L3 – Preprocessing of Point Model

- Common nature of acquisition results
	- Unorganized scatter points
	- Present noises, outliers and non-uniformity
	- Some regions may be missed during acquisition
- Requirements by downstream algorithms
	- Consistently oriented normal vectors
	- Uniformly sampled
	- Noise and outlier free
	- Complete with missed region filled (or recovered)

Preprocessing Techniques

- Normal estimation
	- Principal Component Analysis (PCA)
	- Local surface fitting
	- Consistent orientation
- Denoising by projection
- Outlier removal and processing
	- Heuristic based removal methods
	- Robust statistic based processing

Search Data Structures

- Nearest-neighbor searches and range queries
	- Search and store in a *neighborhood table*
	- Or search on-site to reduce the memory usage
- K-d-tree based *approximate-nearest-neighbor* (ANN)
	- Efficient (O(*n* log *n*) in construction; O(log *n*) in query)
	- Static point set
	- Range query

[http://www.cs.umd.edu/~mount/ANN/](http://www.cs.umd.edu/%7Emount/ANN/)

- Dynamic data may needs a hash data structure
	- Perform poorly in non-uniform data set

Principal Component Analysis (PCA)

• Computing the co-variant matrix of points

$$
\sum_{\mathbf{p}_i \in N'(\mathbf{p})} (\mathbf{p}_i - \bar{\mathbf{p}}) (\mathbf{p}_i - \bar{\mathbf{p}})^T
$$

Normal is chosen as the eigen-vector corresponding to the smallest eigen-value

- Why?
	- The minimization problem min $n^T C n$ s.t. $|| n || = 1$
- How about the orientation?

Orientation Plays Important Role

- Normal vectors give the definition of underlying surface to the first order
- Many implicit surface reconstruction methods rely on them to define the inside/outside fields
- However, eigen-vector analysis cannot provide a correct orientation
- Re-orienting the normal vectors is necessary

Orientation Propagation

- A relatively simple-minded algorithm to orient the points
	- Arbitrarily choose an orientation for some plane
	- Then "propagate" the orientation to neighboring planes
	- Where does the graph come from?
- However, the **order** of propagation is **important**

(a) Original mesh

(b) Result of naive orientation propagation

Heuristic of "Best" Order

- Favor propagation from point x_i to x_j if the unoriented planes at them are nearly parallel
	- This order is advantageous because it tends to propagate orientation along directions of low curvature in the data, thereby largely avoiding ambiguous situations encountered **when trying to propagate orientation across sharp edges**

- Assign each edge in graph with the weight: (1-| < n_{i} , n_{j} > |)
- Compute the order by traversing the *minimal spanning tree* (MST) of the graph $\frac{7}{7}$

Minimum Spanning Tree

- Given a connected, undirected graph, a spanning tree of that graph is a subgraph which is a **tree** and connects **all** the vertices together.
- **MST** is a spanning tree with weight less than or equal to 2 the weight of every other spanning tree

MST Construction – Prim's Algorithm

• Continuously increases the size of a tree, one edge at a time, starting from a single vertex until it spans all nodes

Input: A non-empty connected weighted graph with vertices *V* and edges *E* **Initialize:** $V_{new} = \{x\}$, where x is an arbitrary node (starting point) from V, $E_{new} = \{\}$ **Repeat until** $V_{new} = V$ **:**

1) Choose an edge (u, v) with minimal weight such that u is in V_{new} and v is not (if there are multiple edges with the same weight, any of them may be picked)

2) Add *v* to *Vnew*, and (*u*, *v*) to E*new*

Output: V_{new} and E_{new} describe a minimal spanning tree.

