
L8 – Working with Text Data

• Text as a third kind of feature rather than:

– Continuous features that describe a quantity

– Categorical features that are items from a list

• Text data is usually represented as strings, made up of 

characters – clearly very different from the numeric features

• Many applications:

– Classifying an email message as spam or a legitimate email

– In customer service, we often want to find out if a message is a 

complaint or an inquiry
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Types of Data Represented as Strings

• Four different kinds of string data:

– Categorical data

– Free strings that can be semantically mapped to categories

– Structured string data

• Manually entered values do not correspond to fixed categories

• But still have some underlying structure, like addresses, names of places 

or people, dates, telephone numbers, or other identifiers

– Text data (e.g., tweets, chat logs, hotel reviews & Wikipedia etc.)

• Freeform text data that consists of phrases or sentences

• For simplicity's sake, let’s assume all are in one language: English

• In the content of text analysis, the dataset is often called the corpus

• Each data point represented as a single text, is called a document
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Example Application: Sentiment Analysis of 

Movie Reviews
!wget -nc http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz -P data

!tar xzf data/aclImdb_v1.tar.gz --skip-old-files -C data

from sklearn.datasets import load_files

import numpy as np

# load_files returns a bunch, containing training texts and training labels

reviews_train = load_files("data/aclImdb/train/")

index = np.where(reviews_train.target!=2)[0]

text_train = [reviews_train.data[i] for i in index]

y_train = [reviews_train.target[i] for i in index]

# to remove the HTML line breaks <br />

text_train = [doc.replace(b"<br />", b" ") for doc in text_train] 

print("type of text_train: {}".format(type(text_train)))

print("length of text_train: {}".format(len(text_train))) print("text_train[6]:{}\n".format(text_train[6]))

np.unique(y_train)

print("Samples per class (training): {}".format(np.bincount(y_train))) 3



# load the test dataset in the same manner

reviews_test = load_files("data/aclImdb/test/")

text_test, y_test = reviews_test.data, reviews_test.target

print("Number of documents in test data: {}".format(len(text_test)))

print("Samples per class (test): {}".format(np.bincount(y_test)))

# to remove the HTML line breaks <br />

text_test = [doc.replace(b"<br />", b" ") for doc in text_test]

•The task we want to solve is as follows:

– Given a review, we want to assign the label “positive” or 

“negative” based on the text content of the review 

– This is a standard binary classification problem

– Difficulty: the text data is not in a format that a machine learning 

model can handle.

– Solution: we need to convert the string representation of the text 

into a numeric representation that we can apply machine learning 

algorithms to.
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Representing Text Data as a Bag of Words

• One of the most simple but effective & commonly used way

– Discard most of the structure of the input text

– Only count how often each word appears in each text

• Three steps for computing the bag-of-words representation:

1. Tokenization: Split each document into the words that appear 

in it (called tokens);

2. Vocabulary building: Collect a vocabulary of all words that 

appear in any of the documents and sort them in alphabetical;

3. Encoding: For each document, count how often each of the 

words in the vocabulary appear in this document.

• Output is one vector of word counts for each document
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• Applying Bag-of-Words to a Toy Dataset

– The bag-of-words representation is implemented in 

CountVectorizer, which is a transformer 

– Let’s apply it to a toy dataset, consisting of two samples
bards_words =["The fool doth think he is wise,",

"but the wise man knows himself to be a fool"]

from sklearn.feature_extraction.text import CountVectorizer

vect = CountVectorizer()

vect.fit(bards_words)
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– Fitting the CountVectorizer consists of the tokenization of the 

training data and building of the vocabulary 

– We can access the vocabulary by the vocabulary_ attribute
print("Vocabulary size: {}".format(len(vect.vocabulary_)))

print("Vocabulary content:\n {}".format(vect.vocabulary_))

– To create the bag-of-words representation, we call the transform
bag_of_words = vect.transform(bards_words)

print("bag_of_words: {}".format(repr(bag_of_words)))

– The bag-of-words representation is stored in a SciPy sparse 

matrix that only stores the entries that are nonzero

– To print it to check, we convert it to a “dense” NumPy array, 

where the number indicates the word counts for each word
print("Dense representation of bag_of_words:\n{}".format(bag_of_words.toarray()))
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Bag-of-Words for Movie Reviews

