L2 – Data Acquisition

- Mechanical measurement (CMM)
- Structured light
- Range images
- Shape from shading
- Other methods

Coordinate Measurement Machine

- Touch based
- Slow
- Sparse Data
- Complex planning
- Accurate

What is Structured Light?

- Any spatio-temporal pattern of light projected on a surface (or volume).
- Cleverly illuminate the scene to extract scene properties (eg., 3D).
- Avoids problems of 3D estimation in scenes with complex texture/BRDFs.
- Very popular in vision and successful in industrial applications (parts assembly, inspection, packaging, etc).

Light Strip Scanning – Single Strip

- Optical triangulation
 - Project a single stripe of laser light
 - Scan it across the surface of the object
 - This is a very precise version of structured light scanning
 - Good for high resolution 3D, but needs many images and takes time

Triangulation

• Project laser strip onto the object

Triangulation

- Depth from ray-plane triangulation:
 - Intersect camera ray with light plane

Example: Laser Scanner

Cyberware® face and head scanner

- + very accurate < 0.01 mm
- more than 10sec per scan

Example: Laser Scanner

Digital Michelangelo Project http://graphics.stanford.edu/projects/mich/

- + very accurate < 0.01 mm
- more than 10sec per scan

• A range image

3D Scanner

3D shape as seen from a single point of view

• Move scanner around object (or move object w.r.t. scanner)

• Multi-scans need to be aligned

• How to merge?

• Now, the user needs to plan further scans and determine whether the entire object has been covered.

http://graphics.stanford.edu/projects/mich/

Portable 3D Laser Scanner

• Many choices available on market now

Faster Acquisition

- Project multiple stripes simultaneously
- Correspondence problem: which stripe is which?
- Common types of patterns:
 - Binary coded light striping
 - Gray/color coded light striping

Binary Coding

Binary Coding

Assign each stripe a unique illumination code over time [Posdamer 82]

More Complex Patterns

Works despite complex appearances

Works in real-time and on dynamic scenes

- Need very few images (one or two).
- But needs a more complex correspondence algorithm

Real-Time 3D Model Accquisition

Real-Time 3D Model Acquisition

Szymon Rusinkiewicz Olaf Hall-Holt Marc Levoy

http://graphics.stanford.edu/papers/rt_model/

Continuum of Triangulation Methods

Slow, robust

Fast, fragile

Microsoft Kinect

Microsoft Kinect

Depth map

Speckled IR Pattern

Shape-from-Shading

- Assumptions of Imaging model
 - Lambertian surface
 - The viewer and light source is sufficiently far from the object
 - Brightness is independent of the viewing direction
- Reflection function: $R(\hat{n}) = k \cdot \hat{n} \cdot \hat{l}$

$$R(\hat{n}) = k \cdot \cos \theta$$

• Image irradiance equation:

$$I(x, y) = R(\hat{n})$$

Photometric Stereo

Photometric Stereo with Near Point Lighting

https://youtu.be/Aspm4Rsr53A

Photometric Stereo with Near Point Lighting

Fluorescent Immersion Range Scanning

http://www.mpi-inf.mpg.de/resources/FIRS/

Fluorescent Immersion Range Scanning

Fluorescent Immersion Range Scanning

Matthias B. Hullin¹ Martin Fuchs¹ Ivo Ihrke^{2,1} Hans-Peter Seidel¹ Hendrik P. A. Lensch¹

¹MPI Informatik ²University of British Columbia

Dip Transform for 3D Shape Reconstruction

Dip Transform for 3D Shape Reconstruction

Dip Transform for 3D Shape Reconstruction

papers_0483