
L6 – Representing Data and Engineering 

Features

• Representing your data in the right way (Very Important)

– Categorical variables

– Binning and discretization

– Interactions and polynomials

– Univariate nonlinear transformations

• Automatic feature selection

– Univariate statistics

– Model-based feature selection

– Iterative feature selection

• Utilizing expert knowledge
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Categorical Variables

• Task of the adult dataset: a classification task with two 

classes as income <=50k and >50k

– Continuous feature: age and hours-per-week

– Categorical feature: workclass, education, sex and occupation

• Categorical features are hard to be used in regression:

– Need to represent our data in some different way

– A solution: one-hot-encoding or one-out-of-N encoding
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• Can be implemented by pandas or scikit-learn

– First, we load the data using pandas from a CSV file
import mglearn import pandas as pd

import os

# The file has no headers naming the columns, so we pass header=None

# and provide the column names explicitly in "names"

adult_path = os.path.join(mglearn.datasets.DATA_PATH, "adult.data")

data = pd.read_csv(adult_path, header=None, index_col=False, 

names=['age', 'workclass', 'fnlwgt', 'education', 'education-num',

'marital-status', 'occupation', 'relationship', 'race', 'gender',

'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'income'])

# For illustration purposes, we only select some of the columns

data = data[['age', 'workclass', 'education', 'gender', 'hours-per-week', 'occupation', 'income']]

# IPython.display allows nice output formatting within the Jupyter notebook

display(data.head())

– Checking string-encoded categorical data (i.e., you need to do 

this for all columns in real applications)
print(data.gender.value_counts())

print(data.occupation.value_counts()) 3



• A simple & automatic way: using get_dummies function 
print("Original features:\n", list(data.columns), "\n")

data_dummies = pd.get_dummies(data)

print("Features after get_dummies:\n", list(data_dummies.columns))

– Note that the only categorical columns will be processed

– Continuous features age and hours-per-week were not touched

– Categorical features were expanded into one new feature for 

each possible value
data_dummies.head()

– We then separate the feature columns and the target columns
features = data_dummies.loc[:, 'age':'occupation_ Transport-moving']

# Extract NumPy arrays

X = features.values

y = data_dummies['income_ >50K'].values

print("X.shape: {} y.shape: {}".format(X.shape, y.shape))

# Note that: the column indexing in pandas includes the end of the range (i.e., above code inclusive of 

‘occupation_ Transport-moving’), which is different from NumPy array (np.arrange(11)[0:10] doesn’t 

include the entry with index 10). 4



– Now the data is presented in a way that scikit-learn can work with
from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

logreg = LogisticRegression()

logreg.fit(X_train, y_train)

print("Test score: {:.2f}".format(logreg.score(X_test, y_test)))

•Categorical items encoded as numbers

– It is not always clear whether an integer feature should be treated 

as continuous or discrete

• If there is no ordering between semantics – treated as discrete

• Otherwise, like five-star ratings – can be treated as continuous

– To illustrate, let’s create a synthetic DataFrame object 
# create a DataFrame with an integer feature and a categorical string feature

demo_df = pd.DataFrame({'Integer Feature': [0, 1, 2, 1],

'Categorical Feature': ['socks', 'fox', 'socks', 'box']})

display(demo_df)
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– Using get_dummies will only encode the string features but not 

the integer feature
display(pd.get_dummies(demo_df))

– But you can explicitly list the columns you want to encode using 

the columns parameter
demo_df['Integer Feature'] = demo_df['Integer Feature'].astype(str)

display(pd.get_dummies(demo_df, columns=['Integer Feature', 'Categorical Feature']))

•scikit-learn: Categorical variables are processed differently

– Simple way OneHotEncoder class (applied to all input columns)
from sklearn.preprocessing import OneHotEncoder

# Setting sparse=false means OneHotEncoder will return a numpy array, 

# not a sparse matrix

ohe = OneHotEncoder(sparse=False)

print(ohe.fit_transform(demo_df))

print(ohe.get_feature_names())

