$\widetilde{\mathbf{T}}$ UDelft

Topology Optimization for Computational Fabrication

Jun Wu Depart. of Design Engineering j.wu-1@tudelft.nl

Bone Chair by Joris Laarman

Optimization of Bone Chair by Lothar Harzheim & Opel GmbH

Schedule

- Basics of Topology Optimization (45')
- Break (15')
- Topology Optimization for Additive Manufacturing (45')
- Break (15')
- Exercises and Assignment (45')

Topology Optimization Examples

Frustum Inc. **Airbus APWorks**, 2016

Qatar national convention

Classes of Structural optimization: Sizing, Shape, Topology

A Toy Problem

• Design the stiffest shape, by placing Lego blocks into a grid of 20×10

A Toy Problem: Possible Solutions

• Number of possible designs

$$
- C(200,60) = \frac{200!}{60!(200-60)!} = 7.04 \times 10^{51}
$$

• Which one is the stiffest?

A Toy Problem: Possible Solutions

• Which one is the stiffest?

A Toy Problem: Possible Solutions

• Which one is the stiffest?

Topology Optimization Animation

Minimize: Subject to: $KU = I$

$$
\begin{array}{|c|c|}\n\hline\nc = \frac{1}{2} U^T K U \\
\hline\nK U = F \quad \longleftarrow \quad \text{Static equation}\n\end{array}
$$

Elastic energy
$$
c = \frac{1}{2}fu = \frac{1}{2}ku^2
$$

Static equation $ku = f$

Minimize: 1 2 U^TKU Subject to: $KU = F$ Elastic energy Static equation

$$
\rho_i = \begin{cases} 1 & \text{(solid)} \\ 0 & \text{(void)} \end{cases}, \forall i \quad \text{Design variables}
$$
\n
$$
g = \sum_i \rho_i - V_0 \le 0 \text{ Volume constraint}
$$

 $c =$

 $\frac{1}{2}$

Minimize:

Subject to: $KU = F$

$$
\rho_i = \begin{cases} 1 & \text{(solid)} \\ 0 & \text{(void)} \end{cases}, \forall i
$$

$$
g = \sum_i \rho_i - V_0 \le 0
$$

 U^TKU

Topology Optimization Animation

Relaxation: Discrete to Continuous

Minimize:
$$
c = \frac{1}{2}U^TKU
$$

\nSubject to: $KU = F$

\n
$$
\rho_i = \begin{cases} 1 & \text{(solid)} \\ 0 & \text{(void)} \end{cases}, \forall i \quad \implies \quad \rho_i \in [0, 1]
$$
\n
$$
g = \sum_i \rho_i - V_0 \le 0
$$

• Motivation: (Difficult) binary problem \rightarrow (easier) continuous problem

Material Interpolation

- Material properties: Young's modulus E , and Poisson's ratio ν
- SIMP interpolation (Solid Isotropic Material with Penalization)
	- $-E_i = \rho_i^{\ \ p} \overline{E}$
	- $-p \geq 1$, typically $p = 3$

Voigt $(p=1)$

Sensitivity Analysis

- Sensitivity: The derivative of a function with respect to design variables
- ∂c $\partial \rho_i$ = − \overline{p} $\frac{p}{2}\rho _{i}^{p-1}u_{i}^{T}\overline{K}u_{i}$
	- Smaller than zero
- ∂g $\partial \rho_i$ $= 1$

Minimize: $c =$ 1 2 U^TKU Subject to: $KU = F$ $\rho_i \in [0,1]$ $g = \sum_i \rho_i - V_0 \leq 0$

Design Update

- Mathematical programming
	- Interior point method (IPOPT package)
	- The method of moving asymptotes (MMA)
- Optimality criterion
	- If " $-\frac{\partial c}{\partial \zeta}$ $\partial \rho_i$ " is large, increase ρ_i
	- Otherwise, decrease ρ_i
	- How to determine large or small?
	- Bisection search for a threshold

Checkerboard Patterns

Convolution Operation

 $\mathbf{1}$

 $\overline{2}$

 $\,8\,$

 $\overline{2}$

 $\overline{4}$

 $\mathbf{1}$

 $\overline{2}$

Output Image

Demo

• www.topopt.dtu.dk

Minimize:

Subject to:

$$
c = \frac{1}{2} U^T K U
$$

\n
$$
KU = F
$$

\n
$$
\rho_i \in [0,1], \forall i
$$

\n
$$
g = \sum_i \rho_i - V_0 \le 0
$$

Geometric Multigrid: Solving $Ku = f$

- Successively compute approximations u_m to the solution $u = \lim_{m \to \infty} u_m$ $m\rightarrow\infty$
- Consider the problem on a hierarchy of successively coarser grids to accelerate convergence

Memory-Efficient Implementation on GPU

- On-the-fly assembly
	- Avoid storing matrices on the finest level
- Non-dyadic coarsening (i.e., 4:1 as opposed to 2:1)
	- Avoid storing matrices on the second finest level

Wu et al., TVCG'2016

30

Dick et al., SMPT'2011

High-Resolution Design

Resolution: $621 \times 400 \times 1000$ #Element 14.2m Time: 12 minutes

Kitten

Resolution: 262 × 238 × 400 # Elements: 8 million Target volume reduction: 60%

Larsen et al. 1997 **Negative Poisson's ratio**

Sigmund &Torquato 1996 **Negative thermal expansion**

Sigmund 2000 **Electric actuator**

A General Formulation

Minimize: $c(\rho)$ Subject to: $\rho_i \in [0,1]$, $\forall i$ $g_i(\rho) \leq 0$

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing

Additive Manufacturing: Complexity is free

TU Delft & MX3D, 2015 **Van Constructed Server Scott Summit** Joshua Harker **Scott Summit**

Complexity is free? … Not really!