• Now we apply the method to the movie reviews

– Construct the bag-of-words vector
vect = CountVectorizer().fit(text_train)

X_train = vect.transform(text_train)

print("X_train:\n{}".format(repr(X_train)))

– Let’s look at the vocabulary in a bit more detail
feature_names = vect.get_feature_names()

print("Number of features: {}".format(len(feature_names)))

print("First 20 features:\n{}".format(feature_names[:20]))

print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))

print("Every 2000th feature:\n{}".format(feature_names[::2000]))

– Surprisely, the first 10 entries in the vocabulary are all numbers

– Weeding out the meaningful from the nonmeaningful “words” is 

sometimes tricky 8



• Before we try to improve our feature extraction, let’s obtain a 

quantitative measure of performance by actually building a classifier

– For high-dimensional & sparse data like this, linear models like 

LogisticRegression often work best
!pip install mglearn

from sklearn.model_selection import cross_val_score

from sklearn.linear_model import LogisticRegression

import numpy as np

scores = cross_val_score(LogisticRegression(solver='sag'), X_train, y_train, cv=5)

print("Mean cross-validation accuracy: {:.2f}".format(np.mean(scores)))

– We obtain a mean cross-validation score, which indicates 

reasonable performance for a balanced binary classification task

– Then turn the regularization parameter C by GridSearchCV
from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)

grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

print("Best parameters: ", grid.best_params_)
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– We then assess the generalization performance of this parameter 

setting on the test set 
X_test = vect.transform(text_test)

print("Test score: {:.2f}".format(grid.score(X_test, y_test)))

– There are many words shown in very low count in the dataset, 

which are uninformative

– To remove uninformative features (like numbers, typos), we 

remove the tokens that appear in less than k documents

– The value of k can be set by the min_df parameter
vect = CountVectorizer(min_df=5).fit(text_train)

X_train = vect.transform(text_train)

print("X_train with min_df: {}".format(repr(X_train)))

– We then check the first 50 and every 700 tokens as below
feature_names = vect.get_feature_names()

print("First 50 features:\n{}".format(feature_names[:50]))

print("Features 20010 to 20030:\n{}".format(feature_names[20010:20030]))

print("Every 700th feature:\n{}".format(feature_names[::700]))
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– It’s found that the uninformative words are removed

– Let’s try to check the best validation accuracy by the grid search
grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)

grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_)) 

•Stopwords: Another way to get rid of uninformative words

– Using a language specific list of stopwords

– Discarding words that appears too frequently

– scikitlearn has a built-in list of English stopwords in the 

feature_extraction.text module
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS

print("Number of stop words: {}".format(len(ENGLISH_STOP_WORDS)))

print("First 10th stopword:\n{}".format(list(ENGLISH_STOP_WORDS)[:10]))

print("Every 10th stopword:\n{}".format(list(ENGLISH_STOP_WORDS)[::10]))

– As a limited number, removing them from the document does 

only minor change but might lead to an improvement in 
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# Specifying stop_words="english" uses the built-in list.

# We could also augment it and pass our own.

vect = CountVectorizer(min_df=5, stop_words="english").fit(text_train)

X_train = vect.transform(text_train)

print("X_train with stop words:\n{}".format(repr(X_train)))

– There are now 305 (27,271-26,966) fewer features in the dataset, 

which means that most but not all of the stopwords appeared 

– Let’s run the GridSearchCV now
grid = GridSearchCV(LogisticRegression(solver='sag'), param_grid, cv=5)

grid.fit(X_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))
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Rescaling the Data with tf-idf

• Instead of dropping features that are unimportant, another 

approach is to rescale features

– Using the term frequency-inverse document frequency (tf-idf) 

– The intuition

• Give high weight to any term that appears often in a particular document 

but not in many documents in the dataset

• If shown the above characteristic, it is likely to be very descriptive

– scikit-learn implements the tf-idf method in two classes:

• TfidfTransformer, which takes in the sparse matrix output produced by 

CountVectorizer and transforms it;

• TfidfVectorizer, which takes in the text data and does both the bag-of-

words feature extraction and the tf-idf transformation.
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• The tf-idf score for word w in document d is given by:

– N is the number of documents in the training set 

– Nw is the number of documents in the training set containing w

– tf (the term frequency) is the number of times that the word w

appears in the query document d

– L2 normalization is applied after computing the tf-idf rep.

