L8 — Working with Text Data

 Text as a third kind of feature rather than:
— Continuous features that describe a quantity
— Categorical features that are items from a list

 Text data is usually represented as strings, made up of
characters — clearly very different from the numeric features

» Many applications:
— Classifying an email message as spam or a legitimate email

— In customer service, we often want to find out if a message is a
complaint or an inquiry



Types of Data Represented as Strings

* Four different kinds of string data:
— Categorical data
— Free strings that can be semantically mapped to categories

— Structured string data
 Manually entered values do not correspond to fixed categories
« But still have some underlying structure, like addresses, names of places
or people, dates, telephone numbers, or other identifiers
— Text data (e.g., tweets, chat logs, hotel reviews & Wikipedia etc.)
* Freeform text data that consists of phrases or sentences
* For simplicity's sake, let's assume all are in one language: English
* In the content of text analysis, the dataset is often called the corpus
» Each data point represented as a single text, is called a document



Example Application: Sentiment Analysis of
Movie Reviews

lwget -nc http://ai.stanford.edu/~amaas/data/sentiment/aclimdb_v1.tar.gz -P data
ltar xzf data/aclimdb_v1.tar.gz --skip-old-files -C data

from sklearn.datasets import load_files
import numpy as np

reviews_train = load_files("data/aclimdb/train/")
index = np.where(reviews_train.target!=2)[0]
text_train = [reviews_train.datal[i] for i in index]
y_train = [reviews_train.target[i] for i in index]

text_train = [doc.replace(b"<br />", b" ") for doc in text_train]

print("type of text_train: {}".format(type(text_train)))

print("length of text_train: {}".format(len(text_train))) print("text_train[6]:{}\n".format(text_train[6]))
np.unique(y_train)

print("Samples per class (training): {}".format(np.bincount(y_train))) 3



reviews_test = load_files("data/aclimdb/test/")

text_test, y_test = reviews_test.data, reviews_test.target
print("Number of documents in test data: {}".format(len(text_test)))
print("Samples per class (test): {}".format(np.bincount(y_test)))

text_test = [doc.replace(b"<br />", b" ") for doc in text_test]

*The task we want to solve is as follows:

— Given a review, we want to assign the label “positive” or
‘negative” based on the text content of the review

— This is a standard binary classification problem

— Difficulty: the text data is not in a format that a machine learning
model can handle.

— Solution: we need to convert the string representation of the text
Into a numeric representation that we can apply machine learning

algorithms to. \



Representing Text Data as a Bag of Words

* One of the most simple but effective & commonly used way
— Discard most of the structure of the input text
— Only count how often each word appears in each text

* Three steps for computing the bag-of-words representation:

1. Tokenization: Split each document into the words that appear
in it (called tokens);

2. Vocabulary building: Collect a vocabulary of all words that
appear in any of the documents and sort them in alphabetical;

3. Encoding: For each document, count how often each of the
words in the vocabulary appear in this document.

 Qutput is one vector of word counts for each document
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* Applying Bag-of-Words to a Toy Dataset

— The bag-of-words representation is implemented in
CountVectorizer, which is a transformer

— Let's apply it to a toy dataset, consisting of two samples

bards_words =["The fool doth think he is wise,",
"but the wise man knows himself to be a fool"]

from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
vect fit(bards_words)



— Fitting the CountVectorizer consists of the tokenization of the
training data and building of the vocabulary

— We can access the vocabulary by the vocabulary _ attribute

print("Vocabulary size: {}".format(len(vect.vocabulary_)))
print("Vocabulary content:\n {}".format(vect.vocabulary_))

— To create the bag-of-words representation, we call the transform

bag_of_words = vect.transform(bards_words)
print("bag_of_words: {}".format(repr(bag_of_words)))

— The bag-of-words representation is stored in a SciPy sparse
matrix that only stores the entries that are nonzero

— To print it to check, we convert it to a “dense” NumPy array,

where the number indicates the word counts for each word
print("Dense representation of bag_of words:\n{}".format(bag_of_words.toarray()))



Bag-of-Words for Movie Reviews

« Now we apply the method to the movie reviews

— Construct the bag-of-words vector

vect = CountVectorizer().fit(text_train)
X_train = vect.transform(text_train)
print("X_train:\n{}".format(repr(X_train)))

— Let's look at the vocabulary in a bit more detail

feature_names = vect.get_feature_names|()

print("Number of features: {}".format(len(feature_names)))

print("First 20 features:\n{}".format(feature_names[:20]))

print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))
print("Every 2000th feature:\n{}".format(feature_names|[::2000]))

— Surprisely, the first 10 entries in the vocabulary are all numbers

— Weeding out the meaningful from the nonmeaningful “words” is
sometimes tricky



* Before we try to improve our feature extraction, let's obtain a
quantitative measure of performance by actually building a classifier

— For high-dimensional & sparse data like this, linear models like
LogisticRegression often work best

