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1.1 Introduction
Layered manufacturing plays an important role in industry. It fabricates an input 3-D model by
adding material in the layer-by-layer pattern. Layered manufacturing is widely used in applications
such as biomedical engineering, aerospace industry, and automotive industry. Most layered manu-
facturing processes require the input model to be represented in STereoLithography (STL) format,
which defines the object as a raw unstructured triangulated surface by the unit normals and ver-
tices (ordered by the right-hand rule) of the triangles using a 3-D Cartesian coordinate system. A
set of parallel planes are used to intersect with the triangulated surface of the object as the slicing
strategy, and the intersection contours are traced on each slice. Non-manifold features like self-
intersection, degenerated triangles, or gaps will always lead to problematic contours. The existing
commercial software packages implement heuristic rules to deal with such problematic contours.
For example, cutting the singular point at which the contour has a self-intersection (as shown in
Figure.1.1). However, these heuristic rules do not fundamentally solve the problem. Consequently,
incorrect part region classification will lead to incorrectly fabricated layers, either with unwanted
gaps (see Figure.1.2 from [11]) or membranes. The models shown in Figure.1.2 are fabricated by
fused deposition modeling (FDM).

In this chapter, we investigate robust and efficient approaches for layered manufacturing process
planning directly applied on an implicit solid, which is reconstructed from point cloud or volumetric
images in the reverse engineering context. Approaches are developed in image space for the two

3



4 Algorithms for Layered Manufacturing in Image Space

FIGURE 1.1: Heuristic used by commercial software to deal with problematic contour. The self-
intersected contour will be cut at the intersection point to form separated contour(s) as a result.
Only the regions surrounded by closed contours are classified as parts inside the input model – i.e.,
the yellow regions in this figure. However, this heuristic rule does not succeed in all cases: (a) a
successful case and (b) a failed case that will lead to a layer with most of its part material missing.

FIGURE 1.2: Incorrect contours generated by slicing a given model will produce a model with
unwanted gaps (and/or membranes) in layered manufacturing: (a) a given Buddha model in implicit
representation [actually layered depth-normal images (LDNI) [4]], (b) the correct model fabricated
from contours generated by presented approach, (c) the problematic object fabricated by slicing the
locally self-intersected polygonal model extracted from (a) using a variation [29] of dual-contouring
[13], and (d) a magnified view of the incorrect layer.

main steps in process planning: support generation and slicing. The effectiveness of the presented
approach is demonstrated on the actual fabricated parts by layered manufacturing. In particular, the
chapter makes the following contributions:

• For a given implicit solid and its slicing data {li}, we generate a reliable general support
region on a binary image, and optionally, its boundary contour. The self-support area of the
part is excluded as much as possible to save support material. Proofs of these properties are
given (see Section 1.4).

• Compared with conventional polygon-based region subtraction, the presented approach is
based on a binary set and uses binary Boolean operations and integer arithmetic. This makes
it more robust and easy to implement (see Section 1.4 for details).

• For an r-regular solid represented by the implicit indicator function (i.e., ”−” for inside and
”+” for outside), a method is presented to generate contours that are topologically faithful,
self-intersection free, and with the shape approximation error controlled. As a direct slicing
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approach, it is efficient in computation and memory usage. Only the information on a partic-
ular slicing plane is involved. This is different from those techniques which first polygonize
an implicit solid into B-reps and then generate contours from B-rep ([6]).

