L6 – Representing Data and Engineering Features

- Representing your data in the right way (Very Important)
 - Categorical variables
 - Binning and discretization
 - Interactions and polynomials
 - Univariate nonlinear transformations
- Automatic feature selection
 - Univariate statistics
 - Model-based feature selection
 - Iterative feature selection
- Utilizing expert knowledge

Categorical Variables

- Task of the adult dataset: a classification task with two classes as income <=50k and >50k
 - Continuous feature: age and hours-per-week
 - Categorical feature: workclass, education, sex and occupation
- Categorical features are hard to be used in regression: $\hat{y} = w[0] * x[0] + w[1] * x[1] + ... + w[p] * x[p] + b > 0$
 - Need to represent our data in some different way

recolution: one net encouring et one out of recouring				
workclass	Government Employee	Private Employee	Self Employed	Self Employed Incorporated
Government Employee	1	0	0	0
Private Employee	0	1	0	0
Self Employed	0	0	1	0
Self Employed Incorporated	0	0	0	1

– A solution: *one-hot-encoding* or *one-out-of-N encoding*

- Can be implemented by pandas or scikit-learn
 - First, we load the data using pandas from a CSV file

import mglearn import pandas as pd

import os

The file has no headers naming the columns, so we pass header=None

and provide the column names explicitly in "names"

adult_path = os.path.join(mglearn.datasets.DATA_PATH, "adult.data")

data = pd.read_csv(adult_path, header=None, index_col=False,

names=['age', 'workclass', 'fnlwgt', 'education', 'education-num',

'marital-status', 'occupation', 'relationship', 'race', 'gender',

'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'])

For illustration purposes, we only select some of the columns

data = data[['age', 'workclass', 'education', 'gender', 'hours-per-week', 'occupation', 'income']]

IPython.display allows nice output formatting within the Jupyter notebook

display(data.head())

 Checking string-encoded categorical data (i.e., you need to do this for all columns in real applications)

print(data.gender.value_counts())
print(data.occupation.value_counts())

• A simple & automatic way: using get_dummies function

print("Original features:\n", list(data.columns), "\n")

data_dummies = pd.get_dummies(data)

print("Features after get_dummies:\n", list(data_dummies.columns))

- Note that the only categorical columns will be processed
- Continuous features age and hours-per-week were not touched
- Categorical features were expanded into one new feature for each possible value

data_dummies.head()

- We then separate the feature columns and the target columns

features = data_dummies.loc[:, 'age':'occupation_ Transport-moving']

Extract NumPy arrays

X = features.values

y = data_dummies['income_ >50K'].values

print("X.shape: {} y.shape: {}".format(X.shape, y.shape))

Note that: the column indexing in pandas includes the end of the range (i.e., above code inclusive of 'occupation_ Transport-moving'), which is different from NumPy array (np.arrange(11)[0:10] doesn't include the entry with index 10).

- Now the data is presented in a way that scikit-learn can work with

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

```
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
```

```
logreg = LogisticRegression()
```

```
logreg.fit(X_train, y_train)
```

print("Test score: {:.2f}".format(logreg.score(X_test, y_test)))

Categorical items encoded as numbers

- It is not always clear whether an integer feature should be treated as continuous or discrete
 - If there is no ordering between semantics treated as discrete
 - Otherwise, like five-star ratings can be treated as continuous
- To illustrate, let's create a synthetic DataFrame object

create a DataFrame with an integer feature and a categorical string feature

demo_df = pd.DataFrame({'Integer Feature': [0, 1, 2, 1], 'Categorical Feature': ['socks', 'fox', 'socks', 'box']})

display(demo_df)

 Using get_dummies will only encode the string features but not the integer feature

display(pd.get_dummies(demo_df))

 But you can explicitly list the columns you want to encode using the columns parameter

demo_df['Integer Feature'] = demo_df['Integer Feature'].astype(str)

display(pd.get_dummies(demo_df, columns=['Integer Feature', 'Categorical Feature']))