Ipip install mglearn

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

import numpy as np

scores = cross_val_score(LogisticRegression(solver='sag'), X_train, y_train, cv=5)
print("Mean cross-validation accuracy: {:.2f}".format(np.mean(scores)))

— We obtain a mean cross-validation score, which indicates
reasonable performance for a balanced binary classification task

— Then turn the regularization parameter C by GridSearchCV

from sklearn.model_selection import GridSearchCV

param_grid = {'C". [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Best parameters: ", grid.best_params_)



— We then assess the generalization performance of this parameter

setting on the test set

X_test = vect.transform(text_test)
print("Test score: {:.2f}".format(grid.score(X_test, y_test)))

— There are many words shown in very low count in the dataset,
which are uninformative

— To remove uninformative features (like numbers, typos), we
remove the tokens that appear in less than k documents

— The value of k can be set by the min_df parameter

vect = CountVectorizer(min_df=5).fit(text_train)
X_train = vect.transform(text_train)
print("X_train with min_df: {}".format(repr(X_train)))

— We then check the first 50 and every 700 tokens as below

feature_names = vect.get_feature_names|()
print("First 50 features:\n{}".format(feature_names[:50]))
print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))

print("Every 700th feature:\n{}".format(feature_names|[::700]))
10



— |It's found that the uninformative words are removed

— Let's try to check the best validation accuracy by the grid search
grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))

Stopwords: Another way to get rid of uninformative words
— Using a language specific list of stopwords
— Discarding words that appears too frequently

— scikitlearn has a built-in list of English stopwords in the

feature_extraction.text module
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
print("Number of stop words: {}".format(len(ENGLISH_STOP_WORDS)))
print("First 10th stopword:\n{}".format(list ENGLISH_STOP_WORDS)[:10]))
print("Every 10th stopword:\n{}".format(list ENGLISH_STOP_WORDS)[::10]))
— As a limited number, removing them from the document does
only minor change but might lead to an improvement in

performance H



vect = CountVectorizer(min_df=5, stop_words="english").fit(text_train)
X_train = vect.transform(text_train)
print("X_train with stop words:\n{}".format(repr(X_train)))

— There are now 305 (27,271-26,966) fewer features in the dataset,
which means that most but not all of the stopwords appeared

— Let’s run the GridSearchCV now

grid = GridSearchCV/(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))

12



Rescaling the Data with tf-idf

* Instead of dropping features that are unimportant, another
approach is to rescale features
— Using the term frequency-inverse document frequency (tf-idf)

— The intuition

* Give high weight to any term that appears often in a particular document
but not in many documents in the dataset

* If shown the above characteristic, it is likely to be very descriptive

— scikit-learn implements the tf-idf method in two classes:

 TfidfTransformer, which takes in the sparse matrix output produced by
CountVectorizer and transforms it;

 TfidfVectorizer, which takes in the text data and does both the bag-of-
words feature extraction and the tf-idf transformation.

13



 The tf-idf score for word w in document d is given by:
N+1

+ 1

w

— N is the number of documents in the training set
— N, is the number of documents in the training set containing w

— tf (the term frequency) is the number of times that the word w
appears in the query document d

— L2 normalization is applied after computing the tf-idf rep.

— 1.e., we rescale the representation of each document to have
Euclidean length 1

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import make_pipeline

pipe = make_pipeling(TfidfVectorizer(min_df=5), LogisticRegression())
param_grid = {'logisticregression__C": [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

tfidf(w, d) = tf * log +1

14



— Although the result of regression is not improved too much, we

can also inspect tf-1df to find which words are most important
vectorizer = grid.best_estimator_.named_steps["tfidfvectorizer"]

X_train = vectorizer.transform(text_train)

max_value = X_train.max(axis=0).toarray().ravel()
sorted_by_tfidf = max_value.argsort()

feature_names = np.array(vectorizer.get_feature_names())
print("Features with lowest tfidf:\n{}".format(feature_names[sorted_by_tfidf[:20]]))
print("Features with highest tfidf: \n{}".format(feature_names|sorted_by_tfidf[-20:]]))

* Features with low tf-idf are those that either are very commonly used
across documents or are only used sparingly

* Features with high tf-idf actually identify certain shows or movies

— Find those with low idf (i.e., appear frequently but less important)

sorted_by_idf = np.argsort(vectorizer.idf_)
print("Features with lowest idf:\n{}".format(feature_names[sorted_by_idff:100]]))

15



 Let’s look in a bit more detail into coefficients of logistic regression

— Look at the largest coefficients and see which words these

correspond to
— Both the negative and the positive coefficients are considered

Ipip install mglearn

import mglearn

f
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mglearn.tools.visualize_coefficients( grid.bes
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Bag-of-Words with More than One Word
(n-Grams)

* One of the main disadvantage of using a bag-of-words
representation is that word order is completely discarded

— Improved by not only considering the counts of single tokens but
also the counts of pairs (bigrams) or triplets of tokens (trigrams)

