L8 – Working with Text Data

- Text as a third kind of feature rather than:
 - Continuous features that describe a quantity
 - Categorical features that are items from a list
- Text data is usually represented as strings, made up of characters – clearly very different from the numeric features
- Many applications:
 - Classifying an email message as spam or a legitimate email
 - In customer service, we often want to find out if a message is a complaint or an inquiry

Types of Data Represented as Strings

- Four different kinds of string data:
 - Categorical data
 - Free strings that can be semantically mapped to categories
 - Structured string data
 - Manually entered values do not correspond to fixed categories
 - But still have some underlying structure, like addresses, names of places or people, dates, telephone numbers, or other identifiers
 - Text data (e.g., tweets, chat logs, hotel reviews & Wikipedia etc.)
 - Freeform text data that consists of phrases or sentences
 - For simplicity's sake, let's assume all are in one language: English
 - In the content of text analysis, the dataset is often called the corpus
 - Each data point represented as a single text, is called a document

Example Application: Sentiment Analysis of Movie Reviews

!wget -nc http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz -P data !tar xzf data/aclImdb_v1.tar.gz --skip-old-files -C data

from sklearn.datasets import load_files

import numpy as np

load_files returns a bunch, containing training texts and training labels

reviews_train = load_files("data/aclImdb/train/")

index = np.where(reviews_train.target!=2)[0]

text_train = [reviews_train.data[i] for i in index]

y_train = [reviews_train.target[i] for i in index]

to remove the HTML line breaks

text_train = [doc.replace(b"
", b" ") for doc in text_train]
print("type of text_train: {}".format(type(text_train)))

print("length of text_train: {}".format(len(text_train)))
np.unique(y_train)

print("text_train[6]:{}\n".format(text_train[6]))

print("Samples per class (training): {}".format(np.bincount(y_train)))

load the test dataset in the same manner

reviews_test = load_files("data/aclImdb/test/")
text_test, y_test = reviews_test.data, reviews_test.target
print("Number of documents in test data: {}".format(len(text_test)))
print("Samples per class (test): {}".format(np.bincount(y_test)))
to remove the HTML line breaks

text_test = [doc.replace(b"
", b" ") for doc in text_test]

•The task we want to solve is as follows:

- Given a review, we want to assign the label "positive" or "negative" based on the text content of the review
- This is a standard binary classification problem
- Difficulty: the text data is not in a format that a machine learning model can handle.
- Solution: we need to convert the string representation of the text into a numeric representation that we can apply machine learning algorithms to.

Representing Text Data as a Bag of Words

- One of the most simple but effective & commonly used way
 - Discard most of the structure of the input text
 - Only count how often each word appears in each text
- Three steps for computing the bag-of-words representation:
 - 1. Tokenization: Split each document into the words that appear in it (called tokens);
 - **2. Vocabulary building:** Collect a vocabulary of all words that appear in any of the documents and sort them in alphabetical;
 - **3. Encoding:** For each document, count how often each of the words in the vocabulary appear in this document.
- Output is one vector of word counts for each document

Steps for Building the bagof-words representation

- The bag-of-words representation is implemented in CountVectorizer, which is a transformer
- Let's apply it to a toy dataset, consisting of two samples

bards_words =["The fool doth think he is wise,",

```
"but the wise man knows himself to be a fool"]
```

```
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
vect.fit(bards_words)
```

 Fitting the CountVectorizer consists of the tokenization of the training data and building of the vocabulary

- We can access the vocabulary by the vocabulary_ attribute print("Vocabulary size: {}".format(len(vect.vocabulary_))) print("Vocabulary content:\n {}".format(vect.vocabulary_))

– To create the bag-of-words representation, we call the transform bag_of_words = vect.transform(bards_words) print("bag_of_words: {}".format(repr(bag_of_words)))

- The bag-of-words representation is stored in a SciPy sparse matrix that only stores the entries that are nonzero
- To print it to check, we convert it to a "dense" NumPy array, where the number indicates the word counts for each word
 print("Dense representation of bag_of_words:\n{}".format(bag_of_words.toarray()))

Bag-of-Words for Movie Reviews

- Now we apply the method to the movie reviews
 - Construct the bag-of-words vector

vect = CountVectorizer().fit(text_train)

