
L7 – Layered Depth Normal Images

• Introduction
• Related Work
• Structured Point Representation
• Boolean Operations
• Conclusion

1

Introduction
• Purpose: using the computational power on GPU to speed

up solid modeling operations
• Models in many applications are with very complex shape

and topology
– virtual sculpting
– microstructure design
– rapid prototyping, etc.

2

Skull bones in
human skeleton

A test part built by SLA

Introduction (cont.)
• Boolean operations on models with massive

number of triangles (Wang et al., 2010)

3

941.9k Faces 497.7k Faces 213.3k Faces 780.4k Faces

 1.06 sec

On GeForce GTX 580

Presenter
Presentation Notes
Res. 512 x 512 (Total time: 1.06 sec.)
Res.1024 x 1024 (Total time: 1.36 sec.)

Introduction (cont.)
• Market available solid modelers: e.g., ACIS using B-rep

(speed? and robustness?)
• Existing free academic library: CGAL using complex data

structure (speed?)
• Volumetric Representation is a good choice because of

robustness
– How to efficiently convert from and to B-rep?
– How to effectively map to GPU?

• Our idea: ray-rep by Layered Depth-Normal Images (LDNI)
on GPU

4

Presenter
Presentation Notes
The method for computing Boolean operations needs to be discussed here.

Layered Depth-Normal Images

5

y-LDI

x-
LD

I
x

y

6 dx1 n1x n1y n1z

dx2

dx3

dx4

dx5

dx6

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

n5x n5y n5z

n6x n6y n6z

4 dy1 n1x n1y n1z

dy2

dy3

dy4

n2x n2y n2z

n3x n3y n3z

n4x n4y n4z

dx1

dx6

dy
1

Sampled depth on x-LDNI coupled with surface normal
Sampled depth on y-LDNI coupled with surface normal

Presenter
Presentation Notes
A 2D illustration

LDNI: a semi-implicit rep.

• A structure of three LDNIs sampled with rays along
x-, y- and z-axes

• All with w x w pixels – the same resolution
• Selecting origin carefully – form sampling grids with

w x w x w nodes
• Semi-implicit representation – easily detect whether

a point is inside / outside a solid

6

LDNI: Data Structure on GPU
• Stored as a list of 2D textures
• Maximum number of layers: nmax

• Special value M (e.g., ∞) – the white ones below

7

z x

y

sampling

Sampling B-rep into LDNI
• Input: 2-manifold mesh surface of a solid model’s

boundary
• Output: 2D textures for LDNI rep on GPU
• Similar to scan-conversion
• Accelerated on the GPU
• Two possible strategies:

– Depth-peeling using depth-buffer only
– Using stencil buffer
– Which one? Why?

 8

Sampling B-rep into LDNI (cont.)
• Why not depth-peeling?

– Based on the comparison of depth values
– Only one sample is collected when the ray passing

silhouette edge
– Lead to the ambiguous
 of inside / outside detection

– Although the samples
 have been sorted
– Such ambiguity can hardly
 be recovered
 9

Odd number of samples are reported

Sampling B-rep into LDNI (cont.)
• Problem can be solved by using stencil buffer

– Multiple rendering (nmax)
– Only allow kth fragment pass
– k = 1, …, nmax

• Limitation
– Stencil buffer – only 256
– Solution: volume tiling

• Not only depth value
• But also normal

– Reason why called LDNI

10

Even number of samples are
reported

Sampling B-rep into LDNI (cont.)
• For a model with m triangles, the amount of data

communication (the bottleneck of GPU-CPU computing)
• Without Shader Program

– 3m vertices – 9m x 4 bytes for position
– m normal vectors – 3m x 4 bytes
– Total 48m bytes

• With Shader Program (speed up >5 times)
– n vertices – 3n x 4 bytes for position (with n ≈ 0.5m)
– m indices – 3m x 4 bytes
– Total 18m bytes

 11

Boolean Operations on LDNI
• Inherit the simplicity of Boolean on ray-rep
• Highly parallel – computing on rays of LDNI

12

HA

HB

Union

Intersection

Subtraction

Boolean Operations on GPU
• On each ray, go through the samples on HA and HB by their

depths (in parallel)
• nVIDIA CUDA is selected for the implementation
• To ease the implementation, LDNI rep is mapped to a 1D

array
– Instantly by DirectX
– But takes a relatively long time by OpenGL

• Result in a new 1D array

13

Robustness Enhancement
• A step of small interval removal

– 1D volume or gap less than ε
– ε = 10-5 as single precision float is sampled for depth
– 10-7 is almost the smallest number that can be exactly

represented by single precision float
• The step of small interval removal can be incorporated into

the Boolean algorithm
• Tangential-contact can be well processed

14

Merge

Contouring LDNI Solid to B-rep
• Cells are formed by the rays

– We do not explicitly construct
– Inside / outside of nodes
 are detected on-site
– Inconsistency: overcome
 by majority vote

• An algorithm with two-passes

15

x

y
z

Contouring LDNI Solid to B-rep (cont.)
• First Pass: construct vertex table

– Vertices are constructed in the boundary cells
– A vertex in the cell [i, j, k] is given a unique ID
 ID = (i (w - 2)2 + j (w - 2) + k)
– Position: determined by a position minimizing QEF

• Therefore, sharp features can be reconstructed
• Second Pass: construct face table

– Check the edge of cells – if there is an inside/outside change
– A quadrilateral face by linking vertices in its four neighboring

cells – by outputting the vertex IDs

16

Experimental Results
• Statistics of sampling and memory usage

– The tests are conducted at the resolution of 256 x 256
– On a consumer level PC with Intel Core 2 Quad CPU Q6600

2.4GHz + 4GB RAM and GeForce GTX295

17

Model Faces Vertices Sampling Memory

Buddha 498k 249k 0.484s 42MB

Truss 942k 467k 1.015s 146MB

Bunny 70k 35k 0.094s 32MB

Dragon 277k 128k 0.295s 36MB

Truss2 1,026k 510k 1.059s 118MB

Experimental Results (cont.)