•scikit-learn: Categorical variables are processed differently

- Simple way OneHotEncoder class (applied to all input columns)

from sklearn.preprocessing import OneHotEncoder

Setting sparse=false means OneHotEncoder will return a numpy array,

not a sparse matrix

ohe = OneHotEncoder(sparse=False)

print(ohe.fit_transform(demo_df))

print(ohe.get_feature_names())

- Note that: both the string and integer features were transformed
- Better control can be realized by the ColumnTransformer class₆

•To apply linear model to this dataset to predict income

- Applying one-hot-encoding to the categorical variables
- Scale the continuous variables age and hours-per-week
- Different transformers are applied to different columns

from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler

```
ct = ColumnTransformer(
```

[("scaling", StandardScaler(), ['age', 'hours-per-week']), ("onehot", OneHotEncoder(sparse=False), ['workclass', 'education', 'gender', 'occupation'])]) from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split

get all columns apart from income for the features
data_features = data.drop("income", axis=1)

split dataframe and income

X_train, X_test, y_train, y_test = train_test_split(data_features, data.income, random_state=0)

ct.fit(X_train) X_train_trans = ct.transform(X_train) print(X_train_trans.shape)

you can see that we obtained 44 features

•We then build a LogisticRegression model for estimation

logreg = LogisticRegression()
logreg.fit(X_train_trans, y_train)
X_test_trans = ct.transform(X_test)
print("Test score: {:.2f}".format(logreg.score(X_test_trans, y_test)))

- In this case, scaling the data did not make a difference

Binning, Discretization, Linear Models & Trees

- The best way to represent data depends not only on the semantics of the data, but also on the kind of model used
 - Linear models and tree-based models work differently with different feature representations

from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor X, y = mglearn.datasets.make_wave(n_samples=100) line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)

reg = DecisionTreeRegressor(min_samples_split=3).fit(X, y)
plt.plot(line, reg.predict(line), label="decision tree")
reg = LinearRegression().fit(X, y)
plt.plot(line, reg.predict(line), label="linear regression")
plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")

- One way to make linear model more powerful
 - To use binning (also called discretization) on continuous features
 - Partitioning the input range for the feature into a fixed # of bins
 - In the KBinsDiscretizer object, different strategies as
 - Uniform width (making the bin edges equidistant)
 - Quantiles of the data (having smaller bins where there is more data)

from sklearn.preprocessing import KBinsDiscretizer

kb = KBinsDiscretizer(n_bins=10, strategy='uniform')

kb.fit(X)

print("bin edges: \n", kb.bin_edges_)

 What we did here is transform the single continuous input feature in the wave dataset into a one-hot encoded categorical feature

kb = KBinsDiscretizer(n_bins=10, strategy='uniform', encode='onehot-dense')

kb.fit(X)

X_binned = kb.transform(X)

Now we build a new linear regression model and a new decisiontree model on the on-hot-encoded data

line_binned = kb.transform(line)

```
reg = LinearRegression().fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='linear regression binned')
```

```
reg = DecisionTreeRegressor(min_samples_split=3).fit(X_binned, y)
plt.plot(line, reg.predict(line_binned), label='decision tree binned')
plt.plot(X[:, 0], y, 'o', c='k')
plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)
plt.legend(loc="best")
plt.ylabel("Regression output")
plt.xlabel("Input feature")
```


- We can see that the linear model became much more flexible; because it now has a different value for each bin
- The feature representation can be further enriched by interactions and polynomials

Interactions and Polynomials

- Another way to enrich a feature representation
 - The linear model can learn not only offsets but also slopes
 - One way: adding an interaction or product feature that indicates which bin a data point is in and where it lies on the x-axis
- X_product = np.hstack([X, X * X_binned]) print(X_product.shape)

```
reg = LinearRegression().fit(X_product, y)
line_product = np.hstack([line, line * line_binned])
plt.plot(line, reg.predict(line_product), label='linear regression combined')
```

```
plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)
plt.legend(loc="best") plt.ylabel("Regression output") plt.xlabel("Input feature")
plt.plot(X[:, 0], y, 'o', c='k')
```

