pred = kmeans.predict(X) 

# plot the cluster assignments and cluster centers

plt.scatter(X[:, 0], X[:, 1], c=y_pred, cmap=mglearn.cm2, s=60, edgecolor='k')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], 

marker='^', c=[mglearn.cm2(0), mglearn.cm2(1)], s=100, linewidth=2, edgecolor='k')

plt.xlabel("Feature 0") plt.ylabel("Feature 1")
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• Vector Quantization (Seeing k-means as Decomposition)

– PCA tries to find directions of maximum variance in the data

– NMF tries to find additive components, which of correspond to 

“extremes” of “parts” of the data

– k-means tries to represent each data point using a cluster center

• See a side-by-side comparison on the face dataset
from sklearn.datasets import fetch_lfw_people

from sklearn.model_selection import train_test_split

from sklearn.decomposition import NMF

from sklearn.decomposition import PCA

from sklearn.cluster import KMeans

people = fetch_lfw_people(min_faces_per_person=20, resize=0.7)

mask = np.zeros(people.target.shape, dtype=np.bool)

for target in np.unique(people.target):

mask[np.where(people.target == target)[0][:50]] = 1

X_people = people.data[mask]

y_people = people.target[mask] 7



# scale the grayscale values to be between 0 and 1

# instead of 0 and 255 for better numeric stability

X_people = X_people / 255

print(X_people.shape)

print(y_people.shape)

X_train, X_test, y_train, y_test = train_test_split(X_people, y_people, stratify=y_people, random_state=0)

nmf = NMF(n_components=100, random_state=0)

nmf.fit(X_train)

pca = PCA(n_components=100, random_state=0)

pca.fit(X_train)

kmeans = KMeans(n_clusters=100, random_state=0)

kmeans.fit(X_train)

X_reconstructed_pca = pca.inverse_transform(pca.transform(X_test))

X_reconstructed_kmeans = kmeans.cluster_centers_[kmeans.predict(X_test)]

X_reconstructed_nmf = np.dot(nmf.transform(X_test), nmf.components_)

print("Learning completed!")
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import matplotlib.pyplot as plt

image_shape = people.images[0].shape

fig, axes = plt.subplots(3, 5, figsize=(8, 8), subplot_kw={'xticks': (), 'yticks': ()})

fig.suptitle("Extracted Components")

for ax, comp_kmeans, comp_pca, comp_nmf in zip(

axes.T, kmeans.cluster_centers_, pca.components_, nmf.components_):

ax[0].imshow(comp_kmeans.reshape(image_shape))

ax[1].imshow(comp_pca.reshape(image_shape), cmap='viridis')

ax[2].imshow(comp_nmf.reshape(image_shape))

axes[0, 0].set_ylabel("kmeans")

axes[1, 0].set_ylabel("pca")

axes[2, 0].set_ylabel("nmf")
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• See also reconstructions of faces using 100 components
fig, axes = plt.subplots(4, 5, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(8, 8))

fig.suptitle("Reconstructions")

for ax, orig, rec_kmeans, rec_pca, rec_nmf in zip(axes.T, X_test, X_reconstructed_kmeans, 

X_reconstructed_pca, X_reconstructed_nmf):

ax[0].imshow(orig.reshape(image_shape))

ax[1].imshow(rec_kmeans.reshape(image_shape))

ax[2].imshow(rec_pca.reshape(image_shape))

ax[3].imshow(rec_nmf.reshape(image_shape))

axes[0, 0].set_ylabel("original")

axes[1, 0].set_ylabel("kmeans")

axes[2, 0].set_ylabel("pca")

axes[3, 0].set_ylabel("nmf")
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• An interesting aspect of vector quantization using k-means

– We can use many more clusters than input dimensions

– PCA or NMF cannot do this

– As a result, we can find a more expressive rep. with k-means
X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

kmeans = KMeans(n_clusters=10, random_state=0)

kmeans.fit(X)

y_pred = kmeans.predict(X)

plt.scatter(X[:, 0], X[:, 1], c=y_pred, s=60, cmap='Paired')

plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=60, 

marker='^', c=range(kmeans.n_clusters), linewidth=2, cmap='Paired')

plt.xlabel("Feature 0") plt.ylabel("Feature 1")

print("Cluster memberships:\n{}".format(y_pred))

