L8 — Working with Text Data

 Text as a third kind of feature rather than:
— Continuous features that describe a quantity
— Categorical features that are items from a list

 Text data is usually represented as strings, made up of
characters — clearly very different from the numeric features

» Many applications:
— Classifying an email message as spam or a legitimate email

— In customer service, we often want to find out if a message is a
complaint or an inquiry

Types of Data Represented as Strings

* Four different kinds of string data:
— Categorical data
— Free strings that can be semantically mapped to categories

— Structured string data
 Manually entered values do not correspond to fixed categories
« But still have some underlying structure, like addresses, names of places
or people, dates, telephone numbers, or other identifiers
— Text data (e.g., tweets, chat logs, hotel reviews & Wikipedia etc.)
* Freeform text data that consists of phrases or sentences
* For simplicity's sake, let's assume all are in one language: English
* In the content of text analysis, the dataset is often called the corpus
» Each data point represented as a single text, is called a document

Example Application: Sentiment Analysis of
Movie Reviews

lwget -nc http://ai.stanford.edu/~amaas/data/sentiment/aclimdb_v1.tar.gz -P data
ltar xzf data/aclimdb_v1.tar.gz --skip-old-files -C data

from sklearn.datasets import load_files
import numpy as np

reviews_train = load_files("data/aclimdb/train/")
index = np.where(reviews_train.target!=2)[0]
text_train = [reviews_train.datal[i] for i in index]
y_train = [reviews_train.target[i] for i in index]

text_train = [doc.replace(b"
", b" ") for doc in text_train]

print("type of text_train: {}".format(type(text_train)))

print("length of text_train: {}".format(len(text_train))) print("text_train[6]:{}\n".format(text_train[6]))
np.unique(y_train)

print("Samples per class (training): {}".format(np.bincount(y_train))) 3

reviews_test = load_files("data/aclimdb/test/")

text_test, y_test = reviews_test.data, reviews_test.target
print("Number of documents in test data: {}".format(len(text_test)))
print("Samples per class (test): {}".format(np.bincount(y_test)))

text_test = [doc.replace(b"
", b" ") for doc in text_test]

*The task we want to solve is as follows:

— Given a review, we want to assign the label “positive” or
‘negative” based on the text content of the review

— This is a standard binary classification problem

— Difficulty: the text data is not in a format that a machine learning
model can handle.

— Solution: we need to convert the string representation of the text
Into a numeric representation that we can apply machine learning

algorithms to. \

Representing Text Data as a Bag of Words

* One of the most simple but effective & commonly used way
— Discard most of the structure of the input text
— Only count how often each word appears in each text

* Three steps for computing the bag-of-words representation:

1. Tokenization: Split each document into the words that appear
in it (called tokens);

2. Vocabulary building: Collect a vocabulary of all words that
appear in any of the documents and sort them in alphabetical;

3. Encoding: For each document, count how often each of the
words in the vocabulary appear in this document.

 Qutput is one vector of word counts for each document

“This 1s how you get ants.”

tokenizer

[“this®, ‘is’, ‘how’,v‘you’, ‘get’, ‘ants’] Steps for Bu”ding the bag-
of-words representation

Build a vocabulary over all documents

A 4

[“aardvark’, ‘amsterdam’, ‘ants’, ... ‘you’, ‘your’, ‘zyxst’] :

Sparse matrix encoding

y

aardvark ants get you zyxst
,..010,..0,1,0,..01,0,..0]

* Applying Bag-of-Words to a Toy Dataset

— The bag-of-words representation is implemented in
CountVectorizer, which is a transformer

— Let's apply it to a toy dataset, consisting of two samples

bards_words =["The fool doth think he is wise,",
"but the wise man knows himself to be a fool"]

from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
vect fit(bards_words)

— Fitting the CountVectorizer consists of the tokenization of the
training data and building of the vocabulary

— We can access the vocabulary by the vocabulary _ attribute

print("Vocabulary size: {}".format(len(vect.vocabulary_)))
print("Vocabulary content:\n {}".format(vect.vocabulary_))

— To create the bag-of-words representation, we call the transform

bag_of_words = vect.transform(bards_words)
print("bag_of_words: {}".format(repr(bag_of_words)))

— The bag-of-words representation is stored in a SciPy sparse
matrix that only stores the entries that are nonzero

— To print it to check, we convert it to a “dense” NumPy array,

where the number indicates the word counts for each word
print("Dense representation of bag_of words:\n{}".format(bag_of_words.toarray()))

Bag-of-Words for Movie Reviews

« Now we apply the method to the movie reviews

— Construct the bag-of-words vector

vect = CountVectorizer().fit(text_train)
X_train = vect.transform(text_train)
print("X_train:\n{}".format(repr(X_train)))