- Another one is to use polynomials of the original features
 - For a given feature x, we might want to consider x ** 2, x ** 3, x **
 4, and so on
 - This is implemented in the preprocessing module

from sklearn.preprocessing import PolynomialFeatures

include polynomials up to x ** 10:

the default "include_bias=True" adds a feature that's constantly 1

```
poly = PolynomialFeatures(degree=10, include_bias=False)
poly.fit(X)
```

X_poly = poly.transform(X)

Using a degree of 10 yields 10 features:

print("X_poly.shape: {}".format(X_poly.shape))
print("Entries of X:\n{}".format(X[:5]))
print("Entries of X_poly:\n{}".format(X_poly[:5]))

You can obtain the semantics of the features by calling the get_feature_names # method, which provides the exponent for each feature: print("Polynomial feature names:\n{}".format(poly.get_feature_names())) Using polynomial features together with a linear regression model yields the classical model of polynomial regression:

reg = LinearRegression().fit(X_poly, y)

line_poly = poly.transform(line)

```
plt.plot(line, reg.predict(line_poly), label='polynomial linear regression')
```

```
plt.plot(X[:, 0], y, 'o', c='k')
```

plt.ylabel("Regression output") plt.xlabel("Input feature")

plt.legend(loc="best")

 However, polynomials of high degree tend to behave in extreme ways on the boundaries in regions with little data

```
from sklearn.svm import SVR
for gamma in [1, 10]:
svr = SVR(gamma=gamma).fit(X, y)
plt.plot(line, svr.predict(line),
label='SVR gamma={}'.format(gamma))
plt.plot(X[:, 0], y, 'o', c='k')
plt.ylabel("Regression output")
plt.xlabel("Input feature")
plt.legend(loc="best")
```


- Using a more complex model (e.g., a kernel SVM)
 - We are able to learn a similarly complex prediction to the polynomial regression
 - Without an explicit transformation of the features
- A more realistic application of interactions and polynomials
 - The Boston Housing dataset

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

boston = load_boston()

X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=0)

rescale data

```
scaler = MinMaxScaler()
```

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

Now, we extract polynomial features and interactions up to a degree of 2

poly = PolynomialFeatures(degree=2).fit(X_train_scaled)
X_train_poly = poly.transform(X_train_scaled)
X_test_poly = poly.transform(X_test_scaled)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_poly.shape: {}".format(X_train_poly.shape))

print("Polynomial feature names:\n{}".format(poly.get_feature_names()))

- The data originally had 13 features, which were expanded into 105 interaction features
 - Represent all possible interactions + the square of each original features + the original features + the bias
- Now compare with vs. without interactions

from sklearn.linear_model import Ridge

ridge = Ridge().fit(X_train_scaled, y_train)

print("Score without interactions: {:.3f}".format(ridge.score(X_test_scaled, y_test)))

ridge = Ridge().fit(X_train_poly, y_train)

print("Score with interactions: {:.3f}".format(ridge.score(X_test_poly, y_test)))

Different story when using a more complex model like a random forest

from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=100).fit(X_train_scaled, y_train) print("Score without interactions: {:.3f}".format(rf.score(X_test_scaled, y_test))) rf = RandomForestRegressor(n_estimators=100).fit(X_train_poly, y_train) print("Score with interactions: {:.3f}".format(rf.score(X_test_poly, y_test)))

- Even without additional features, the random forest beats the performance of Ridge
- In summary, complicate model may perform better with original features
- Analysis: polynomial features + interaction may add too much bias into the dataset