— By changing the ngram_range parameter of CountVectorizer
or TfidfVectorizer

— The ngram_range parameter is a tuple, consisting of the

minimum and the maximum lengths
print("bards_words:\n{}".format(bards_words))

cv = CountVectorizer(ngram_range=(1, 1)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names())) 17



— To look only at bigrams by setting ngram_range to (2,2)

cv = CountVectorizer(ngram_range=(2, 2)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

— Using longer sequences of tokens usually results in many more

features, and in more specific features
print("Transformed data (dense):\n{}".format(cv.transform(bards_words).toarray()))

cv = CountVectorizer(ngram_range=(1, 3)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

— For most applications, single words often capture a lot of
meaning
» Adding bigrams helps in most cases
» Adding more n-grams might lead to overfitting

— Let’s try out the TfidfVectorizer on the IMDb movie review data

and find the best setting of n-gram range using a grid search
18



pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())

param_grid = {"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100], "tfidfvectorizer__ngram_range": [(1, 1),
(1,2), (1, 3)]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

print("Best parameters:\n{}".format(grid.best_params_))

— Can visualize the cross-validation accuracy as a heat map

0.900

scores = grid.cv_results_['mean_test_score'].reshape(-1, 3).T | | | 0.885

# visualize heat map (1, 3) ROVAEIEOEIEINE:CM 0.892 0.906  0.906 - 0.870

heatmap = mglearn.tools.heatmap(scores, xlabel="C", £ 0853

" " . "o : E' (1, 2) PONALIK:VAR:CAM 0.893 0.905 0.906 - 0.840

ylabel="ngram_range", cmap="viridis", fmt="%.3f", d

. T . ' < 0.825
xticklabels=param_grid['logisticregression__C'], (1, 1) RECREVAN N 0.888 0892 0.883

0.810

yticklabels=param_grid['tfidfvectorizer__ngram_range')) 0001 001 01 1 10 100 05

plt.colorbar(heatmap) C

— Then, we can also visualize the important coefficient for the best
model (including unigrams, bigrams, and trigrams) 19
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Topic Modeling and Document Clustering

* One particular technique that is often applied to text data

— Describing the task of assigning each document to one or
multiple topics, usually without supervision

— For topic modeling, one decomposition method called Latent
Dirichlet Allocation (often LDA for short) is often used

— ltis often good to remove very common words as they might
otherwise dominate the analysis

— We will limit the bag-of-word model to the 10,000 words after

removing the top 15 percent
vect = CountVectorizer(max_features=10000, max_df=.15)
X = vect.fit_transform(text_train)
print("Shape of X: {}".format(X.shape))

21



— We then learn a model with 10 topics (setting “max_iter”)
from sklearn.decomposition import LatentDirichletAllocation
lda = LatentDirichletAllocation(n_components=10,
learning_method="batch", max_iter=5, random_state=0)

document_topics = Ida.fit_transform(X)

— The size of components_is (n_topics, n_words)
print("lda.components_.shape: {}".format(lda.components_.shape))

— The print_topics function provides a nice format for features

sorting = np.argsort(lda.components_, axis=1)[;, ::-1]
feature_names = np.array(vect.get_feature_names())

mglearn.tools.print_topics(topics=range(10), feature_names=feature_names, sorting=sorting,
topics_per_chunk=5, n_words=10) 22



— Next, we will learn another model with 100 topics

|da100 = LatentDirichletAllocation(n_components=100,
learning_method="batch", max_iter=5, random_state=0)
document_topics100 = Ida100.fit_transform(X)

— Let's select some interesting and representative topics to check
topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])
sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]
feature_names = np.array(vect.get_feature_names())
mglearn.tools.print_topics(topics=topics, feature_names=feature_names,
sorting=sorting, topics_per_chunk=5, n_words=20)

— Topic 45 seems about music, let's check the review content
music = np.argsort(document_topics100[:, 45])[::-1]
for i in music[:10]:

print(b"." join(text_train[i].split(b".")[:2]) + b".\n")

23



— Another interesting way to inspect the topics is to see how much
weight each topic gets overall, by summing the document_topics
over all reviews

— We name each topic by the two most common words
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
topic_names = ["'{:>2} ".format(i) + " ".join(words)
for i, words in enumerate(feature_names[sorting[:, :2]])]

for col in [0, 1]:
start = col * 50
end = (col + 1) * 50
ax|[col].barh(np.arange(50), np.sum(document_topics100, axis=0)[start:end])
ax|[col].set_yticks(np.arange(50))
ax|[col].set_yticklabels(topic_names[start:end], ha="left", va="top")
ax[col].invert_yaxis()
ax|[col].set_xlim(0, 2000)
yax = ax[col].get_yaxis()
yax.set_tick_params(pad=130)

It.tight_layout
plt.tight_layout() »
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*  Summary
— Natural language and text processing is a large research field

— For more advanced text-processing methods, try

* the Python packages spacy (a relatively new but very efficient and well
designed package),

* nltk (a very well-established and complete but somewhat dated library),
« and gensim (an NLP package with an emphasis on topic modeling)

— There have been several very existing new developments
* As implementation in word2vec library
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