– Using these 10-dimensional representation to represent original 

dataset with 2-dimension (i.e., transform)
distance_features = kmeans.transform(X)

print("Distance feature shape: {}".format(distance_features.shape))

print("Distance features:\n{}".format(distance_features)) 11



• Advantages of k-means

– Relatively easy to understand and implement

– Runs relatively fast

• Downside of k-means

– Relatively restrictive assumptions made on the shape of clusters

– Requirement to specify the number of clusters you are looking for

• The following clustering algorithm can somewhat improve 

these properties

– Agglomerative Clustering

– DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise)
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Agglomerative Clustering

• Refers to a collection of clustering algorithms all build upon 

the same principles

– The algorithm starts by declaring each point its own cluster

– Then merges the two most similar clusters iteratively

– Until some stopping criterion is satisfied (e.g., # of clusters)

13
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• There are several linkage criteria that specify how exact the 

“most similar cluster” is measured

– ward (default): picks the two clusters to merge such that the 

variance within all clusters increases the least – this often leads 

to clusters that are relatively equally sized 

– average: merges the two clusters that have the smallest average 

distance between all their points

– Complete (also known as maximum linkage): merges the two 

clusters that have the smallest maximum distance between their 

points 

• How to choose linkage

– ward works on most datasets

– If the clusters have very dissimilar cluster of members (e.g., one 

cluster is much bigger than all the others), average or complete

might work better 14



• Because of the way the algorithm works, agglomerative 

clustering cannot make predictions for new data points.

– As a result, use the fit_predict method instead

from sklearn.cluster import AgglomerativeClustering

from sklearn.datasets import make_blobs

import matplotlib.pyplot as plt

X, y = make_blobs(random_state=1)

agg = AgglomerativeClustering(n_clusters=3)

assignment = agg.fit_predict(X)

mglearn.discrete_scatter(X[:, 0], X[:, 1], assignment)

plt.legend(["Cluster 0", "Cluster 1", "Cluster 2"], loc="best")

plt.xlabel("Feature 0")

plt.ylabel("Feature 1”)

– The methods recovers the clustering perfectly

– You need to specify the number of clusters, but how?
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• Hierarchical clustering and dendrograms

– Agglomerative clustering provides a hierarchical clustering

– Each intermediate step provides a clustering of the data
mglearn.plots.plot_agglomerative()

– Dendrogram as a good tool to visualize hierarchical clustering

• Show data points as points on the bottom

• Tree structure very clear for us to analyze the clustering

# Import the dendrogram function and the ward clustering function from SciPy

from scipy.cluster.hierarchy import dendrogram, ward

X, y = make_blobs(random_state=0, n_samples=12)

# Apply the ward clustering to the data array X

# The SciPy ward function returns an array that specifies the distances bridged 

# when performing Agglomerative Clustering

linkage_array = ward(X)

# Now we plot the dendrogram for the linkage_array containing the distances between clusters

dendrogram(linkage_array)
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# Mark the cuts in the tree that signify two or three clusters

ax = plt.gca()

bounds = ax.get_xbound()

ax.plot(bounds, [7.25, 7.25], '--', c='k')

ax.plot(bounds, [4, 4], '--', c='k')

ax.text(bounds[1], 7.25, ' two clusters', va='center', fontdict={'size': 15})

ax.text(bounds[1], 4, ' three clusters', va='center', fontdict={'size': 15})

plt.xlabel("Sample index")

plt.ylabel("Cluster distance")

• Limitation of agglomerative clustering methods

– Still fails at separating complex shapes like the two_moons

dataset

– Which however can be successfully covered by DBSCAN 

introduced below 17



DBSCAN

• Density Based Spatial Clustering of Applications with Noise

– Main Benefit: 

• not need to specify the number of clusters as prior

• can capture clusters of complex shapes

• can identify points nor part of any cluster 

– Downside: 

• slower than k-means and agglomerative clustering

• but still scales to relatively large datasets

• Idea behind: clusters form dense regions of data, separated

by regions that are relatively empty

– Points that are within a dense region are called core samples
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• Two parameters in DBSCAN: min_samples & eps

– If there are at least min_samples many data points within a 

distance eps to a given data point, that data point is classified as 

a core sample. 