Univariate Nonlinear Transformations

- Distribution of features is important for the performance
 - Most models work best when each feature (and in regression also the target) is loosely Gaussian distributed
 - Using transformations like log and exp is a hacky but simple and efficient way to achieve this
 - A particular common case is when dealing with integer count
- rnd = np.random.RandomState(0)
- X_org = rnd.normal(size=(1000, 3))
- w = rnd.normal(size=3)

```
X = rnd.poisson(10 * np.exp(X_org))
```

```
y = np.dot(X_org, w)
```

print("Number of feature appearances:\n{}".format(np.bincount(X[:, 0])))

```
bins = np.bincount(X[:, 0])
```

plt.bar(range(len(bins)), bins, color='gray') plt.ylabel("Number of appearances") plt.xlabel("Value")

- This kind of distribution,

many small ones and a few very large ones,

is very common in practice

- Let's try to fit a ridge regression to this model

from sklearn.linear_model import Ridge

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

score = Ridge().fit(X_train, y_train).score(X_test, y_test)

print("Test score: {:.3f}".format(score))

- Applying a logarithmic transformation can help

X_train_log = np.log(X_train + 1) X_test_log = np.log(X_test + 1)

plt.hist(X_train_log[:, 0], bins=25, color='gray')
plt.ylabel("Number of appearances")
plt.xlabel("Value")

- After transformation
 - Distribution is less asymmetric
 - Doesn't have very large outlier any more
- Let's build a ridge model on the new data again

score = Ridge().fit(X_train_log, y_train).score(X_test_log, y_test)
print("Test score: {:.3f}".format(score))

- The score has been significantly improved
- The transformation is irrelevant for tree-based models but might be essential for linear models
- Sometime it is also a good idea to transform the target variable y in regression

Automatic Feature Selection

- Number of features matters a lot
 - Add more features make model more complex, so that increase the chance of overfitting
 - Reduce the number of features leads to simpler models that generalize better
- Three strategies for feature selection:
 - Univariate statistics
 - Model-based selection
 - Iterative selection
- *All are supervised methods

- Univariate Statistics
 - Compute whether there is statistically significant relationship between each feature and the target – i.e., analysis of variance
 - The tests consider only each feature individually
 - A feature can be discarded if it is only informative when combined with another feature
 - Use univariate feature selection in scikit-learn
 - 1. Choose a test
 - f_classif (the default) for classification
 - f_regression for regression
 - 2. Select a method to discard features based on the p-values determined
 - Discard features with too high a p-value (they are unlikely to be related to the target)
 - Method I: SelectKBest (select a fixed number k of features)
 - Method II: SelectPercentile (select a fixed percentage of features)

from sklearn.datasets import load_breast_cancer from sklearn.feature_selection import SelectPercentile from sklearn.model_selection import train_test_split cancer = load_breast_cancer()

get deterministic random numbers

rng = np.random.RandomState(42)

noise = rng.normal(size=(len(cancer.data), 50))

add noise features to the data

the first 30 features are from the dataset, the next 50 are noise

X_w_noise = np.hstack([cancer.data, noise])

X_train, X_test, y_train, y_test = train_test_split(

X_w_noise, cancer.target, random_state=0, test_size=.5)

use f_classif (the default) and SelectPercentile to select 50% of features

```
select = SelectPercentile(percentile=50)
```

select.fit(X_train, y_train)

transform training set

X_train_selected = select.transform(X_train) print("X_train.shape: {}".format(X_train.shape)) print("X_train_selected.shape: {}".format(X_train_selected.shape))

- We can display the selected features

mask = select.get_support()

print(mask)

visualize the mask -- black is True, white is False

```
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
```

```
plt.xlabel("Sample index")
```

plt.yticks(())

Then we detect the performance of selected features

from sklearn.linear_model import LogisticRegression

```
# transform test data
```

```
X_test_selected = select.transform(X_test)
Ir = LogisticRegression()
Ir.fit(X_train, y_train)
print("Score with all features: {:.3f}".format(Ir.score(X_test, y_test)))
Ir.fit(X_train_selected, y_train)
print("Score with only selected features: {:.3f}".format(Ir.score(X_test_selected, y_test)))
```