A flow diagram of sections in this chapter is given in Fig.1.3. We assume the input model H satis-
fies the r-regular property. The sampling resolution is chosen based on the rapid prototype machine
specification in order to fabricate a topologically correct part. After the binary image sampling, all
the subsequent processes are independently for each slicing image li. Region subtraction is used
to calculate the support structure region if necessary. Note that we use Si to represent the general
support region directly produced by the region subtraction method. It can be further processed to
produce specific support region for specific layered manufacturing processes like FDM and Stere-
olithography (SLA). At last, topologically faithful contours can be generated for both part region
and support structure region if needed. The rest of this chapter is organized as follows. Section 1.2
provides a literature review of the related work in layered manufacturing. Section 1.3 describes how
to choose the binary image sampling resolution based on machine specification. Support structure
generation based on region subtraction is discussed in Section 1.4 and several test results are pro-
vided specifically for support generation. Section 1.5 describes the topologically faithful contour
generation for any region on a binary image. Several results are shown to highlight the advantage
of the proposed contour generation method. Section 1.6 provides the conclusion and also discusses
the future work.

1.2 Literature Review
This section reviews the related work in layered manufacturing.

1.2.1 Slicing-based Support Generation

Most layered manufacturing processes generate a support structure based on the respective STL
model [20]. The most common method for generating a support structure is to determine whether
the angle between an overhang facet and horizontal plane is big enough to withstand the weight of
material. This can be easily performed by computing the dot product of facet normal vector and
horizontal vector ( [15, 30, 25, 12]). Chalasani et al. [3] use 2-D slicing data to determine the
support region in each layer for FDM. This method calculates the shadow region between adjacent
layers, and checks whether the overhang in the shadow is big enough for adding support. Recently,
Qian et al. present an slicing-based support generation for SLA in [21]. Their approach calculates
the difference between two adjacent layers as shadow region. After that, they detect the self-support
region by offsetting the lower slicing contour for a distance that is a material-dependent threshold,
and subtract the resultant contour from the shadow region. However, this approach may cause some
area missing support, which will be explained and solved in Section 1.4.2.

We recently published a paper which use binary image to perform implicit solid slicing for lay-
ered manufacturing [11]. The binary image has the advantage of robustness for 2-D solid modeling
operations like Boolean, Offsetting, and Minkowski Sum. Moreover, the morphological operations
on binary image makes it more useful to perform two-dimensional geometric processing [26, 10].
Couprie and Bertrand [7] introduced a morphology-based sequential filter for smoothing 2-D and
3-D objects. In their paper, they use the distance map computed by Euclidean distance mapping
(UDM) ([8]) to control the radius of the element structure for morphological operations. This in-
spired us in developing the conservative growing-swallow method described in Section 1.4.2.
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FIGURE 1.3: Flow chart of the chapter.

1.2.2 Direct Slicing on Implicit Solid

The problem of directly slicing an implicit solid involves the computation of the intersection be-
tween the solid and a plane. According to the review in [19], all available methods can be classified
into two categories: analytical and numerical. Analytical methods find precise intersection points
by solving polynomial equations derived from implicit surface representation (e.g., [9]). However,
these methods can only be applied to algebraic surfaces and the computing speed in general is slow.
Numerical strategies like subdivision [17] and marching [2, 1] do not require precise analytical
representation of surface boundary. Subdivision methods intersect a tessellated piecewise linear
approximation of the given implicit surface with a plane, which have the problem that some small
intersection loops will be missed if the subdivision stops at an improper level. Marching-based
methods (e.g. [31]) always start from an initial point, and then proceed to march along a curve, but
they suffer from robustness problem at critical points of contours (i.e., the point where two loops
join into one). Tracing-based contour generation algorithms like [31] may also miss some small
loops. In a follow-up work in [22], the authors divide the moving least-square (MLS) surfaces into
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several slabs with each slab having the same topology, then use a tracing strategy to generate con-
tours for each slab separately. However, unlike the presented approach, their method is specialized
for MLS surface and they do not provide rigorous proof of the self-intersection free property and
the topological faithfulness as the presented recent approach in [11].

1.3 Sampling and Accuracy
The appropriate sampling rate to guarantee the extraction of topologically faithful contours is ana-
lyzed by briefly reviewing the relevant definitions and theorems given in [24].

Definition 1. A solid H ⊂ ℜ3 is called r-regular if, for each point p ∈ ∂H, there exist two
osculating open balls of radius r to ∂H at p such that one lies entirely in H and the other lies
entirely outside.