X_train = vect.transform(text_train)

print("X_train:\n{}".format(repr(X_train)))

- Let's look at the vocabulary in a bit more detail

feature_names = vect.get_feature_names()
print("Number of features: {}".format(len(feature_names)))
print("First 20 features:\n{}".format(feature_names[:20]))
print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))
print("Every 2000th feature:\n{}".format(feature_names[::2000]))

- Surprisely, the first 10 entries in the vocabulary are all numbers
- Weeding out the meaningful from the nonmeaningful "words" is sometimes tricky

- Before we try to improve our feature extraction, let's obtain a quantitative measure of performance by actually building a classifier
 - For high-dimensional & sparse data like this, linear models like LogisticRegression often work best

!pip install mglearn

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

import numpy as np

scores = cross_val_score(LogisticRegression(solver='sag'), X_train, y_train, cv=5)
print("Mean cross-validation accuracy: {:.2f}".format(np.mean(scores)))

- We obtain a mean cross-validation score, which indicates reasonable performance for a balanced binary classification task
- Then turn the regularization parameter C by GridSearchCV

from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}

```
grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)
```

```
grid.fit(X_train, y_train)
```

```
print("Best cross-validation score: {:.2f}".format(grid.best_score_))
```

```
print("Best parameters: ", grid.best_params_)
```

 We then assess the generalization performance of this parameter setting on the test set

X_test = vect.transform(text_test)

print("Test score: {:.2f}".format(grid.score(X_test, y_test)))

- There are many words shown in very low count in the dataset, which are uninformative
- To remove uninformative features (like numbers, typos), we remove the tokens that appear in less than *k* documents
- The value of k can be set by the min_df parameter

vect = CountVectorizer(min_df=5).fit(text_train)

X_train = vect.transform(text_train)

print("X_train with min_df: {}".format(repr(X_train)))

- We then check the first 50 and every 700 tokens as below

feature_names = vect.get_feature_names() print("First 50 features:\n{}".format(feature_names[:50])) print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030])) print("Every 700th feature:\n{}".format(feature_names[::700]))

- It's found that the uninformative words are removed
- Let's try to check the best validation accuracy by the grid search grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5) grid.fit(X_train, y_train) print("Best cross-validation score: {:.2f}".format(grid.best_score_))
- •Stopwords: Another way to get rid of uninformative words
 - Using a language specific list of stopwords
 - Discarding words that appears too frequently
 - scikitlearn has a built-in list of English stopwords in the feature_extraction.text module

from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS print("Number of stop words: {}".format(len(ENGLISH_STOP_WORDS))) print("First 10th stopword:\n{}".format(list(ENGLISH_STOP_WORDS)[:10])) print("Every 10th stopword:\n{}".format(list(ENGLISH_STOP_WORDS)[::10]))

 As a limited number, removing them from the document does only minor change but might lead to an improvement in performance # Specifying stop_words="english" uses the built-in list.

We could also augment it and pass our own.

vect = CountVectorizer(min_df=5, stop_words="english").fit(text_train)

X_train = vect.transform(text_train)

print("X_train with stop words:\n{}".format(repr(X_train)))

- There are now 305 (27,271-26,966) fewer features in the dataset, which means that most but not all of the stopwords appeared
- Let's run the GridSearchCV now

grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)

grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

Rescaling the Data with tf-idf

- Instead of dropping features that are unimportant, another approach is to rescale features
 - Using the term frequency-inverse document frequency (tf-idf)
 - The intuition
 - Give high weight to any term that appears often in a particular document but not in many documents in the dataset
 - If shown the above characteristic, it is likely to be very descriptive
 - scikit-learn implements the tf-idf method in two classes:
 - TfidfTransformer, which takes in the sparse matrix output produced by CountVectorizer and transforms it;
 - TfidfVectorizer, which takes in the text data and does both the bag-ofwords feature extraction and the tf-idf transformation.