- In this case, removing the noise features improve performance
- Outcome on real data are usually mixed

- Model-Based Feature Selection
 - Use a supervised machine learning model to judge the importance of each feature
 - Keep only the most important ones
 - The supervised model used for feature selection does not need to be the same model used for the final supervised learning
 - The feature_importances_ attribute of decision-tree based models
 - The coefficients of linear models0

from sklearn.feature_selection import SelectFromModel from sklearn.ensemble import RandomForestClassifier

select = SelectFromModel(

RandomForestClassifier(n_estimators=100, random_state=42), threshold="median")

 We use a random forest classifier with 100 trees - a quite complex model and much more powerful than using univariate tests

- Let's have a look at the features that were selected

select.fit(X_train, y_train)
X_train_l1 = select.transform(X_train)
print("X_train.shape: {}".format(X_train.shape))
print("X_train_l1.shape: {}".format(X_train_l1.shape))

```
mask = select.get_support()
# visualize the mask -- black is True, white is False
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
plt.xlabel("Sample index")
plt.yticks(())
```

- Again, we only select 40 features.
- See the performance below

X_test_I1 = select.transform(X_test)

score = LogisticRegression().fit(X_train_I1, y_train).score(X_test_I1, y_test)
print("Test score: {:.3f}".format(score))

With the better feature selection, we also gained some improvements here

- Iterative Feature Selection
 - A series of models are built, with varying numbers of features
 - Two basic methods: incrementally 1) add or 2) remove
 - Much more computationally expensive
 - We use *recursive feature elimination* (RFE) here remove-based
 - The model used for selection needs to provide some way to determine feature importance

from sklearn.feature_selection import RFE

```
select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=40)
select.fit(X_train, y_train)
```

visualize the selected features:

```
mask = select.get_support()
```

```
plt.matshow(mask.reshape(1, -1), cmap='gray_r')
```

```
plt.xlabel("Sample index")
```

plt.yticks(())

- The feature selection got better results, but one feature was still missed
- Let's try the accuracy of logistic regression model below

X_train_rfe = select.transform(X_train)

X_test_rfe = select.transform(X_test)

score = LogisticRegression().fit(X_train_rfe, y_train).score(X_test_rfe, y_test)

print("Test score: {:.3f}".format(score))

Comparing the score of the random forest used inside RFE

print("Test score: {:.3f}".format(select.score(X_test, y_test)))

- Reflection:
 - Model complexity vs. feature selection
 - Which is more effective?
 - Which is more efficient in computing time vs. memory?
- •How about expert knowledge?

Utilizing Expert Knowledge

- Feature engineering is often an important place to use expert knowledge for a particular application
 - For example the case below using "common sense"
 - Task: predicting bicycle rentals in front of Andreas's house
 - Citi Bike in New York operates a network of bicycle rental stations
 - For a given time and day how many people will rent a bike in front of Andreas's house

citibike = mglearn.datasets.load_citibike()

print("Citi Bike data:\n{}".format(citibike.head()))

The following example shows a visualization of the rental frequencies for the whole month

```
plt.figure(figsize=(10, 3))
```

xticks = pd.date_range(start=citibike.index.min(), end=citibike.index.max(), freq='D')

plt.xticks(xticks, xticks.strftime("%a %m-%d"), rotation=90, ha="left")

plt.plot(citibike, linewidth=1) plt.xlabel("Date") plt.ylabel("Rentals")