– Core samples that are closer to each other than the distance eps

are put into the same cluster by DBSCAN

• Algorithm: neighborhood flooding based

– Starting from a randomly picked point q

– Find all point with distance to q less than eps

• If the pnt # less than min_samples, q is classified as noise (means that q

does not belong to any cluster)

• If the pnt # more than min_samples, q is labeled a core sample and 

assigned a new cluster label L. 

• All neighbors (within eps) are visited by flooding – if they have not 

assigned a label, assign L as their label. 

– Picking another unvisited point qnext and repeating above steps 19



• In the end of above algorithm, three kinds of points

– Core points: only neighboring to points have the same label

– Boundary points: neighboring to core pnts have different labels

– Noise: not neighboring to enough number of core points

• Try DBSCAN on the synthetic dataset
from sklearn.cluster import DBSCAN

from sklearn.datasets import make_blobs

X, y = make_blobs(random_state=0, n_samples=12)

dbscan = DBSCAN()

clusters = dbscan.fit_predict(X)

print("Cluster memberships:\n{}".format(clusters))

– All data points are considered as noise

– Caused by using the default parameter for eps & min_samples

– Study the influence of parameters
import mglearn

mglearn.plots.plot_dbscan()
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• Observation:

– eps, more pnts will be included in a cluster

– min_samples , fewer points will be core pnts (more restrictive)

• Setting eps implicitly controls # of clusters to be formed
from sklearn.preprocessing import StandardScaler

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# rescale the data to zero mean and unit variance

scaler = StandardScaler()

scaler.fit(X)

X_scaled = scaler.transform(X)

dbscan = DBSCAN() #default eps=0.5; change to eps=0.2 (8 clusters); eps=0.7 (1 cluster)

clusters = dbscan.fit_predict(X_scaled)

# plot the cluster assignments

plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap='Paired', s=60)

plt.xlabel("Feature 0")

plt.ylabel("Feature 1”)

– The return of -1 needs to be carefully handled (noise) 21



Evaluating Different Clustering Algorithms

• Evaluate clustering with ground truth – metrics to be used:

– Adjusted Rand Index (ARI)

– Normalized Mutual Information (NMI)

• Both provide a quantitative measure with an optimum of 1 and a value of 0 

for unrelated clustering (though the ARI can become negative)

• How to calculate?

from sklearn.metrics.cluster import adjusted_rand_score

X, y = make_moons(n_samples=200, noise=0.05, random_state=0)

# rescale the data to zero mean and unit variance

scaler = StandardScaler()

scaler.fit(X)

X_scaled = scaler.transform(X)

fig, axes = plt.subplots(1, 4, figsize=(15, 3),

subplot_kw={'xticks': (), 'yticks': ()})
22
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# make a list of algorithms to use

algorithms = [KMeans(n_clusters=2), AgglomerativeClustering(n_clusters=2), DBSCAN()]

# create a random cluster assignment for reference

random_state = np.random.RandomState(seed=0)

random_clusters = random_state.randint(low=0, high=2, size=len(X))

# plot random assignment

axes[0].scatter(X_scaled[:, 0], X_scaled[:, 1], c=random_clusters, cmap=mglearn.cm3, s=60)

axes[0].set_title("Random assignment - ARI: {:.2f}".format(adjusted_rand_score(y, random_clusters)))

for ax, algorithm in zip(axes[1:], algorithms):

# plot the cluster assignments and cluster centers

clusters = algorithm.fit_predict(X_scaled)

ax.scatter(X_scaled[:, 0], X_scaled[:, 1], c=clusters, cmap="Paired", s=60)

ax.set_title("{} - ARI: {:.2f}".format(algorithm.__class__.__name__, adjusted_rand_score(y, clusters)))