– Note that: both the string and integer features were transformed

– Better control can be realized by the ColumnTransformer class
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display(data.head())

•To apply linear model to this dataset to predict income

– Applying one-hot-encoding to the categorical variables

– Scale the continuous variables age and hours-per-week

– Different transformers are applied to different columns
from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import StandardScaler

ct = ColumnTransformer(    

[("scaling", StandardScaler(), ['age', 'hours-per-week']), 

("onehot", OneHotEncoder(sparse=False), 

['workclass', 'education', 'gender', 'occupation']) ])

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

# get all columns apart from income for the features

data_features = data.drop("income", axis=1)
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# split dataframe and income

X_train, X_test, y_train, y_test = train_test_split(data_features, data.income, random_state=0)

ct.fit(X_train)

X_train_trans = ct.transform(X_train)

print(X_train_trans.shape)

# you can see that we obtained 44 features

•We then build a LogisticRegression model for estimation
logreg = LogisticRegression()

logreg.fit(X_train_trans, y_train)

X_test_trans = ct.transform(X_test)

print("Test score: {:.2f}".format(logreg.score(X_test_trans, y_test)))

– In this case, scaling the data did not make a difference
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Binning, Discretization, Linear Models & Trees

• The best way to represent data depends not only on the 

semantics of the data, but also on the kind of model used

– Linear models and tree-based models work differently with 

different feature representations
from sklearn.linear_model import LinearRegression

from sklearn.tree import DecisionTreeRegressor

X, y = mglearn.datasets.make_wave(n_samples=100)

line = np.linspace(-3, 3, 1000, endpoint=False).reshape(-1, 1)

reg = DecisionTreeRegressor(min_samples_split=3).fit(X, y)

plt.plot(line, reg.predict(line), label="decision tree")

reg = LinearRegression().fit(X, y)

plt.plot(line, reg.predict(line), label="linear regression")

plt.plot(X[:, 0], y, 'o', c='k') plt.ylabel("Regression output")

plt.xlabel("Input feature") plt.legend(loc="best") 9



• One way to make linear model more powerful

– To use binning (also called discretization) on continuous features

– Partitioning the input range for the feature into a fixed # of bins

– In the KBinsDiscretizer object, different strategies as

• Uniform width (making the bin edges equidistant)

• Quantiles of the data (having smaller bins where there is more data)

from sklearn.preprocessing import KBinsDiscretizer

kb = KBinsDiscretizer(n_bins=10, strategy='uniform')

kb.fit(X)

print("bin edges: \n", kb.bin_edges_)

– What we did here is transform the single continuous input feature 

in the wave dataset into a one-hot encoded categorical feature
kb = KBinsDiscretizer(n_bins=10, strategy='uniform', encode='onehot-dense')

kb.fit(X)

X_binned = kb.transform(X)
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– Now we build a new linear regression model and a new decision-

tree model on the on-hot-encoded data
line_binned = kb.transform(line)

reg = LinearRegression().fit(X_binned, y)

plt.plot(line, reg.predict(line_binned), label='linear regression binned')

reg = DecisionTreeRegressor(min_samples_split=3).fit(X_binned, y)

plt.plot(line, reg.predict(line_binned), label='decision tree binned')

plt.plot(X[:, 0], y, 'o', c='k')

plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)

plt.legend(loc="best")

plt.ylabel("Regression output")

plt.xlabel("Input feature")

– We can see that the linear model became much more flexible; 

because it now has a different value for each bin

– The feature representation can be further enriched by interactions

and polynomials
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Interactions and Polynomials

• Another way to enrich a feature representation

– The linear model can learn not only offsets but also slopes

– One way: adding an interaction or product feature that indicates 

which bin a data point is in and where it lies on the x-axis
X_product = np.hstack([X, X * X_binned])

print(X_product.shape)

reg = LinearRegression().fit(X_product, y)

line_product = np.hstack([line, line * line_binned])

plt.plot(line, reg.predict(line_product), label='linear regression combined')

plt.vlines(kb.bin_edges_[0], -3, 3, linewidth=1, alpha=.2)

plt.legend(loc="best") plt.ylabel("Regression output") plt.xlabel("Input feature")

plt.plot(X[:, 0], y, 'o', c='k')