• The tf-idf score for word w in document d is given by:

tfidf(w, d) = tf *
$$\log\left(\frac{N+1}{N_w+1}\right) + 1$$

- -N is the number of documents in the training set
- $-N_w$ is the number of documents in the training set containing w
- tf (the term frequency) is the number of times that the word w appears in the query document d
- L2 normalization is applied after computing the tf-idf rep.
- i.e., we rescale the representation of each document to have Euclidean length 1

from sklearn.feature_extraction.text import TfidfVectorizer

```
from sklearn.pipeline import make_pipeline
```

```
pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())
```

```
param_grid = {'logisticregression__C': [0.001, 0.01, 0.1, 1, 10]}
```

```
grid = GridSearchCV(pipe, param_grid, cv=5)
```

```
grid.fit(text_train, y_train)
```

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

 Although the result of regression is not improved too much, we can also inspect tf-idf to find which words are most important

vectorizer = grid.best_estimator_.named_steps["tfidfvectorizer"]

transform the training dataset

```
X_train = vectorizer.transform(text_train)
```

find maximum value for each of the features over the dataset

```
max_value = X_train.max(axis=0).toarray().ravel()
```

```
sorted_by_tfidf = max_value.argsort()
```

get feature names

feature_names = np.array(vectorizer.get_feature_names())

print("Features with lowest tfidf:\n{}".format(feature_names[sorted_by_tfidf[:20]]))

print("Features with highest tfidf: \n{}".format(feature_names[sorted_by_tfidf[-20:]]))

- Features with low tf-idf are those that either are very commonly used across documents or are only used sparingly
- Features with high tf-idf actually identify certain shows or movies

```
– Find those with low idf (i.e., appear frequently but less important)
sorted_by_idf = np.argsort(vectorizer.idf_)
```

print("Features with lowest idf:\n{}".format(feature_names[sorted_by_idf[:100]]))

- Let's look in a bit more detail into coefficients of logistic regression ۲
 - Look at the largest coefficients and see which words these correspond to
- Both the negative and the positive coefficients are considered !pip install mglearn

import mglearn

mglearn.tools.visualize_coefficients(grid.best_estimator_.named_steps["logisticregression"].coef_,

Feature

feature_names, n_top_features=40)

Bag-of-Words with More than One Word (n-Grams)

- One of the main disadvantage of using a bag-of-words representation is that word order is completely discarded
 - Improved by not only considering the counts of single tokens but also the counts of pairs (*bigrams*) or triplets of tokens (*trigrams*)
 - By changing the ngram_range parameter of CountVectorizer or TfidfVectorizer
 - The ngram_range parameter is a tuple, consisting of the minimum and the maximum lengths

print("bards_words:\n{}".format(bards_words))

cv = CountVectorizer(ngram_range=(1, 1)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

- To look only at bigrams by setting ngram_range to (2,2)

cv = CountVectorizer(ngram_range=(2, 2)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

Using longer sequences of tokens usually results in many more features, and in more specific features

print("Transformed data (dense):\n{}".format(cv.transform(bards_words).toarray()))

cv = CountVectorizer(ngram_range=(1, 3)).fit(bards_words)
print("Vocabulary size: {}".format(len(cv.vocabulary_)))
print("Vocabulary:\n{}".format(cv.get_feature_names()))

- For most applications, single words often capture a lot of meaning
 - Adding bigrams helps in most cases
 - Adding more n-grams might lead to overfitting
- Let's try out the TfidfVectorizer on the IMDb movie review data and find the best setting of n-gram range using a grid search

pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())

running the grid search takes a long time because of the

relatively large grid and the inclusion of trigrams

param_grid = {"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100], "tfidfvectorizer__ngram_range": [(1, 1), (1, 2), (1, 3)]}

```
grid = GridSearchCV(pipe, param_grid, cv=5)
```

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

print("Best parameters:\n{}".format(grid.best_params_))

- Can visualize the cross-validation accuracy as a heat map

extract scores from grid_search

scores = grid.cv_results_['mean_test_score'].reshape(-1, 3).T
visualize heat map
heatmap = mglearn.tools.heatmap(scores, xlabel="C",
 ylabel="ngram_range", cmap="viridis", fmt="%.3f",
 xticklabels=param_grid['logisticregression__C'],
 yticklabels=param_grid['tfidfvectorizer__ngram_range'])
plt.colorbar(heatmap)