*Implementation can use binary heap to achieve the complexity with $O((V + E) log(V)) = O(E log(V))$

Normal Orientation on MST

- To assign orientation to an initial plane, the unit normal of the plane whose center has the largest *z* coordinate is forced to point toward the *+z* axis (as an *heuristic*).
- Then, rooting the tree at this initial node, we traverse the tree in *depth-first order*, assigning each plane an orientation that is consistent with that of its parent.
	- $-$ That is, if during traversal, the current plane at x_i has been assigned the orientation n_i and x_i is the next point to be visited, then \bm{n}_{j} is replaced with – \bm{n}_{j} if (< \bm{n}_{i} , \bm{n}_{j} > < 0)
- Such algorithm works successfully on well sampled models

Does not work very well on data set captured from real models by laser

New Method (ORT)

- Using the integrating approach of meshing [Ohtake et al., 2005]
- A modified scheme of *Adaptive Spherical Cover* (ASC)
- An orientation-aware *Principle Component Analysis* (PCA)
- Different from Consolidation [Huang et al., 2009]
	- Do not remove or re-position points
	- Only re-assigning normal vectors to all the input sample points
- Although as a pre-processing step, plays an important role to the mesh surface reconstruction

<http://homepage.tudelft.nl/h05k3/projPOT.html>

<http://homepage.tudelft.nl/h05k3/pubs/SMI10PntOrienting.pdf>

Comparison of ORT vs. Other Methods

Denoising by Projection

- Moving Least Squares (MLS) surface *semi-implicit*
	- Represents the surface by projecting all the points onto the estimated smooth surface – different from implicit surface reconstruction
- Two steps in one pass of projection:
	- 1) defining a local reference domain
	- 2) fitting a local bi-variate polynomial over the reference domain and projecting points onto the surface
- Theoretical analysis shows that *repeatedly applying such projection operators* **converges** to a *smooth* surface
- Details will be provided later in the MLS related lecture

Local Quadratic Surface Fitting

• Usually fit by quadratic surfaces

$$
S(s,t) = as^2 + bt^2 + cst + ds + et
$$

- Construct local frame
- Project the sample points onto the tangent plane
- Determine the (*s*,*t*) parameters of points
- Solving the coefficient (a, b, c, d, e) in a least-square manner
- * More polynomial choices by using more terms in the polynomial triangle
- Compatibility of locally constructed quadratic surfaces?
- Blending on least-square fitting is need
- The concept of *Moving Least Squares* (MLS) surface

Simpler Implementation of Projection

- Iteratively computes the locally weighted average position and projects the point along the normal direction yielding a new position until it converges
- Give a point *x*, the locally weighted average is defined as

$$
a(x) = \frac{\sum_{i=1}^{N} \theta(||x - p_i||)p_i}{\sum_{i=1}^{N} \theta(||x - p_i||)}
$$

with *θ* specifying the influence of the neighboring points

$$
\theta(d) = e^{-d^2/h^2}
$$

h is a factor that defines the Gaussian kernel width. *Features would be smoothed out if their sizes are smaller than *h*

Simpler Implementation of Projection

- Choosing a suitable *h* is difficult for non-uniformly sampled point set
	- [Adamson and Alexa, 2004] computed *h* as the average Euclidean *k*-nearest neighborhood distance with *k* = 6
	- This gives an adaptive approximation of local sampling density
- The next updated position **x'** of **x** is computed by

N

$$
x' = x - n(x)^T (x - a(x))n(x)
$$

with

 Ω r

$$
\mathbf{n}(x) = \arg \min \sum_{i=1} ||\mathbf{n}^{T}(x - p_{i})||^{2} \theta(||x - p_{i}||)
$$

$$
\mathbf{Simplify} \qquad \mathbf{n}(x) = \frac{\sum_{i}^{N} \theta(||x - p_{i}||)\mathbf{n}_{i}}{||\sum_{i=1}^{N} \theta(||x - p_{i}||)\mathbf{n}_{i}||} \qquad \text{Orien}
$$

Oriented Consistently?

Illustration of Simple Projection

Computing

$$
\mathbf{n}(x) = \arg \min \sum_{i=1}^{N} \|\mathbf{n}^{T}(x - p_{i})\|^{2} \theta(||x - p_{i}||)
$$

need to solve Eigen value decomposition problem – heavier computation

Point Relaxation – Like Particles

- To achieve a uniform distribution of the particles
	- Neighbored particles are let to repel each other [Pauly et al., 02]
	- Every particle **p** exerts a force **f***ⁱ* (**p**) on its neighbored particles **p***ⁱ*

$$
\mathbf{f}_i(\mathbf{p}) = k(r - ||\mathbf{p} - \mathbf{p}_i||) \frac{\mathbf{p}_i - \mathbf{p}}{||\mathbf{p}_i - \mathbf{p}||}
$$

- The summation of all forces that act on a particle gives the resulting force
- Finally, the new positions of the particles are computed by explicit Euler integration
- After each iteration, the particles are projected back onto the surface by applying the projection operator.