12



• Another one is to use polynomials of the original features

– For a given feature x, we might want to consider x ** 2, x ** 3, x ** 

4, and so on

– This is implemented in the preprocessing module
from sklearn.preprocessing import PolynomialFeatures

# include polynomials up to x ** 10:

# the default "include_bias=True" adds a feature that's constantly 1

poly = PolynomialFeatures(degree=10, include_bias=False)

poly.fit(X)

X_poly = poly.transform(X)

# Using a degree of 10 yields 10 features:

print("X_poly.shape: {}".format(X_poly.shape))

print("Entries of X:\n{}".format(X[:5]))

print("Entries of X_poly:\n{}".format(X_poly[:5]))

# You can obtain the semantics of the features by calling the get_feature_names

# method, which provides the exponent for each feature:

print("Polynomial feature names:\n{}".format(poly.get_feature_names())) 13



– Using polynomial features together with a linear regression model 

yields the classical model of polynomial regression: 
reg = LinearRegression().fit(X_poly, y)

line_poly = poly.transform(line)

plt.plot(line, reg.predict(line_poly), label='polynomial linear regression')

plt.plot(X[:, 0], y, 'o', c='k')

plt.ylabel("Regression output") plt.xlabel("Input feature")

plt.legend(loc="best")

– However, polynomials of high degree tend to behave in extreme 

ways on the boundaries in regions with little data
from sklearn.svm import SVR

for gamma in [1, 10]:

svr = SVR(gamma=gamma).fit(X, y)

plt.plot(line, svr.predict(line), 

label='SVR gamma={}'.format(gamma))

plt.plot(X[:, 0], y, 'o', c='k')

plt.ylabel("Regression output")

plt.xlabel("Input feature")

plt.legend(loc="best")
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• Using a more complex model (e.g., a kernel SVM)

– We are able to learn a similarly complex prediction to the 

polynomial regression

– Without an explicit transformation of the features

• A more realistic application of interactions and polynomials

– The Boston Housing dataset
from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import MinMaxScaler

boston = load_boston()

X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=0)

# rescale data

scaler = MinMaxScaler()

X_train_scaled = scaler.fit_transform(X_train)

X_test_scaled = scaler.transform(X_test)

– Now, we extract polynomial features and interactions up to a 

degree of 2 15



poly = PolynomialFeatures(degree=2).fit(X_train_scaled)

X_train_poly = poly.transform(X_train_scaled)

X_test_poly = poly.transform(X_test_scaled)

print("X_train.shape: {}".format(X_train.shape))

print("X_train_poly.shape: {}".format(X_train_poly.shape))

print("Polynomial feature names:\n{}".format(poly.get_feature_names()))

– The data originally had 13 features, which were expanded into 

105 interaction features

• Represent all possible interactions + the square of each original features + 

the original features + the bias

– Now compare with vs. without interactions
from sklearn.linear_model import Ridge

ridge = Ridge().fit(X_train_scaled, y_train)

print("Score without interactions: {:.3f}".format(ridge.score(X_test_scaled, y_test)))

ridge = Ridge().fit(X_train_poly, y_train)

print("Score with interactions: {:.3f}".format(ridge.score(X_test_poly, y_test)))
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• Different story when using a more complex model like a 

random forest
from sklearn.ensemble import RandomForestRegressor

rf = RandomForestRegressor(n_estimators=100).fit(X_train_scaled, y_train)

print("Score without interactions: {:.3f}".format(rf.score(X_test_scaled, y_test)))

rf = RandomForestRegressor(n_estimators=100).fit(X_train_poly, y_train)

print("Score with interactions: {:.3f}".format(rf.score(X_test_poly, y_test)))

– Even without additional features, the random forest beats the 

performance of Ridge

– In summary, complicate model may perform better with original 

features

– Analysis: polynomial features + interaction may add too much 

bias into the dataset
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Univariate Nonlinear Transformations