– i.e., we rescale the representation of each document to have 

Euclidean length 1
from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import make_pipeline

pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())

param_grid = {'logisticregression__C': [0.001, 0.01, 0.1, 1, 10]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))
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– Although the result of regression is not improved too much, we 

can also inspect tf-idf to find which words are most important
vectorizer = grid.best_estimator_.named_steps["tfidfvectorizer"]

# transform the training dataset

X_train = vectorizer.transform(text_train)

# find maximum value for each of the features over the dataset

max_value = X_train.max(axis=0).toarray().ravel()

sorted_by_tfidf = max_value.argsort()

# get feature names

feature_names = np.array(vectorizer.get_feature_names())

print("Features with lowest tfidf:\n{}".format(feature_names[sorted_by_tfidf[:20]]))

print("Features with highest tfidf: \n{}".format(feature_names[sorted_by_tfidf[-20:]]))

• Features with low tf-idf are those that either are very commonly used 

across documents or are only used sparingly

• Features with high tf-idf actually identify certain shows or movies

– Find those with low idf (i.e., appear frequently but less important)
sorted_by_idf = np.argsort(vectorizer.idf_)

print("Features with lowest idf:\n{}".format(feature_names[sorted_by_idf[:100]]))

15



• Let’s look in a bit more detail into coefficients of logistic regression

– Look at the largest coefficients and see which words these 

correspond to 

– Both the negative and the positive coefficients are considered
!pip install mglearn

import mglearn

mglearn.tools.visualize_coefficients( grid.best_estimator_.named_steps["logisticregression"].coef_,

feature_names, n_top_features=40)
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Bag-of-Words with More than One Word 

(n-Grams)

• One of the main disadvantage of using a bag-of-words 

representation is that word order is completely discarded

– Improved by not only considering the counts of single tokens but 

also the counts of pairs (bigrams) or triplets of tokens (trigrams) 

– By changing the ngram_range parameter of CountVectorizer

or TfidfVectorizer

– The ngram_range parameter is a tuple, consisting of the 

minimum and the maximum lengths
print("bards_words:\n{}".format(bards_words))

cv = CountVectorizer(ngram_range=(1, 1)).fit(bards_words)

print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names()))
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– To look only at bigrams by setting ngram_range to (2,2)
cv = CountVectorizer(ngram_range=(2, 2)).fit(bards_words)

print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names()))

– Using longer sequences of tokens usually results in many more 

features, and in more specific features
print("Transformed data (dense):\n{}".format(cv.transform(bards_words).toarray()))

cv = CountVectorizer(ngram_range=(1, 3)).fit(bards_words)

print("Vocabulary size: {}".format(len(cv.vocabulary_)))

print("Vocabulary:\n{}".format(cv.get_feature_names()))

– For most applications, single words often capture a lot of 

meaning

• Adding bigrams helps in most cases

• Adding more n-grams might lead to overfitting

– Let’s try out the TfidfVectorizer on the IMDb movie review data 

and find the best setting of n-gram range using a grid search
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pipe = make_pipeline(TfidfVectorizer(min_df=5), LogisticRegression())

# running the grid search takes a long time because of the

# relatively large grid and the inclusion of trigrams

param_grid = {"logisticregression__C": [0.001, 0.01, 0.1, 1, 10, 100], "tfidfvectorizer__ngram_range": [(1, 1), 

(1, 2), (1, 3)]}

grid = GridSearchCV(pipe, param_grid, cv=5)

grid.fit(text_train, y_train)

print("Best cross-validation score: {:.2f}".format(grid.best_score_))

print("Best parameters:\n{}".format(grid.best_params_))

– Can visualize the cross-validation accuracy as a heat map 
# extract scores from grid_search

scores = grid.cv_results_['mean_test_score'].reshape(-1, 3).T

# visualize heat map

heatmap = mglearn.tools.heatmap(scores, xlabel="C", 

ylabel="ngram_range", cmap="viridis", fmt="%.3f",

xticklabels=param_grid['logisticregression__C'],

yticklabels=param_grid['tfidfvectorizer__ngram_range'])

plt.colorbar(heatmap)