• A common mistake when evaluating clustering 

– to use accuracy_score instead of adjusted_rand_score, 

normalized_mutual_info_score

– Reason: the value of cluster label is useless 23



from sklearn.metrics import accuracy_score

# these two labelings of points correspond to the same clustering

clusters1 = [0, 0, 1, 1, 0]

clusters2 = [1, 1, 0, 0, 1]

# accuracy is zero, as none of the labels are the same

print("Accuracy: {:.2f}".format(accuracy_score(clusters1, clusters2)))

# adjusted rand score is 1, as the clustering is exactly the same

print("ARI: {:.2f}".format(adjusted_rand_score(clusters1, clusters2)))

•Evaluating clustering without ground truth

– Using metrics like ARI and NMI usually only helps in developing 

algorithms

– Not in assessing success in an application

– Specially according to these metrics and scores, we still don’t 

know if there is any semantic meaning in the clustering

– The only way to know whether the clustering corresponds to 

anything we are interested in is to analyze the clusters manually

24



Comparing Algorithms on Faces Dataset

• Applying different clustering algorithms to the labeled faces 

in the wide dataset

– See if interesting structure can be found by any of them

– Use eigenface rep. as produced by PCA with 100 components
from sklearn.decomposition import PCA

pca = PCA(n_components=100, whiten=True, random_state=0)

pca.fit_transform(X_people)

X_pca = pca.transform(X_people)

• Analyzing the faces with DBSCAN
# apply DBSCAN with default parameters

dbscan = DBSCAN()

labels = dbscan.fit_predict(X_pca)

print("Unique labels: {}".format(np.unique(labels)))

– Parameters: making eps higher or min_samples lower 25



dbscan = DBSCAN(min_samples=3)

labels = dbscan.fit_predict(X_pca)

print("Unique labels: {}".format(np.unique(labels)))

– Even allowing cluster with only 3 samples, still everything labeled 

as noise

– Increasing eps to 15 – still only get one cluster

– Let’s look at how many points are noises and core-samples
# Count number of points in all clusters and noise.

# bincount doesn't allow negative numbers, so we need to add 1.

# The first number in the result corresponds to noise points.

print("Number of points per cluster: {}".format(np.bincount(labels + 1)))

– We display all noises to have a check (called outlier detection)
image_shape = people.images[0].shape

noise = X_people[labels==-1]

fig, axes = plt.subplots(3, 9, subplot_kw={'xticks': (), 'yticks': ()},

figsize=(12, 4))

for image, ax in zip(noise, axes.ravel()):

ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)
26



• There is little we can do with the outliers, but it’s good to 

know the reasons cause them

– E.g., wearing hats, drinking or holding sth in front of their face

– Let’s have a look at what different values of eps result in
for eps in [1, 3, 5, 7, 9, 11, 13]:

print("\neps={}".format(eps))

dbscan = DBSCAN(eps=eps, min_samples=3)

labels = dbscan.fit_predict(X_pca)

print("Number of clusters: {}".format(len(np.unique(labels))))

print("Cluster sizes: {}".format(np.bincount(labels + 1)))

– The result for eps=7 look most interesting, with many small 

clusters – we then visualize all of the points in these 13 clusters
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dbscan = DBSCAN(min_samples=3, eps=7)

labels = dbscan.fit_predict(X_pca)

for cluster in range(max(labels) + 1):

mask = labels == cluster

n_images = np.sum(mask)

fig, axes = plt.subplots(1, n_images, figsize=(n_images * 1.5, 4), subplot_kw={'xticks': (), 'yticks': ()})

for image, label, ax in zip(X_people[mask], y_people[mask], axes):

ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)

ax.set_title(people.target_names[label].split()[-1])

– Some of the clusters correspond to people with very distinct faces

– Within each cluster, the orientation of the face is also quite fixed, 

as well as the facial expression

– Some cluster contains multiple people, but they share a similar 

orientation and expression

• As you can see, we are doing a manual analysis here, 

which is different from the supervised learning based on R2

score or accuracy
28



• Analyzing the faces dataset with k-means

– Much more likely to create clusters of even size

– We can start with a low number of clusters (e.g., 10)
# extract clusters with k-means

km = KMeans(n_clusters=10, random_state=0)

labels_km = km.fit_predict(X_pca)

print("Cluster sizes k-means: {}".format(np.bincount(labels_km)))