Theorem 1. For an r-regular solid H, the boundary surface, M, generated by a topology preserving
method on cubic grids is r-homeomorphic to the exact surface boundary, ∂H, if the cube width r′
of grids satisfies

√
3r′ < r.

The above definition and theorem are derived from Definition 1 and Theorem 16 of [24], which
is the foundation of binary image sampling and topologically faithful contouring. The term r-
homeomorphic means that the reconstructed boundary surface M can be deformed into ∂H within
distance r by morphology operation without changing topology. Note that r′ here is different from
r′ used in [24]. Details about the topology preserving methods can also be found in [24].

For a given implicit solid H = {p| f (p)≤ 0,∀p ∈ ℜ3} and a slicing plane P, a contour C = M∩P
is defined as a topologically faithful contour when M is a surface r-homeomorphic to the exact
surface boundary, ∂H, of H. For an implicit solid H and a set of slicing data {li} which are binary
images with pixel width r′, support regions Si are generated for layer li. Each slicing layer li contains
part region Pi on the binary image. A support region Si for li is defined as a reliable support region
when Pi

⋃
Si

⋃
∆(Pi+1,Pi,d) ⊇ Si+1

⋃
Pi+1 where Pi+1,Si+1 are the part region and support region,

respectively, on li’s above adjacent layer li+1 and ∆(Pi+1,Pi,d) represents the region in Pi+1 that
does not need support due to the self-support effect. d is a given threshold for self-support region
detection for any two adjacent layers. Essentially, Si can be considered as reliable if the support
region Si plus the part region Pi on li is larger than the region needed to be supported on li+1, which
is the support region Si+1 plus the part region Pi+1 minus the self-supported region ∆(Pi+1,Pi,d).
For example, for the case shown in Fig.1.8(a), the yellow region represents the self-support region
∆(Pi+1,Pi,d) in Pi+1. Assume there is no support region Si+1 on layer li+1, the support region Si
needs to satisfy that Si

⋃
Pi is larger than Pi+1−∆(Pi+1,Pi,d) in order to be reliable. The relationship

can be represented as Pi
⋃

Si ⊇ Si+1
⋃

Pi+1−∆(Pi+1,Pi,d) and after simple manipulation, we can get
Pi

⋃
Si

⋃
∆(Pi+1,Pi,d) ⊇ Si+1

⋃
Pi+1. The support region Fi generated specifically for FDM will be

shown to be reliable in Section 1.4.3. On binary image, the regions like Pi are discretized into pixels
and their corresponding boundaries are represented by contours consisting of line segments. In this
chapter, a method is developed to compute region Si on a binary image which satisfy (1) the region
Si is reliable and (2) the area of Si is reduced as much as possible by excluding the self-support area
to save supporting material.

1.3.1 Sampling

To generate topologically faithful contours so that a model homeomorphic to the exact boundary
of H can be fabricated from them, the 2D solid, H ∩ P, is sampled into a binary image I and
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FIGURE 1.4: A binary image sampled from a Dragon solid: (a) the solid H is intersected by a
slicing plane P, (b) the region of H ∩P on the binary image, and (c) a zoom-view of the binary
image, where the nodes inside H ∩P are displayed in solid dots while outside nodes are shown in
hollow.

then generates a contour C̃ from I. The following propositions are derived to guarantee that C̃ is
topologically faithful.

Proposition 1. For a r-regular solid H, the contour generated by a topology preserving method on
square grids is topologically faithful if the width r′ of the squares satisfies

√
3r′ < r.

Following this proposition, a binary image I is sampled from H∩P on the slicing plane P with the
pixel distance r′. The first step is to rotate the given solid H into the coordinate system with x-o-y
plane parallel to the slicing plane P. Then, the dimension of the binary image can be determined
by the intersection between P and the bounding box of H. The resolution is defined according to
the value of r′. Figure.1.4 shows an example of the binary image sampled from a solid of Dragon
model. Note that the sampling of binary image is not limited to the planes perpendicular to the
major axes. As long as the in/out membership tests can be efficiently conducted on the given solid
H, the binary image can be generated on a slicing plane in any orientation.