- Printer resolution: Minimum geometric feature size
- Layer-upon-layer: Supports for overhang region
- Shell-infill composite

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
	- Geometric feature control by **density filters**
	- Geometric feature control by **alternative parameterizations**

Messerschmidt-Bölkow-Blohm (MBB) beam

Messerschmidt-Bölkow-Blohm (MBB) beam

Geometric feature control by density filters (An incomplete list)

Reference

Minimum feature size, Guest'04 **Coating structure, Clausen'15**

Self-supporting design, Langelaar'16 Porous infill, Wu'16

Infill in 3D Printing: Regular Structures

Can we apply the principle of bone to 3D printing?

Topology Optimization Applied to Design Infill

Topology Optimization Applied to Design Infill

- Materials accumulate to "important" regions
- The total volume $\sum_i \rho_i v_i \leq V_0$ does not restrict local material distribution

Bone-like Infill in 2D

Cross-section of a human femur

Approaching Bone-like Structures: The Idea

• Impose **local constraints** to avoid fully solid regions

Min:
$$
c = \frac{1}{2}U^{T}KU
$$

s.t.:
$$
KU = F
$$

$$
\rho_{i} \in [0,1], \forall i
$$

$$
\sum_{i} P_{i} \leq V_{0}
$$

$$
\widehat{\rho_{i}} \leq \alpha, \forall i
$$

Local-volume measure

$$
\widehat{\rho}_i = 0.0
$$

$$
\widehat{\rho}_i=0.6
$$

 $\widehat{\rho}_i = 1.0$

Constraints Aggregation (Reduce the Number of Constraints)

$$
\widehat{\rho_i} \leq \alpha, \forall i \quad \Longleftrightarrow \quad \left| \max_{i=1,\dots,n} |\widehat{\rho_i}| \leq \alpha \right| \Longleftrightarrow \quad \lim_{n \to \infty}
$$

$$
\lim_{p \to \infty} ||\rho||_p = \left(\sum_i (\widehat{\rho_i})^p\right)^{\frac{1}{p}} \le \alpha
$$

Too many constraints! A single constraint

But non-differentiable

A single constraint and differentiable Approximated with $p = 16$

Optimization Process: The same as in the standard topopt

• Impose **local constraints** to avoid fully solid regions

 $\sum_{j\in\varOmega_i}\rho_j$

 $\sum_{j\in\varOmega_i}1$

 $\widehat{\rho_i} =$

51

A Test Example

Effects of Filter Radius and Local Volume Upper Bound

Local + Global Volume Constraints

Result: 2D Animation

xPhys

Result: 2D Animation

Robustness wrt. Force Variations

• Porous structures are significantly stiffer (126%) in case of force variations

Robustness wrt. Material Deficiency

• Porous structures are significantly stiffer (180%) in case of material deficiency

 $c = 76.83$ c = 93.48 $c' = 242.77$ c'= 134.84

Total volume constraint

Local volume constraints

Bone-like Infill in 3D

Infill in the bone **Optimized bone-like infill**

FDM Prints

61

It's what's on the inside that matters

Video

Geometric feature control by density filters (An incomplete list)

Reference

Minimum feature size, Guest'04 **Coating structure, Clausen'15**

Self-supporting design, Langelaar'16 Porous infill, Wu'16

Concurrent Shell-Infill Optimization

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
	- Geometric feature control by **density filters**
	- Geometric feature control by **alternative parameterizations**

Geometric feature control by alternative parameterizations (An incomplete list)

Offset surfaces, Musialski'15

Overhang in Additive Manufacturing

• Support structures are needed beneath overhang surfaces

https://www.protolabs.com/blog/tag/directmetal-laser-sintering/ 69

Support Structures in Cavities

• Post-processing of inner supports is problematic

Infill & Optimization Shall Integrate

Solid, Unbalanced Optimized, Balanced

With infill, Unbalanced

The Idea

- Rhombic cell: to ensure self-supporting
- Adaptive subdivision: as design variable in optimization

Rhombic cell **Adaptive subdivision**

Self-Supporting Rhombic Infill: Workflow

Self-Supporting Rhombic Infill: Results

- Optimized mechanical properties, compared to regular infill
- No additional inner supports needed

Wu et al., CAD'2016

Mechanical Tests
Mechanical Tests

Dis. 2.11 mm

Dis. 4.08 mm

Force 90 N

Force 58 N

Outline

- Basics of Topology Optimization
- Topology Optimization for Additive Manufacturing
	- Geometric feature control by **density filters**
	- Geometric feature control by **alternative parameterizations**

Bone-inspired infill **Self-supporting infill**
Topology Optimization

- Lightweight
- Free-form shape
- Customization
- Mechanically optimized

Additive Manufacturing

- Customization
- Geometric complexity

Thank you for your attention!

Jun Wu Depart. of Design Engineering, TU Delft www.jun-wu.net j.wu-1@tudelft.nl