18

Bunny: 70k faces
Truss2: 1,026k faces

Intersection: 0.077s Contouring: 0.625s

Experimental Results (cont.)

19

Dragon: 277k faces
Bunny: 70k faces

Subtraction: 0.030s

Contouring: 1.216 sec

Experimental Results (cont.)

20

Mickey: 42.9k faces
Octa-flower: 15.8k faces
Union: 0.016 sec
Contouring: 0.686 sec

Success in Tangential
Contact Case

Testing on ACIS and CGAL

Example ACIS CGAL GPU
Sampling

GPU
Boolean

GPU
Contouring

Mickey &
Octa-flower

66.409 sec Fail 0.422 sec 0.030 sec 1.216 sec

Box &
Sphere

43.388 sec 0.864 sec 0.125 sec 0.016 sec 0.484 sec

Others Fail Fail < 2 sec < 0.2 sec < 1.5 sec

21

 For comparison
 An implementation using ACIS R15
 An implementation using CGAL ver 3.4

Charlie C.L. Wang, Yuen-Shan Leung, and Yong Chen, "Solid modeling of polyhedral objects by
Layered Depth-Normal Images on the GPU", Computer-Aided Design, vol.42, no.6, pp.535-544, June
2010.

 [Video]

https://www.youtube.com/watch?v=Oe3rUWWn06Y

Limitation on Current Implementation

• Memory Usage
– Processing a dense manner
– LDNI is actually sparse (could be improved)

• Rotation sensitive

– Need a continuous representation

• Lack of other solid modeling operations

22

Data Structure: Sparse vs. Compact

23

Compact Representation
can be generated by:
Prefix-sum Scan

Two Arrays:
1) 2D Index Array
2) 1D Data Array

Surface Modeling from Multi-Material
Volumetric Data

24

hRay-rep: Extended Ray-rep for Heterogeneous
Solids

• Regions with different materials are presented in different
colors

25 y-Viewing Plane

x-
Vi

ew
in

g
Pl

an
e

Region with Material 1

Region with Material 2

Region with Material 3

Converting Multi-Material Volumetric Data
into a hRay-rep

26 y-Viewing Plane

x-
Vi

ew
in

g
Pl

an
e

Mesh Generation on hRay-rep of Heterogeneous
Solid Using Octree

• The step of octree construction takes the majority of
computing time, which however can be processed in
parallel easily.

27

Other Results

28

29

30

Bone model with six
different material regions

31

32

Other Solid Modeling Operations
• Offsetting: parallel implementation on CPU with multiple

cores (6.35 sec on 8-cores)

33 400k faces

Other Solid Modeling Operations
• Minkowski Sum: parallel implementation on CPU with

multiple cores (14.46 sec on 8-cores)

34

Parallel Computing of General Convolution
Surface

• Samples are
from three
groups

35

y-Viewing Plane

x-
Vi

ew
in

g
Pl

an
e

Solid on ray formed by a pair of Group I samples

Solid on ray formed by a pair of Group II samples

Solid on ray formed by a pair of Group III samples

Super-Ellipsoid
• Analytically evaluated
• Covering many shapes

36

Charlie C.L. Wang, "Computing on rays: a parallel approach for surface mesh modeling from multi-
material volumetric data", Computers in Industry, vol.62, no.7, pp.660-671, September 2011.

	L7 – Layered Depth Normal Images
	Introduction
	Introduction (cont.)
	Introduction (cont.)
	Layered Depth-Normal Images
	LDNI: a semi-implicit rep.
	LDNI: Data Structure on GPU
	Sampling B-rep into LDNI
	Sampling B-rep into LDNI (cont.)
	Sampling B-rep into LDNI (cont.)
	Sampling B-rep into LDNI (cont.)
	Boolean Operations on LDNI
	Boolean Operations on GPU
	Robustness Enhancement
	Contouring LDNI Solid to B-rep
	Contouring LDNI Solid to B-rep (cont.)
	Experimental Results
	Experimental Results (cont.)
	Experimental Results (cont.)
	Experimental Results (cont.)
	Testing on ACIS and CGAL
	Limitation on Current Implementation
	Data Structure: Sparse vs. Compact
	Surface Modeling from Multi-Material Volumetric Data
	hRay-rep: Extended Ray-rep for Heterogeneous Solids
	Converting Multi-Material Volumetric Data into a hRay-rep
	Mesh Generation on hRay-rep of Heterogeneous Solid Using Octree
	Other Results
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Other Solid Modeling Operations
	Other Solid Modeling Operations
	Parallel Computing of General Convolution Surface
	Super-Ellipsoid