• Distribution of features is important for the performance

– Most models work best when each feature (and in regression 

also the target) is loosely Gaussian distributed

– Using transformations like log and exp is a hacky but simple and 

efficient way to achieve this

– A particular common case is when dealing with integer count
rnd = np.random.RandomState(0)

X_org = rnd.normal(size=(1000, 3))

w = rnd.normal(size=3)

X = rnd.poisson(10 * np.exp(X_org))

y = np.dot(X_org, w) 

print("Number of feature appearances:\n{}".format(np.bincount(X[:, 0])))
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bins = np.bincount(X[:, 0])

plt.bar(range(len(bins)), bins, color=‘gray')

plt.ylabel("Number of appearances")

plt.xlabel("Value")

– This kind of distribution, 

many small ones and a few very large ones, 

is very common in practice

– Let’s try to fit a ridge regression to this model
from sklearn.linear_model import Ridge

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

score = Ridge().fit(X_train, y_train).score(X_test, y_test)

print("Test score: {:.3f}".format(score))

– Applying a logarithmic transformation can help
X_train_log = np.log(X_train + 1)

X_test_log = np.log(X_test + 1)
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plt.hist(X_train_log[:, 0], bins=25, color='gray')

plt.ylabel("Number of appearances")

plt.xlabel("Value")

– After transformation

• Distribution is less asymmetric

• Doesn’t have very large outlier any more

– Let’s build a ridge model on the new data again
score = Ridge().fit(X_train_log, y_train).score(X_test_log, y_test)

print("Test score: {:.3f}".format(score))

– The score has been significantly improved

– The transformation is irrelevant for tree-based models but might 

be essential for linear models

– Sometime it is also a good idea to transform the target variable y 

in regression
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Automatic Feature Selection

• Number of features matters a lot

– Add more features make model more complex, so that increase 

the chance of overfitting

– Reduce the number of features leads to simpler models that 

generalize better

• Three strategies for feature selection:

– Univariate statistics

– Model-based selection

– Iterative selection

*All are supervised methods
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• Univariate Statistics

– Compute whether there is statistically significant relationship 

between each feature and the target – i.e., analysis of variance

• The tests consider only each feature individually

• A feature can be discarded if it is only informative when combined with 

another feature

– Use univariate feature selection in scikit-learn

1. Choose a test 

• f_classif (the default) for classification

• f_regression for regression

2. Select a method to discard features based on the p-values determined

• Discard features with too high a p-value (they are unlikely to be related to 

the target)

• Method I: SelectKBest (select a fixed number k of features)

• Method II: SelectPercentile (select a fixed percentage of features)
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from sklearn.datasets import load_breast_cancer

from sklearn.feature_selection import SelectPercentile

from sklearn.model_selection import train_test_split

cancer = load_breast_cancer()

# get deterministic random numbers

rng = np.random.RandomState(42)

noise = rng.normal(size=(len(cancer.data), 50))

# add noise features to the data

# the first 30 features are from the dataset, the next 50 are noise

X_w_noise = np.hstack([cancer.data, noise])

X_train, X_test, y_train, y_test = train_test_split(

X_w_noise, cancer.target, random_state=0, test_size=.5)

# use f_classif (the default) and SelectPercentile to select 50% of features

select = SelectPercentile(percentile=50)

select.fit(X_train, y_train)

# transform training set

X_train_selected = select.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))

print("X_train_selected.shape: {}".format(X_train_selected.shape))
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– We can display the selected features
mask = select.get_support()

print(mask)

# visualize the mask -- black is True, white is False

plt.matshow(mask.reshape(1, -1), cmap='gray_r')

plt.xlabel("Sample index")

plt.yticks(())

– Then we detect the performance of selected features
from sklearn.linear_model import LogisticRegression

# transform test data

X_test_selected = select.transform(X_test)

lr = LogisticRegression()

lr.fit(X_train, y_train)

print("Score with all features: {:.3f}".format(lr.score(X_test, y_test)))

lr.fit(X_train_selected, y_train)

print("Score with only selected features: {:.3f}".format(lr.score(X_test_selected, y_test)))