Heuristic Outlier Removal Methods

- Erroneous points outside the object surface are *outliers* that have to be removed
- Three outlier criteria
	- $-$ All deliver an estimator $\chi(p) \in [0, 1]$ assigning the likelihood for a point sample **p** to be an outlier
	- $-$ All criteria are based only on **p**'s k-nearest neighbors $N_k(\mathbf{p})$.
- Outliers are finally removed by applying a threshold to the resulting outlier classification

Plane Fit Criterion

• Plane *H* minimizing the squared distances to **p**'s neighbors

$$
\min_{H} \sum_{\mathbf{q} \in \mathcal{N}_k(\mathbf{p})} \text{dist}(\mathbf{p}, H)^2
$$

- The plane fitting criterion is defined as: $x_{pl}(p) = \frac{d}{d + \bar{d}}$ – *d* is the distance of **p** to *H*
	- $-\bar{d}$ is the mean distance of points from $N_k(p)$ to H

Miniball Criterion

- A point comparatively distant to the cluster built by its *k*nearest neighbors is likely to be an outlier
	- $-$ The smallest enclosing sphere *S* around $N_k(p)$, can be considered as an approximation of the *k*-nearest-neighbor cluster
	- *d* is the distance from **p** to the center of *S*

for the diameter's increase with increasing number of k-neighbors at the object surface

Nearest-neighbor Reciprocity Criterion

- Based on the following observations:
	- A "valid" point sample **q** may be in the k-neighborhood of outlier
	- The outlier will most likely not be part of **q**'s k-neighborhood
- Such relationship can be expressed by means of a directed graph *G* of *k*-neighbor relationships
	- Outliers are assumed to have a high number of unidirectional exitant edges
	- (i.e., asymmetric neighbor relationship)

 q_3

 q_1

Nearest-neighbor Reciprocity Criterion

• Unidirectional neighbors of **p** are defined as

 $\mathcal{N}_{k,\text{uni}}(\mathbf{p}) = \{ \mathbf{q} \mid \mathbf{q} \in \mathcal{N}_k(\mathbf{p}), \mathbf{p} \notin \mathcal{N}_k(\mathbf{q}) \}$

- Bidirectional neighbors of **p** are $\mathcal{N}_{k,\text{bi}}(\mathbf{p}) = \{ \mathbf{q} \mid \mathbf{q} \in \mathcal{N}_k(\mathbf{p}), \mathbf{p} \in \mathcal{N}_k(\mathbf{q}) \}$
- The classifier is then expressed as:

$$
\chi_{\text{bi}}(\mathbf{p}) = \frac{\|\mathcal{N}_{k,\text{uni}}(\mathbf{p})\|}{\|\mathcal{N}_{k,\text{bi}}(\mathbf{p})\| + \|\mathcal{N}_{k,\text{uni}}(\mathbf{p})\|} = \frac{\|\mathcal{N}_{k,\text{uni}}(\mathbf{p})\|}{k}
$$

Integrated Classifier by all three criteria $\chi(\mathbf{p}) = w_1 \chi_{\text{pl}}(\mathbf{p}) + w_2 \chi_{\text{mb}}(\mathbf{p}) + w_3 \chi_{\text{bi}}(\mathbf{p})$ $\sum_i w_i = 1$

Heuristic Outlier Removal Results

*All criteria were threshold to classify 7% of the surfels as outliers

Robust Statistics Based Processing

- Robust local surface fitting and point projection
	- Fit a surface to the local shape around a sample **p**
	- **p** is projected onto the fitted surface
	- Normal vector at **p** is then estimated
- Problems to be solved
	- Noises
	- Outliers
	- Multiple structures

- When a model is correctly fitted, it should satisfy
	- There are as many as possible data points on or near the model
	- The residuals of inliers should be as small as possible
- **The least squares method only uses the second criterion as its objective function to minimize the residuals without distinguishing the inliers from outliers*
- A robust estimator is needed: MUSE, RANSAC, RESC, etc.