— Let's look at the vocabulary in a bit more detail

feature_names = vect.get_feature_names|()

print("Number of features: {}".format(len(feature_names)))

print("First 20 features:\n{}".format(feature_names[:20]))

print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))
print("Every 2000th feature:\n{}".format(feature_names|[::2000]))

— Surprisely, the first 10 entries in the vocabulary are all numbers

— Weeding out the meaningful from the nonmeaningful “words” is
sometimes tricky

* Before we try to improve our feature extraction, let's obtain a
quantitative measure of performance by actually building a classifier

— For high-dimensional & sparse data like this, linear models like
LogisticRegression often work best

Ipip install mglearn

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

import numpy as np

scores = cross_val_score(LogisticRegression(solver='sag'), X_train, y_train, cv=5)
print("Mean cross-validation accuracy: {:.2f}".format(np.mean(scores)))

— We obtain a mean cross-validation score, which indicates
reasonable performance for a balanced binary classification task

— Then turn the regularization parameter C by GridSearchCV

from sklearn.model_selection import GridSearchCV

param_grid = {'C". [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))
print("Best parameters: ", grid.best_params_)

— We then assess the generalization performance of this parameter

setting on the test set

X_test = vect.transform(text_test)
print("Test score: {:.2f}".format(grid.score(X_test, y_test)))

— There are many words shown in very low count in the dataset,
which are uninformative

— To remove uninformative features (like numbers, typos), we
remove the tokens that appear in less than k documents

— The value of k can be set by the min_df parameter

vect = CountVectorizer(min_df=5).fit(text_train)
X_train = vect.transform(text_train)
print("X_train with min_df: {}".format(repr(X_train)))

— We then check the first 50 and every 700 tokens as below

feature_names = vect.get_feature_names|()
print("First 50 features:\n{}".format(feature_names[:50]))
print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))

print("Every 700th feature:\n{}".format(feature_names|[::700]))
10

— |It's found that the uninformative words are removed

— Let's try to check the best validation accuracy by the grid search
grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))

Stopwords: Another way to get rid of uninformative words
— Using a language specific list of stopwords
— Discarding words that appears too frequently

— scikitlearn has a built-in list of English stopwords in the

feature_extraction.text module
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS
print("Number of stop words: {}".format(len(ENGLISH_STOP_WORDS)))
print("First 10th stopword:\n{}".format(list ENGLISH_STOP_WORDS)[:10]))
print("Every 10th stopword:\n{}".format(list ENGLISH_STOP_WORDS)[::10]))
— As a limited number, removing them from the document does
only minor change but might lead to an improvement in

performance H

vect = CountVectorizer(min_df=5, stop_words="english").fit(text_train)
X_train = vect.transform(text_train)
print("X_train with stop words:\n{}".format(repr(X_train)))

— There are now 305 (27,271-26,966) fewer features in the dataset,
which means that most but not all of the stopwords appeared

— Let’s run the GridSearchCV now

grid = GridSearchCV/(LogisticRegression(solver='sag'), param_grid, cv=5)
grid.fit(X_train, y_train)
print("Best cross-validation score: {:.2f}".format(grid.best_score_))

12

Rescaling the Data with tf-idf

* Instead of dropping features that are unimportant, another
approach is to rescale features
— Using the term frequency-inverse document frequency (tf-idf)

— The intuition

* Give high weight to any term that appears often in a particular document
but not in many documents in the dataset

* If shown the above characteristic, it is likely to be very descriptive

— scikit-learn implements the tf-idf method in two classes:

 TfidfTransformer, which takes in the sparse matrix output produced by
CountVectorizer and transforms it;

 TfidfVectorizer, which takes in the text data and does both the bag-of-
words feature extraction and the tf-idf transformation.

13

 The tf-idf score for word w in document d is given by:
N+1

+ 1

w

— N is the number of documents in the training set
— N, is the number of documents in the training set containing w

— tf (the term frequency) is the number of times that the word w
appears in the query document d

— L2 normalization is applied after computing the tf-idf rep.

— 1.e., we rescale the representation of each document to have
Euclidean length 1

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import make_pipeline

pipe = make_pipeling(TfidfVectorizer(min_df=5), LogisticRegression())
param_grid = {'logisticregression__C": [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

tfidf(w, d) = tf * log +1

14

— Although the result of regression is not improved too much, we

can also inspect tf-1df to find which words are most important
vectorizer = grid.best_estimator_.named_steps["tfidfvectorizer"]

X_train = vectorizer.transform(text_train)

max_value = X_train.max(axis=0).toarray().ravel()
sorted_by_tfidf = max_value.argsort()

feature_names = np.array(vectorizer.get_feature_names())
print("Features with lowest tfidf:\n{}".format(feature_names[sorted_by_tfidf[:20]]))
print("Features with highest tfidf: \n{}".format(feature_names|sorted_by_tfidf[-20:]]))