– In this case, removing the noise features improve performance

– Outcome on real data are usually mixed 24



• Model-Based Feature Selection

– Use a supervised machine learning model to judge the 

importance of each feature

– Keep only the most important ones

– The supervised model used for feature selection does not need to 

be the same model used for the final supervised learning

• The feature_importances_ attribute of decision-tree based models

• The coefficients of linear models0

from sklearn.feature_selection import SelectFromModel

from sklearn.ensemble import RandomForestClassifier

select = SelectFromModel(

RandomForestClassifier(n_estimators=100, random_state=42), threshold="median")

– We use a random forest classifier with 100 trees - a quite 

complex model and much more powerful than using univariate

tests
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– Let’s have a look at the features that were selected
select.fit(X_train, y_train)

X_train_l1 = select.transform(X_train)

print("X_train.shape: {}".format(X_train.shape))

print("X_train_l1.shape: {}".format(X_train_l1.shape))

mask = select.get_support()

# visualize the mask -- black is True, white is False

plt.matshow(mask.reshape(1, -1), cmap='gray_r')

plt.xlabel("Sample index")

plt.yticks(())

– Again, we only select 40 features. 

– See the performance below
X_test_l1 = select.transform(X_test)

score = LogisticRegression().fit(X_train_l1, y_train).score(X_test_l1, y_test)

print("Test score: {:.3f}".format(score))

– With the better feature selection, we also gained some 

improvements here
26



• Iterative Feature Selection

– A series of models are built, with varying numbers of features

– Two basic methods: incrementally 1) add or 2) remove

– Much more computationally expensive 

– We use recursive feature elimination (RFE) here – remove-based

• The model used for selection needs to provide some way to determine 

feature importance

from sklearn.feature_selection import RFE

select = RFE(RandomForestClassifier(n_estimators=100, random_state=42), n_features_to_select=40)

select.fit(X_train, y_train)

# visualize the selected features:

mask = select.get_support()

plt.matshow(mask.reshape(1, -1), cmap='gray_r')

plt.xlabel("Sample index")

plt.yticks(())

• The feature selection got better results, but one feature was still missed

• Let’s try the accuracy of logistic regression model below
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X_train_rfe = select.transform(X_train)

X_test_rfe = select.transform(X_test)

score = LogisticRegression().fit(X_train_rfe, y_train).score(X_test_rfe, y_test)

print("Test score: {:.3f}".format(score))

– Comparing the score of the random forest used inside RFE
print("Test score: {:.3f}".format(select.score(X_test, y_test)))

– Reflection:

• Model complexity vs. feature selection

• Which is more effective?

• Which is more efficient in computing time vs. memory? 

•How about expert knowledge?
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Utilizing Expert Knowledge

• Feature engineering is often an important place to use 

expert knowledge for a particular application

– For example the case below using “common sense”

– Task: predicting bicycle rentals in front of Andreas’s house

• Citi Bike in New York operates a network of bicycle rental stations

• For a given time and day how many people will rent a bike in front of 

Andreas’s house

citibike = mglearn.datasets.load_citibike()

print("Citi Bike data:\n{}".format(citibike.head()))

# The following example shows a visualization of the rental frequencies for the whole month

plt.figure(figsize=(10, 3))

xticks = pd.date_range(start=citibike.index.min(), end=citibike.index.max(), freq='D')

plt.xticks(xticks, xticks.strftime("%a %m-%d"), rotation=90, ha="left")

plt.plot(citibike, linewidth=1) plt.xlabel("Date”) plt.ylabel("Rentals") 29



• We want to learn from the past and predict for the future

– Input features: the date and time

• A common way – using POSIX time (the number of seconds since January 

1970 00:00:00 (aka the beginning of Unix time)

– Output: the number of rentals in the following three hours

• We first try to use this single integer feature as our data 

representation
# extract the target values (number of rentals)

y = citibike.values

# convert to POSIX time by dividing by 10**9

X = citibike.index.astype("int64").values.reshape(-1, 1) // 10**9

• We then define a function to 

– split the data into training and test sets, 

– build the model and 

– visualize the result
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# use the first 184 data points for training, and the rest for testing

n_train = 184

# function to evaluate and plot a regressor on a given feature set

def eval_on_features(features, target, regressor):