 Then, we can also visualize the important coefficient for the best model (including unigrams, bigrams, and trigrams)

extract feature names and coefficients

vect = grid.best_estimator_.named_steps['tfidfvectorizer']
feature_names = np.array(vect.get_feature_names())
coef = grid.best_estimator_.named_steps['logisticregression'].coef_

mglearn.tools.visualize_coefficients(

coef, feature_names,

n_top_features=40)

find 3-gram features

mask = np.array([len(feature.split(" ")) for feature in feature_names]) == 3

oefficient magnitude

visualize only 3-gram features

mglearn.tools.visualize_coefficients(

coef.ravel()[mask], feature_names[mask],

n_top_features=40)

Many useful information but the impact of # these features is quite limited compared to
the importance of the unigram features

Feature

Topic Modeling and Document Clustering

- One particular technique that is often applied to text data
 - Describing the task of assigning each document to one or multiple topics, usually without supervision
 - For topic modeling, one decomposition method called *Latent Dirichlet Allocation* (often *LDA* for short) is often used
 - It is often good to remove very common words as they might otherwise dominate the analysis
 - We will limit the bag-of-word model to the 10,000 words after removing the top 15 percent

vect = CountVectorizer(max_features=10000, max_df=.15)

X = vect.fit_transform(text_train)

print("Shape of X: {}".format(X.shape))

- We then learn a model with 10 topics (setting "max_iter")

from sklearn.decomposition import LatentDirichletAllocation

Ida = LatentDirichletAllocation(n_components=10,

learning_method="batch", max_iter=5, random_state=0)

We build the model and transform the data in one step

Computing transform takes some time,

and we can save time by doing both at once

document_topics = Ida.fit_transform(X)

The size of components_ is (n_topics, n_words)

print("Ida.components_.shape: {}".format(Ida.components_.shape))

The print_topics function provides a nice format for features

For each topic (a row in the components_), sort the features (ascending)

Invert rows with [:, ::-1] to make sorting descending

sorting = np.argsort(lda.components_, axis=1)[:, ::-1]

Get the feature names from the vectorizer

feature_names = np.array(vect.get_feature_names())

Print out the 10 topics:

mglearn.tools.print_topics(topics=range(10), feature_names=feature_names, sorting=sorting, topics_per_chunk=5, n_words=10)

- Next, we will learn another model with 100 topics

Ida100 = LatentDirichletAllocation(n_components=100,

learning_method="batch", max_iter=5, random_state=0)

document_topics100 = Ida100.fit_transform(X)

- Let's select some interesting and representative topics to check

```
topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])
```

```
sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]
```

```
feature_names = np.array(vect.get_feature_names())
```

mglearn.tools.print_topics(topics=topics, feature_names=feature_names,

sorting=sorting, topics_per_chunk=5, n_words=20)

- Topic 45 seems about music, let's check the review content

sort by weight of "music" topic 45

```
music = np.argsort(document_topics100[:, 45])[::-1]
```

print the five documents where the topic is most important

for i in music[:10]:

```
# show first two sentences
```

```
print(b".".join(text_train[i].split(b".")[:2]) + b".\n")
```

- Another interesting way to inspect the topics is to see how much weight each topic gets overall, by summing the document_topics over all reviews
- We name each topic by the two most common words

```
fig, ax = plt.subplots(1, 2, figsize=(10, 10))
topic_names = ["{:>2} ".format(i) + " ".join(words)
```

for i, words in enumerate(feature_names[sorting[:, :2]])]

two column bar chart:

```
for col in [0, 1]:

start = col * 50

end = (col + 1) * 50

ax[col].barh(np.arange(50), np.sum(document_topics100, axis=0)[start:end])

ax[col].set_yticks(np.arange(50))

ax[col].set_yticklabels(topic_names[start:end], ha="left", va="top")

ax[col].invert_yaxis()

ax[col].set_xlim(0, 2000)

yax = ax[col].get_yaxis()

yax.set_tick_params(pad=130)

plt.tight_layout()
```


- Summary
 - Natural language and text processing is a large research field
 - For more advanced text-processing methods, try
 - the Python packages spacy (a relatively new but very efficient and well designed package),
 - nltk (a very well-established and complete but somewhat dated library),
 - and gensim (an NLP package with an emphasis on topic modeling)
 - There have been several very existing new developments
 - As implementation in word2vec library