* Features with low tf-idf are those that either are very commonly used
across documents or are only used sparingly

* Features with high tf-idf actually identify certain shows or movies

— Find those with low idf (i.e., appear frequently but less important)

sorted_by_idf = np.argsort(vectorizer.idf_)
print("Features with lowest idf:\n{}".format(feature_names[sorted_by_idff:100]]))

15

 Let’s look in a bit more detail into coefficients of logistic regression

— Look at the largest coefficients and see which words these

correspond to
— Both the negative and the positive coefficients are considered

Ipip install mglearn

import mglearn

f

steps|"logisticregression”].coe

t estimator_.named

mglearn.tools.visualize_coefficients(grid.bes

=40)

n_top_features

feature_names

0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20
-0.25

apnjiubew juapac)

Feature

Bag-of-Words with More than One Word
(n-Grams)

* One of the main disadvantage of using a bag-of-words
representation is that word order is completely discarded

— Improved by not only considering the counts of single tokens but
also the counts of pairs (bigrams) or triplets of tokens (trigrams)

— By changing the ngram_range parameter of CountVectorizer
or TfidfVectorizer

— The ngram_range parameter is a tuple, consisting of the

minimum and the maximum lengths
print("bards_words:\n{}".format(bards_words))

cv = CountVectorizer(ngram_range=(1, 1)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names())) 17

— To look only at bigrams by setting ngram_range to (2,2)

cv = CountVectorizer(ngram_range=(2, 2)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

— Using longer sequences of tokens usually results in many more

features, and in more specific features
print("Transformed data (dense):\n{}".format(cv.transform(bards_words).toarray()))

cv = CountVectorizer(ngram_range=(1, 3)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

— For most applications, single words often capture a lot of
meaning
» Adding bigrams helps in most cases
» Adding more n-grams might lead to overfitting

— Let’s try out the TfidfVectorizer on the IMDb movie review data

and find the best setting of n-gram range using a grid search
18

pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())

param_grid = {"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100], "tfidfvectorizer__ngram_range": [(1, 1),
(1,2), (1, 3)]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

print("Best parameters:\n{}".format(grid.best_params_))

— Can visualize the cross-validation accuracy as a heat map

0.900

scores = grid.cv_results_['mean_test_score'].reshape(-1, 3).T | | | 0.885

visualize heat map (1, 3) ROVAEIEOEIEINE:CM 0.892 0.906 0.906 - 0.870

heatmap = mglearn.tools.heatmap(scores, xlabel="C", £ 0853

" " . "o : E' (1, 2) PONALIK:VAR:CAM 0.893 0.905 0.906 - 0.840

ylabel="ngram_range", cmap="viridis", fmt="%.3f", d

. T . ' < 0.825
xticklabels=param_grid['logisticregression__C'], (1, 1) RECREVAN N 0.888 0892 0.883

0.810

yticklabels=param_grid['tfidfvectorizer__ngram_range')) 0001 001 01 1 10 100 05

plt.colorbar(heatmap) C

— Then, we can also visualize the important coefficient for the best
model (including unigrams, bigrams, and trigrams) 19

]

izer
names())

steps['tfidfvector

t feature

tor .named

ima
np.array(vect.ge

.best_est

= gri

vect

steps['log

tor _.named

feature_names

'|.coef_

Icregression

t

IS

Ima

best_est

=gri

coef

20
10

0
=10

apnyubew JuanyE0)

B =
o
E <
©
cC »w
I @
L S
S5 =
- ©
c O
(] r.l_
::H, o
o 2
o |
o

mglearn.tools.visualize_coefficients(

W

:

=20

Feature

igrams

ly tr

lize on

~We visua

— Next

==3

names])

np.array([len(feature.split(" ")) for feature in feature

mask

L

L L

20

10
0
-10

apnjubew juaniys0)

N—

%)

i)

c

Q@

O

$=

3 —
~

C_ %

O ¢

NG =

©

s £ Q2

n = &£

L2 =5

s 0 <

L = |

O ® o

O = =

—-— g D

n.%.mw

—

%C,.n_lU

Fe))

e

—20}

=40)

p_features

n_to

'
&

¢
o

5

Feature

.
&
S

L
8
&

Topic Modeling and Document Clustering

* One particular technique that is often applied to text data

— Describing the task of assigning each document to one or
multiple topics, usually without supervision

— For topic modeling, one decomposition method called Latent
Dirichlet Allocation (often LDA for short) is often used

— ltis often good to remove very common words as they might
otherwise dominate the analysis

— We will limit the bag-of-word model to the 10,000 words after

removing the top 15 percent
vect = CountVectorizer(max_features=10000, max_df=.15)
X = vect.fit_transform(text_train)
print("Shape of X: {}".format(X.shape))