After obtaining a binary image, the marching square method introduced in [18] is used to generate
an approximate contour C̄0 that is topologically faithful. Defining the edge on a square grid with
different in/out status on its two endpoints as a stick, the contour C̄0 can be formed by the line
segments linking the middle points of sticks in all grids. Note that, in the rest of this section,
endpoints are not included when we refer to a stick (i.e., it is defined on an open interval). Figure.1.5
shows the lookup table we used in marching square method to construct contour edges.

Proposition 2. The contour generated by using the lookup table shown in Fig.1.5 is topologically
faithful.

The lookup table is derived from the topology preserving contouring method (e.g., Ball Union) in
[24] by considering the boundary of the 3-D grid in [24] as the planar square grid (defined in binary
image) here. Contour edges E are built up based on the in/out classification of the four grid nodes
(pixels on a binary image).

1.3.2 r-Regularity and Accuracy in Layered Manufacturing

The contour generated by the above method is ensured to be on a surface homeomorphic to the
boundary of a r-regular solid H. Although not all implicit solids are r-regular, this assumption
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FIGURE 1.5: Lookup table for the marching square method with topology preserved. Sticks are in
yellow. Sampling nodes inside the solid H are shown in black while the outside nodes are displayed
in white. The contour edges linking sticks are labeled as E. Taking into consideration the rotational
symmetry, the in/out configurations of the four corner nodes for a grid containing sticks can be
classified into the listed four cases shown in (a), (b), (c), and (d). For each grid with sticks, its
corners’ in/out configuration can be found among the four cases and the contour edge can be created
accordingly.

FIGURE 1.6: An example model fabricated from the contours generated by the proposed method
with r′ = 0.101 mm: (a) the given Donna model in the LDNI representation, (b) the sliced contours
of respective layers at 58.42, 76.2, and 92.96 mm heights, and (c) the resultant model fabricated by
FDM.

is reasonable for the models to be fabricated by layered manufacturing. The value of r actually
relates to the smallest component that can be fabricated by an rapid prototyping machine (e.g., the
diameter of plastic filaments on an FDM machine as well as the finest position that can be provided
by motion controller). Most commercial x-y positioning systems used in rapid prototyping can
achieve the precision of 10−2 mm. The diameter of plastic filaments is usually greater than 10−1

mm. Moreover, for an implicit solid represented by LDNI [4, 29], the accuracy of the solid is also
limited by the resolution of LDNI. It is meaningless to make the grid width of binary image smaller
than that of LDNI. As an example, for the case of the Donna model shown in Fig. 1.6, we choose
r′ = 0.101 mm to generate the binary images, slightly larger than that of LDNI (0.099 mm). Usually,
selecting r′ with a value no larger than 0.125 mm is good enough for models fabricated by FDM.
In addition, all solid models can be processed to r-regular using the techniques like morphological
operators.
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1.4 Reliable and Robust Region Subtraction for Support Generation
The support structure can be used to support overhangs, keep stability for the part to prevent from
tipping over during the fabrication, support large flat walls, and prevent excessive shrinkage. De-
pending on the layered manufacturing process and corresponding process planning method, the
support structure can be either generated directly on the STL model before slicing or calculated on
each layer from part slices. In the proposed approach, generating the support structure from part
slices is preferred because directly using the slicing data eliminates the handling of the flaws in the
STL model. With the road-width, material, and other parameters selected, the self-support feature
can also be detected on each layer in order to save support material and cleaning time.