– Then, we can also visualize the important coefficient for the best 

model (including unigrams, bigrams, and trigrams) 19



# extract feature names and coefficients

vect = grid.best_estimator_.named_steps['tfidfvectorizer']

feature_names = np.array(vect.get_feature_names())

coef = grid.best_estimator_.named_steps['logisticregression'].coef_

mglearn.tools.visualize_coefficients(

coef, feature_names, 

n_top_features=40)

– Next, we visualize only trigrams 
# find 3-gram features

mask = np.array([len(feature.split(" ")) for feature in feature_names]) == 3

# visualize only 3-gram features

mglearn.tools.visualize_coefficients(

coef.ravel()[mask],

feature_names[mask], 

n_top_features=40)

# Many useful information but the impact of

# these features is quite limited compared to

# the importance of the unigram features
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Topic Modeling and Document Clustering

• One particular technique that is often applied to text data

– Describing the task of assigning each document to one or 

multiple topics, usually without supervision

– For topic modeling, one decomposition method called Latent 

Dirichlet Allocation (often LDA for short) is often used

– It is often good to remove very common words as they might 

otherwise dominate the analysis

– We will limit the bag-of-word model to the 10,000 words after 

removing the top 15 percent
vect = CountVectorizer(max_features=10000, max_df=.15)

X = vect.fit_transform(text_train)

print("Shape of X: {}".format(X.shape))
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– We then learn a model with 10 topics (setting “max_iter”) 
from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_components=10, 

learning_method="batch", max_iter=5, random_state=0)

# We build the model and transform the data in one step

# Computing transform takes some time,

# and we can save time by doing both at once

document_topics = lda.fit_transform(X)

– The size of components_ is (n_topics, n_words)
print("lda.components_.shape: {}".format(lda.components_.shape))

– The print_topics function provides a nice format for features
# For each topic (a row in the components_), sort the features (ascending)

# Invert rows with [:, ::-1] to make sorting descending

sorting = np.argsort(lda.components_, axis=1)[:, ::-1]

# Get the feature names from the vectorizer

feature_names = np.array(vect.get_feature_names())

# Print out the 10 topics:

mglearn.tools.print_topics(topics=range(10), feature_names=feature_names, sorting=sorting, 

topics_per_chunk=5, n_words=10) 22



– Next, we will learn another model with 100 topics
lda100 = LatentDirichletAllocation(n_components=100, 

learning_method="batch", max_iter=5, random_state=0)

document_topics100 = lda100.fit_transform(X)

– Let’s select some interesting and representative topics to check
topics = np.array([7, 16, 24, 25, 28, 36, 37, 45, 51, 53, 54, 63, 89, 97])

sorting = np.argsort(lda100.components_, axis=1)[:, ::-1]

feature_names = np.array(vect.get_feature_names())

mglearn.tools.print_topics(topics=topics, feature_names=feature_names,

sorting=sorting, topics_per_chunk=5, n_words=20)

– Topic 45 seems about music, let’s check the review content
# sort by weight of "music" topic 45

music = np.argsort(document_topics100[:, 45])[::-1]

# print the five documents where the topic is most important

for i in music[:10]:

# show first two sentences

print(b".".join(text_train[i].split(b".")[:2]) + b".\n")
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– Another interesting way to inspect the topics is to see how much 

weight each topic gets overall, by summing the document_topics

over all reviews

– We name each topic by the two most common words
fig, ax = plt.subplots(1, 2, figsize=(10, 10))

topic_names = ["{:>2} ".format(i) + " ".join(words)

for i, words in enumerate(feature_names[sorting[:, :2]])]

# two column bar chart:

for col in [0, 1]:

start = col * 50

end = (col + 1) * 50

ax[col].barh(np.arange(50), np.sum(document_topics100, axis=0)[start:end])

ax[col].set_yticks(np.arange(50))

ax[col].set_yticklabels(topic_names[start:end], ha="left", va="top")

ax[col].invert_yaxis()

ax[col].set_xlim(0, 2000)

yax = ax[col].get_yaxis()

yax.set_tick_params(pad=130)

plt.tight_layout()
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• Summary

– Natural language and text processing is a large research field 

– For more advanced text-processing methods, try 

• the Python packages spacy (a relatively new but very efficient and well 

designed package), 

• nltk (a very well-established and complete but somewhat dated library), 

• and gensim (an NLP package with an emphasis on topic modeling)

– There have been several very existing new developments

• As implementation in word2vec library
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