- We want to *learn from the past* and *predict for the future*
 - Input features: the date and time
 - A common way using POSIX time (the number of seconds since January 1970 00:00:00 (aka the beginning of Unix time)
 - Output: the number of rentals in the following three hours
- We first try to use this single integer feature as our data representation
- # extract the target values (number of rentals)
- y = citibike.values
- # convert to POSIX time by dividing by 10**9
- X = citibike.index.astype("int64").values.reshape(-1, 1) // 10**9
- We then define a function to
 - split the data into training and test sets,
 - build the model and
 - visualize the result

use the first 184 data points for training, and the rest for testing $n_{train} = 184$

```
# function to evaluate and plot a regressor on a given feature set
def eval_on_features(features, target, regressor):
    # split the given features into a training and a test set
    X_train, X_test = features[:n_train], features[n_train:]
    # also split the target array
    y_train, y_test = target[:n_train], target[n_train:]
```

```
regressor.fit(X_train, y_train)
print("Test-set R^2: {:.2f}".format(regressor.score(X_test, y_test)))
y_pred = regressor.predict(X_test) y_pred_train = regressor.predict(X_train)
```

```
plt.figure(figsize=(10, 3))

plt.xticks(range(0, len(X), 8), xticks.strftime("%a %m-%d"), rotation=90, ha="left")

plt.plot(range(n_train), y_train, label="train")

plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test")

plt.plot(range(n_train), y_pred_train, '--', label="prediction train")

plt.plot(range(n_train, len(y_test) + n_train), y_pred, '--', label="prediction test")

plt.legend(loc=(1.01, 0)) plt.xlabel("Date") plt.ylabel("Rentals")
```

- We try the random forests as requiring very little preprocessing

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=100, random_state=0)

eval_on_features(X, y, regressor)

- The predictions on the training set are quite good
- However, for the test set, a constant line is predicted
- What happened?
 - A combination of our feature and the random forest
 - The value of the POSIX time feature for the test set is outside the range of the feature values in the training set
- Solution (where our "expert knowledge" comes in):
 - The time of the day and the day of the week (Two features)
 - First, let's use only the hour of the day

X_hour = citibike.index.hour.values.reshape(-1, 1) eval on_features(X_hour, y, regressor)

• Now, let's also add the day of the week

X_hour_week = np.hstack([citibike.index.dayofweek.values.reshape(-1, 1), citibike.index.hour.values.reshape(-1, 1)]) eval_on_features(X_hour_week, y, regressor)

- In summary, we now have a model that captures the periodic behavior by considering the day of week and time of day
- Let's try to test a simpler model, LinearRegression

from sklearn.linear_model import LinearRegression

eval_on_features(X_hour_week, y, LinearRegression())

- LinearRegression works much worse, and the periodic pattern looks odd
- Reason: we encoded day of week and time of day using integers, which are interpreted as continuous variables
- Try to improve by capture this by interpreting the integers as categorical variables (i.e., using <u>OneHotEncoder</u>)

enc = OneHotEncoder()

X_hour_week_onehot = enc.fit_transform(X_hour_week).toarray()

- eval_on_features(X_hour_week_onehot, y, Ridge())
 - This gives us a much better match than the continuous feature encoding

Performance can be further improved by using interacted features

poly_transformer = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
X_hour_week_onehot_poly = poly_transformer.fit_transform(X_hour_week_onehot)
Ir = Ridge()

eval_on_features(X_hour_week_onehot_poly, y, lr)

- This transformation finally yields a model that performs similarly well to the random forest
- A big benefit of this model is that: it is very clear what is learned one coefficient for each day and time

```
hour = ["%02d:00" % i for i in range(0, 24, 3)]
day = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]
features = day + hour
```

```
features_poly = poly_transformer.get_feature_names(features)
features_nonzero = np.array(features_poly)[lr.coef_ != 0]
coef_nonzero = lr.coef_[lr.coef_ != 0]
```

- We can visualize the coefficients learned by the linear model

plt.figure(figsize=(15, 2))

plt.plot(coef_nonzero, 'o')

plt.xticks(np.arange(len(coef_nonzero)), features_nonzero, rotation=90)

plt.xlabel("Feature name")

```
plt.ylabel("Feature magnitude")
```


- In summary, important for:
 - Representing data in a way that is suitable for ML algorithm
 - E.g., one-hot-encoding categorical variables
 - Engineering new features and Utilizing expert knowledge
 - Linear model might greatly benefit from binning and adding polynomials and interactions