For two adjacent layers, region subtraction represents the subtracting of the lower layer part re-
gion from the upper layer regions (including part region and support region) that need support. The
output of region subtraction is the support region for the lower layer. Conventional approaches use
polygonal offsetting and Boolean operations to implement region subtraction. These polygonal op-
erators are based on numerical computation, which is not as robust as binary discrete operation,
especially for some extreme cases like tangential contact regions. The robustness problem of polyg-
onal operators will lead to slow processing, incorrect support region generation, or even program
crash. On the other hand, in order to detect the self-supported regions, one needs to offset the
polygon of part slice, which may introduce self-intersection. For polygonal operations, this method
usually suffers from numerical pruning in algorithms. This leads to non-robust and tedious im-
plementation. Although the presented approach has a layer-wise context, it starts from the discrete
slicing data which are actually a set of binary images. Figure 1.7 shows two physical parts processed
using the presented direct slicing and layer-wise support generation method, and the physical mod-
els are fabricated by FDM and SLA, respectively.

Recall that for a given implicit solid H and a set of slices {li} which are binary images with pixel
widths r′, support regions Si are generated on li satisfying the reliability property, which is defined
in Section 1.3. The region subtraction approach consists of three steps. Suppose li is going to be
processed, first, using boolean operation subtraction to compute Ψi = Pi+1−Pi in which Ψi is called
shadow for layer li. Ψi is the potential region that will be processed to generate the support region.
Next, an intermediate region S̃i is computed by a growing-swallow method which conservatively
excludes the self-support region ∆(Pi+1,Pi,d) from Ψi. The self-support region is a part of the region
in Pi+1 on layer li+1 that does not need support on layer li due to the self-support effect (i.e., the lower
layer part region Pi will provide support effect around its boundary for the upper layer part region
Pi+1). It is defined as the area of shadow region which satisfies two conditions. The first is to fall in
the region Γ(Pi,d)−Pi. The second is to have a connection path to Pi ∩Pi+1 and the path entirely
lies in the region Γ(Pi,d)−Pi (see Figure.1.8). Γ(Pi,d) indicates the outward offset region of Pi for
distance d. Note that in [21], the self-support region is excluded by subtracting Γ(Pi,d)−Pi from
Ψi. This will cause some non-self-support region classified as self-support region [the green region
in Figure.1.8(b)], and thus not supported at all. The growing-swallow method introduced in this
chapter will not suffer from this problem and can detect any self-support region correctly. Finally,
the support region Si+1 is projected from the above layer to current layer and computes Si+1

⋃
S̃i−Pi

as Si. Optionally, a self-intersection free and error-bounded contour extraction method is employed
to generate contour from Si. The region subtraction is general for the layered manufacturing process
which generates the support structure based on slicing layers. In this section, we also introduce the
support generation method employing the region subtraction technique for both FDM and SLA.
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FIGURE 1.7: Physical parts demonstration for slicing and support generation using FDM, and
SLA. The input dragon model is represented by LDNI (1024×1024×1024) and with size 50.80×
22.86×35.81 mm3 and 76.2×34.29×53.85 mm3 for FDM and SLA respectively. The grid width
of binary image and the layer thickness is set as 0.135 mm and 0.101 mm for SLA, and 0.076 inch
and 0.177 mm for FDM. The values of these parameters are selected according to the specification
of RP machines.

1.4.1 Preliminary

We review some basic notations of mathematical representation on a binary image, which will
be used in this chapter. We denote the set of relative integers by Z and the discrete 2-D space
by Z2. A point x ∈ Z2 is represented by (x1,x2) with x1,x2 ∈ Z. For x ∈ Z2,r ∈ R, we use
Cd(x) to represent a circle with radius d and centered at x, with the definition Cd(x) = {y ∈
Z2,Dist(x,y) ≤ d}, where Dist(x,y) is the distance between two points in Z2 and is defined as
Dist(x,y) =