– As you can see, the cluster sized from 64 to 386, which is quite 

different from the result of DBSCAN

– We can further analyze the outcome of k-means by visualizing 

the cluster centers (very smooth versions of faces)
fig, axes = plt.subplots(2, 5, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(12, 4))

for center, ax in zip(km.cluster_centers_, axes.ravel()):

ax.imshow(pca.inverse_transform(center).reshape(image_shape), vmin=0, vmax=1)

– The clustering seems to pick up on different orientations of the 

face, different expressions (the third one); see closest samples
mglearn.plots.plot_kmeans_faces(km, pca, X_pca, X_people, y_people, people.target_names) 29



• Analyzing the faces dataset with agglomerative clustering

– The same, starting from 10 clusters
# extract clusters with ward agglomerative clustering

agglomerative = AgglomerativeClustering(n_clusters=10)

labels_agg = agglomerative.fit_predict(X_pca)

print("Cluster sizes agglomerative clustering: {}".format(np.bincount(labels_agg)))

print("ARI: {:.2f}".format(adjusted_rand_score(labels_agg, labels_km)))

– The result is more uneven than k-means but more even than 

DBSCAN 

– ARI with a very low value means that the two clustering results of 

k-means and agglomerative clustering have little in common

– We can plot the dendrogram but with limited depth
linkage_array = ward(X_pca)

# now we plot the dendrogram for the linkage_array; containing the distances between clusters

plt.figure(figsize=(20, 5))

dendrogram(linkage_array, p=7, 

truncate_mode='level', no_labels=True)

plt.xlabel("Sample index”)    plt.ylabel("Cluster distance") 30



– Creating 10 clusters, we cut across the tree at the very top, 

where there are 10 vertical lines

– Let’s visualize the 10 clusters

– Note that, there is no notation of cluster center in agglomerative 

clustering, we simply show the first few points in each cluster
n_clusters = 10

for cluster in range(n_clusters):

mask = labels_agg == cluster

fig, axes = plt.subplots(1, 10, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(15, 8))

axes[0].set_ylabel(np.sum(mask))

for image, label, asdf, ax in zip(X_people[mask], y_people[mask], labels_agg[mask], axes):

ax.imshow(image.reshape(image_shape), vmin=0, vmax=1) 

ax.set_title(people.target_names[label].split()[-1], fontdict={'fontsize': 9})

– While some of the clusters seem to have a semantic theme, 

many of them are too large to be actually homogeneous

– Generate more clusters (e.g. 40) to obtain more homogeneous 

clusters (result in sth like “Hussein” and “Smiling woman”)
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# extract clusters with ward agglomerative clustering

agglomerative = AgglomerativeClustering(n_clusters=40)

labels_agg = agglomerative.fit_predict(X_pca)

print("cluster sizes agglomerative clustering: {}".format(np.bincount(labels_agg)))

n_clusters = 40

for cluster in [10, 13, 19, 38, 39]: # hand-picked "interesting" clusters

mask = labels_agg == cluster

fig, axes = plt.subplots(1, 15, subplot_kw={'xticks': (), 'yticks': ()}, figsize=(15, 8))

cluster_size = np.sum(mask)

axes[0].set_ylabel("#{}: {}".format(cluster, cluster_size))

for image, label, asdf, ax in zip(X_people[mask], y_people[mask], labels_agg[mask], axes):

ax.imshow(image.reshape(image_shape), vmin=0, vmax=1)

ax.set_title(people.target_names[label].split()[-1], fontdict={'fontsize': 9})

for i in range(cluster_size, 15):

axes[i].set_visible(False)
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Summary of Clustering Methods

• Each algorithm has somewhat different strengths

– k-means allows for a characterization of clusters using the cluster 

means; it can be considered a decomposition method

– DBSCAN allows for the detection of “noise points” and allows for 

complex cluster shapes

– Agglomerative clustering can provide a whole hierarchy of 

possible partitions

– It is hard to quantify the usefulness of an unsupervised algorithm, 

though this shouldn’t deter you from using them to gather insight 

from your data.
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