# split the given features into a training and a test set

X_train, X_test = features[:n_train], features[n_train:]

# also split the target array

y_train, y_test = target[:n_train], target[n_train:]

regressor.fit(X_train, y_train)

print("Test-set R^2: {:.2f}".format(regressor.score(X_test, y_test)))

y_pred = regressor.predict(X_test) y_pred_train = regressor.predict(X_train)

plt.figure(figsize=(10, 3))

plt.xticks(range(0, len(X), 8), xticks.strftime("%a %m-%d"), rotation=90, ha="left")

plt.plot(range(n_train), y_train, label="train")

plt.plot(range(n_train, len(y_test) + n_train), y_test, '-', label="test")

plt.plot(range(n_train), y_pred_train, '--', label="prediction train")

plt.plot(range(n_train, len(y_test) + n_train), y_pred, '--', label="prediction test")

plt.legend(loc=(1.01, 0)) plt.xlabel("Date") plt.ylabel("Rentals") 31



– We try the random forests as requiring very little preprocessing
from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=100, random_state=0)

eval_on_features(X, y, regressor)

• The predictions on the training set are quite good

• However, for the test set, a constant line is predicted

– What happened?

• A combination of our feature and the random forest

• The value of the POSIX time feature for the test set is outside the range of 

the feature values in the training set

– Solution (where our “expert knowledge” comes in): 

• The time of the day and the day of the week (Two features)

• First, let’s use only the hour of the day
X_hour = citibike.index.hour.values.reshape(-1, 1)

eval_on_features(X_hour, y, regressor)

• Now, let’s also add the day of the week
X_hour_week = np.hstack([citibike.index.dayofweek.values.reshape(-1, 1), citibike.index.hour.values.reshape(-1, 1)])

eval_on_features(X_hour_week, y, regressor)
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– In summary, we now have a model that captures the periodic 

behavior by considering the day of week and time of day

– Let’s try to test a simpler model, LinearRegression
from sklearn.linear_model import LinearRegression

eval_on_features(X_hour_week, y, LinearRegression())

– LinearRegression works much worse, and the periodic pattern 

looks odd

– Reason: we encoded day of week and time of day using integers, 

which are interpreted as continuous variables

– Try to improve by capture this by interpreting the integers as 

categorical variables (i.e., using OneHotEncoder)
enc = OneHotEncoder()

X_hour_week_onehot = enc.fit_transform(X_hour_week).toarray()

eval_on_features(X_hour_week_onehot, y, Ridge())

– This gives us a much better match than the continuous feature 

encoding
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– Performance can be further improved by using interacted

features
poly_transformer = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)

X_hour_week_onehot_poly = poly_transformer.fit_transform(X_hour_week_onehot)

lr = Ridge()

eval_on_features(X_hour_week_onehot_poly, y, lr)

– This transformation finally yields a model that performs similarly 

well to the random forest

– A big benefit of this model is that: it is very clear what is learned –

one coefficient for each day and time
hour = ["%02d:00" % i for i in range(0, 24, 3)]

day = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]

features = day + hour

features_poly = poly_transformer.get_feature_names(features)

features_nonzero = np.array(features_poly)[lr.coef_ != 0]

coef_nonzero = lr.coef_[lr.coef_ != 0]
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– We can visualize the coefficients learned by the linear model
plt.figure(figsize=(15, 2))

plt.plot(coef_nonzero, 'o')

plt.xticks(np.arange(len(coef_nonzero)), features_nonzero, rotation=90)

plt.xlabel("Feature name")

plt.ylabel("Feature magnitude")

• In summary, important for:

– Representing data in a way that is suitable for ML algorithm

• E.g., one-hot-encoding categorical variables

– Engineering new features and Utilizing expert knowledge

• Linear model might greatly benefit from binning and adding polynomials 

and interactions 35