√
(x1 − y1)2 +(x2 − y2)2. The morphological operation dilation by Cd(x) is defined

as γd(X) =
⋃

x∈X Cd(x). X is a subset in Z2 on which the dilation operation γd is applied. The
circle Cd(x) is called the structure element of the dilation (see Fig.1.9). For a morphological op-
erator α , its dual operator ∗α can be defined by: ∀X ∈ Z2,∗α(X) = α(X) in which X represents
the complementary set of X in Z2. The dual operator for dilation is called erosion, it is defined as
εd = ∗γd . The opening operation is defined as an erosion followed by a dilation and can be denoted
by ζd = γd © εd . Its dual operator is closing and can be denoted by ηd = εd © γd . For any given d,
the opening operation ζd satisfies the following three important properties:
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FIGURE 1.8: The demonstration of shadow region (gray) and self-support region (yellow) for two
different cases: (a) shadow region and self-support region for two adjacent layers, case 1 (b) shadow
region and self-support region for two adjacent layers, Case 2.

1. increasing, ∀X ,Y subset of P, X ⊆ Y ⇒ ζd(X) ⊆ ζd(Y ),

2. anti-extensive, ∀X ⊆ P,ζd(X) ⊆ X and,

3. idempotent, ∀X ⊆ P,ζd(ζd(X)) = ζd(X).

Similarly, the closing operation ηd satisfies increasing, extensive (∀X ⊆ Z2,ηd(X) ⊇ X) ,and idem-
potent.

1.4.2 Region Subtraction

We perform region subtraction for each layer in a top-down manner starting from the second layer on
top (since the first layer does not need any support). For a specific layer li, a conservative growing-
swallow method is adopted based on the error-bounded UDM to implement region subtraction.

Binary Image Grid-width and Self-support Feature Threshold

Since the self-support area detection is performed on a binary image, the image grid width r′ should
be smaller than the self-support feature threshold t in order to obtain enough accuracy. The part
that can be fabricated by typical rapid prototyping has a precision limitation that depends on the
smallest component that can be achieved by the system. Based on the calibration result reported
in [5], for FDM, the road width of part material has the magnitude of 10−1 mm. This implies
that the self-support feature threshold t should be in the same magnitude. According to [11], the
binary image grid width r′ should be set no larger than 0.125 mm in order to generate topologically
faithful slicing contours. This indicates that for FDM, the value of r′ is usually smaller than t. For
SLA, the threshold t can be determined by physical experiments and the value of r′ can be adjusted
accordingly to achieve accurate detection results.
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FIGURE 1.9: Different element structure Cd(x) for different values of d.

Conservative Growing-swallow Method

Based on the self-support region ∆(Pi+1,Pi,d) defined above, a conservative growing-swallow method
is developed to find ∆(Pi+1,Pi,d). Starting from a shadow region Ψi, an intersection region Pi∩Pi+1
and a pre-computed outward offset region Γ(Pi,d)−Pi, we initialize a region A as Pi ∩Pi+1 for
temporary use. Two steps are applied iteratively to the image. The first step involves performing a
dilation on A and labeling the newly grown pixels by the dilation. The second step involves integrat-
ing all the pixels satisfying three conditions: belonging to newly grown pixels, belonging to region
Γ(Pi,d)−Pi, and belonging to the shadow region Ψi. The iteration does not stop until there is no
more pixel satisfying all the above three conditions after dilation in step 1. The remaining support
region S̃i is the result and ∆(Pi+1,Pi,d) can be easily calculated as Ψi − S̃i. Figure 1.10 provides an
illustration of the working principle of growing-swallow algorithm. Note that in the example shown
in Fig.1.10, there is no pixel belonging to D ← {x ∈ Z2, | Distmap(x) |≤ t}, i.e., C 6= /0 after three
iterations.