Surface Estimation by MDPE

- MDPE to find a quadratic surface best fitting a local shape
	- *p* points are randomly selected from *N*(**x**) of a sample point **x**
	- fit a quadratic surface *S* to these *p* points
	- the probability density power *DP* according to this fit is evaluated by the residuals of points in *N*(**x**) to *S*
	- **repeat** above steps for *m* times, and among the *m* fits, the surface with the **maximal score** in *DP* is the robust fitting result.
	- In [Sheung and Wang, 2009], they choose:
		- *p*=6 and fit a quadratic surface with 5 coefficients in a LS way with SVD.
		- The smaller *h* is used, the more sensitive to noises the estimator is.
		- However, some inliers may be ignored if *h* is too small.
		- By experience, *h* is selected as twice of the average point distance.

Normal Estimation & Point Projection

• Theoretically, the value of repeated times, *m*, relates to the probability *P* that at least one clean p-subset is chosen

$$
m = \frac{\log(1 - P)}{\log[1 - (1 - \varepsilon)^p]}
$$

where ε is the fraction of outliers.

- In practice, $m = 300$ is used in twofold:
	- We do not know the value of the fraction of outliers, ε

7

- Using a value of *m* computed by above formula still *cannot guarantee* to find a good fit among random selections
- After finding the best surface *S** (with maximum *DP*)
	- The projected position **x**' of **x** is the closest point **x***^c* on *S** to **x** (which can be searched by Newton's method)
	- The normal of surface *S** at **x***^c* is employed as the normal vector to equip **x**'.

Robust Moving Least Squares (RMLS)

- Conventional MLS surface defines a surface that is smooth everywhere, thus it cannot preserve sharp features.
- [Fleishman et al., 05] introduced a robust method, *forward search algorithm*, to identify the outliers & multiple-structure
	- Starting from a small outlier-free region estimated by an initial robust estimator
	- One good sample is added iteratively to re-fit the polynomial
	- Until the largest residual is greater than a certain threshold
	- One surface is then classified and the whole process is repeated until the sample set is empty

[http://www.sci.utah.edu/~shachar/Publications/rmls.pdf](http://www.sci.utah.edu/%7Eshachar/Publications/rmls.pdf)

Problems of RMLS

- How to obtain an outlier-free initial region?
	- *Least Median of Squares* (LMS)
	- *k*th ordered statistics is employed in [Fleishman et al., 05] to improve the efficiency
- However, such technique still cannot guarantee to obtain an outlier-free initial region
- Considering about the MDPE based approach it does not rely on the restrict condition of outlier-free

Comparison of MDPE and RMLS

One surface mis-classified on outliers

Conclusion

- Normal estimation
	- Principal Component Analysis (PCA)
	- Local surface fitting
	- Consistent orientation
- Denoising by projection simplified MLS projection
- Outlier removal and processing
	- Heuristic based removal methods
	- Robust statistic based processing
	- Any other suggestions?

Assignment 1 – Point Rendering

- Requirement:
	- To build the hash data structure of point set (e.g., 20 x 20 x 20 boxes)
	- To search *k* neighbors of each point with the help of hashing boxes
	- Using Principal Component Analysis (PCA) to compute the normal of every point by its neighbors
	- To display the point set with normals estimated from PCA

Assignment – Point Rendering (Cont.)

• Change point size in display (*Hint:* how about size of point? how to evaluate?)

glPointSize((float)(diameter))

• Point display with normal vectors

glNormal3f((float)nx,(float)ny,(float)nz);

glVertex3f((float)xx,(float)yy,(float)zz);

**Need to turn on the double-side display by*

glLightModelf(GL_LIGHT_MODEL_TWO_SIDE, 1.0);

• Change rectangular points into circular points glEnable(GL_POINT_SMOOTH);

// without this, the rectangle will be displayed for point $\overline{\phantom{a_{37}}\phantom{a_{37}}}$