21

— We then learn a model with 10 topics (setting “max_iter”)
from sklearn.decomposition import LatentDirichletAllocation
lda = LatentDirichletAllocation(n_components=10,
learning_method="batch", max_iter=5, random_state=0)

document_topics = Ida.fit_transform(X)

— The size of components_is (n_topics, n_words)
print("lda.components_.shape: {}".format(lda.components_.shape))

— The print_topics function provides a nice format for features

sorting = np.argsort(lda.components_, axis=1)[;, ::-1]
feature_names = np.array(vect.get_feature_names())

mglearn.tools.print_topics(topics=range(10), feature_names=feature_names, sorting=sorting,
topics_per_chunk=5, n_words=10) 22

— Next, we will learn another model with 100 topics

|da100 = LatentDirichletAllocation(n_components=100,
learning_method="batch", max_iter=5, random_state=0)
document_topics100 = Ida100.fit_transform(X)

— Let's select some interesting and representative topics to check
topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])
sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]
feature_names = np.array(vect.get_feature_names())
mglearn.tools.print_topics(topics=topics, feature_names=feature_names,
sorting=sorting, topics_per_chunk=5, n_words=20)

— Topic 45 seems about music, let's check the review content
music = np.argsort(document_topics100[:, 45])[::-1]
for i in music[:10]:

print(b"." join(text_train[i].split(b".")[:2]) + b".\n")

23

— Another interesting way to inspect the topics is to see how much
weight each topic gets overall, by summing the document_topics
over all reviews

— We name each topic by the two most common words
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
topic_names = ["'{:>2} ".format(i) + " ".join(words)
for i, words in enumerate(feature_names[sorting[:, :2]])]

for col in [0, 1]:
start = col * 50
end = (col + 1) * 50
ax|[col].barh(np.arange(50), np.sum(document_topics100, axis=0)[start:end])
ax|[col].set_yticks(np.arange(50))
ax|[col].set_yticklabels(topic_names[start:end], ha="left", va="top")
ax[col].invert_yaxis()
ax|[col].set_xlim(0, 2000)
yax = ax[col].get_yaxis()
yax.set_tick_params(pad=130)

It.tight_layout
plt.tight_layout() »

0 silent hollywood
1 kelly sinatra

2 world australian
3 god church

4 batman jane

5 horror zombie

6 new city

7 drew baseball

8 guy car

9 music michael
10 ed wood

11 hitler bugs

12 jones dan

13 seems audience
14 ford american
15 series episode
16 didn going

17 french paris

18 bill oliver

19 performance cast
20 fight lee

21 war world

22 funny comedy
23 japanese animation
24 ben lines

25 emma elvira
26 anna taylor

27 robert grand
28 years saw

29 george simon
30 superman indian
31 school high

32 fantasy rob

33 minutes hour
34 fi sci

35 british arthur
36 role oscar

37 ship titanic

38 woman wife

39 son father

40 budget low

41 version actors
42 musical song
43 harry action
44 sex nudity

45 documentary footage

46 wife husband
47 part che

48 black white
49 dvd release

0

500

1000

1500

2000

50 richard candy
51 world green
52 witch mr

53 moon mike

54 show shows
55 dog prison

56 tom jerry

57 gay davis

58 want Il

59 italian zero

60 chan jackie

61 war men

62 doctor dr

63 drugs drug

64 charlie adam
65 island boat
66 joe city

67 tarzan jane
68 game games
69 men screen
70 worst script
71 old steve

72 western stewart
73 eddie 80s

74 tony park

75 match ring

76 killer girl

77 horror scary
78 mother family
79 peter allen

80 action military
81 star wars

82 art beautiful
83 keaton computer
84 family kids

85 de john

86 fun 10

87 page chris

88 jeff wave

89 jack king

90 van jean

91 nightmare freddy
92 john johnny
93 effects special
94 young queen
95 grace bruce
96 book read

97 our us

98 original disney
99 andy sean

0 500 1000 1500

2000

25

* Summary
— Natural language and text processing is a large research field

— For more advanced text-processing methods, try

* the Python packages spacy (a relatively new but very efficient and well
designed package),

* nltk (a very well-established and complete but somewhat dated library),
« and gensim (an NLP package with an emphasis on topic modeling)

— There have been several very existing new developments
* As implementation in word2vec library

Christopher D. Manning
Prabhakar Raghavan
Hinarich Schitze

Natural Lz 1nguage
Processing w 1th

1 g :
Py th-:.:n - : Introduction to

CYREILLY™ faevm daund] Finn Kt o ok Lapr

http://shop.oreilly.com/product/9780596516499.do
https://nlp.stanford.edu/IR-book/