The presented growing-swallow method adopts the error-bounded UDM introduced in [8] to cal-
culate the outward offset region Γ(Pi,d)−Pi. For a given image with black set Bi ⊆ Z2 (in this
section, let’s assume the black set is the region to be filled with material in layer manufacturing and
the white set is empty), we use the provided four-point sequential UDM algorithm (4SED(Bi)) to
compute a distance map Distmap with respect to black set Bi. Distmap satisfies Distmap(x) = (u,v)
with u and v being the projective distance value on u and v axes, respectively, to the closest pixel be-
longing to Bi. For x ∈ Bi, (u,v) = (0,0). We also define |Distmap(x)|=

√
u2 + v2. The psuedo-code

of the growing-swallow method is as follows.
Note that the 4SED algorithm generates a distance map which is error-free except for very

sparsely scattered pixels, and guarantees an error bound of 0.29r’. The formal error analysis can
be found in [8]. Because error can only manifest from over-estimating the real distance, excluding
the self-support region makes the presented growing-swallow method conservative. In other words,
those regions being excluded can be guaranteed as self-support regions, but not all the self-support
regions are guaranteed to be excluded. For the dilation operation γ1.5r′(A), 1.5r′ is used as the ra-
dius of structure element, and this gives us the structure element shown in Fig.1.9(b). Based on the
physical property of layer manufacturing that the self-support effect can occur all around a piece of
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Algorithm 1 GrowingSwallow
Require: shadow region Ψi, part region Pi and Pi+1, self-support feature threshold t
Ensure: support region S̃i

1: S̃i ← Ψi ;
2: Initialize A ← Pi ∩Pi+1, B ← A, C ← B;
3: Distmap ← 4SED(Pi);
4: Initialize D ←{x ∈ Z2, | Distmap(x) |≤ t};
5: while C 6= /0 do
6: B ← γ1.5(A);
7: C ← (B−A)∩D∩ S̃i;
8: A ←C∪A;
9: S̃i ← S̃i −C;

10: end while
11: return S̃i;

FIGURE 1.10: Growing-swallow algorithm illustration. Note that in this example, we assumed that
there is no pixel belonging to D ←{x ∈Z2, | Distmap(x) |≤ t}, i.e., C 6= /0 after three iterations. The
red pixels indicate intersection region Pi ∩Pi+1 in the above algorithm, gray pixels indicate S̃i, and
green pixels indicate self-support region.

material, the element structure of radius 1.5r′ provides better approximation for self-support effect
than that of radius r′.

The following Algorithm 2 shows the proposed region subtraction technique.
All the operations like Boolean, morphological, and image scanning required in the proposed

region subtraction technique are applied on binary sets and using Boolean or integer arithmetic, this
makes the presented approach very robust, highly parallelizable, and easy to implement.
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Algorithm 2 RegionSubtraction
Require: image li with part region Pi for current layer, image li+1 with part region Pi+1 and support

region Si+1, self-support feature threshold t
Ensure: support region Si on image li

1: Ψi ← Pi+1 −Pi;
2: S̃i ← GrowingSwallow(Ψi,Pi,Pi+1, t) ;
3: Si ← S̃i ∪Si+1 −Pi;
4: return Si;

Proposition 3. The support region Si generated by algorithm RegionSubtraction satisfies the reli-
able property with respect to the above layer li+1.

Proof. According to algorithm RegionSubtraction, pixels in Pi+1 can always be supported by at
most three kinds of supporting layout. The first kind is to be supported by Pi. For those that
cannot be supported by Pi (pixels in shadow region Ψi), they are either supported by ∆(Pi+1,Pi,d)
in self-support manner [pixels excluded by GrowingSwallow(Ψi,Pi,Pi+1,d)] or supported by S̃i.
Because S̃i ⊆ Si, Pi+1 can be considered as being supported by Pi

⋃
Si

⋃
∆(Pi+1,Pi,d), i.e., Pi+1 ⊆

Pi
⋃

Si
⋃

∆(Pi+1,Pi,d). For pixel in Si+1, because of Si ← S̃i ∪ Si+1 −Pi, Si+1 ⊆ Si ∪Pi. Hence, we
have Pi

⋃
Si

⋃
∆(Pi+1,Pi,d) ⊇ Si+1

⋃
Pi+1, and the reliable property is satisfied.

¤

1.4.3 Region Cleaning Technique for FDM

The proposed region subtraction technique can compute a reliable support region Si, which serves
as a core technique for most layer manufacturing support generation. FDM process may generate its
own support region Fi based on Si by considering its own system specification. In FDM, after calcu-
lating the support region, a region boundary extraction and toolpath generation process needs to be
applied. These subsequent processes with benefit if the boundary ∂Fi contains less contour length
and less topological complexity. Moreover, because a sparse pattern is always employed in the
toolpath scanning for support generation, the topology complexity of the support region should be
reduced in order to make good use of the sparse pattern. However, the region subtraction technique
does not consider the topology of the resultant support region Si. In fact, due to the growing-swallow
technique, there will always be some gaps between Si and Pi. These gaps will propagate into the
lower layers and cause very complex topology on the resultant support region (see Fig.1.11). In this
section, a region cleaning technique is introduced which can allow the user to generate Fi with much
lower topology complexity from Si.

We adopt the closing operation ηd for the region cleaning technique. It can fill the gaps and hence
reduce the topology complexity. The pseudo-code is as follows.

Note that the selection of the radius d of element structure for ηd(Si) provides flexible trade-off
between topology complexity and region cleaning effectiveness. The support region Si computed by
region subtraction definitely has a smaller area than Fi. On the other side, Fi has shorter boundary
length and less topology complexity compared with Si. Figure 1.11(c),(d) show the difference
between resultant Fi with different d. Based on our experiments, d = 2t can always give satisfactory
result for FDM.

According to our investigation, provided that Si is reliable, Fi satisfies Fi ⊇ Si and Fi+1 ⊆ Fi ∪Pi,
it can be proved that the reliable property also holds for Fi.

Proposition 4. If Fi satisfies Fi ⊇ Si and Fi+1 ⊆ Fi ∪Pi, and the reliable property holds for Si, then
the reliable property also holds for Fi.
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FIGURE 1.11: A demonstration of region cleaning technique: (a) region subtraction resultant sup-
port region (green) without region cleaning, (b) region cleaning result with d = t, (c) region cleaning
result with d = 2t.

Algorithm 3 RegionSubtractionFDM
Require: image li with part region Pi for current layer, image li+1 with part region Pi+1, support

region Si+1 and final support region Fi+1, self-support feature threshold t
Ensure: final support region Fi on image li

1: Ψi ← Pi+1 −Pi, S̃i ← GrowingSwallow(Ψi,Pi,Pi+1, t);
2: Si ← RegionSubtraction(Pi,Pi+1,Si+1, t);
3: Initialize ∆(Pi+1,Pi, t) ← Ψi − S̃i;
4: Fi = Fi+1 ∪ηd(Si)−∆(Pi+1,Pi, t)−Pi;
5: return Fi;

Proof. First, for Pi+1, because Fi ⊇ Si and Pi+1 ⊆ Pi
⋃

Si
⋃

∆(Pi+1,Pi,d), Fi must satisfy Pi+1 ⊆
Pi

⋃
Fi

⋃
∆(Pi+1,Pi,d). Second, for Fi+1, Fi+1 ⊆ Fi ∪Pi is already satisfied. We have

Pi
⋃

Fi
⋃

∆(Pi+1,Pi,d) ⊇ Fi+1
⋃

Pi+1.

Hence, the reliability property also holds for Fi. ¤

Proposition 5. the final support region Fi for FDM generated by algorithm RegionSubtractionFDM
satisfies Fi ⊇ Si and Fi+1 ⊆ Fi ∪Pi.

Proof. Because of Fi = Fi+1 ∪ηd(Si)−∆(Pi+1,Pi, t)−Pi, Si cannot include ∆(Pi+1,Pi, t) and Pi, and
the extensive property of closing operation, i.e., ηd(Si) ⊇ Si, we have Si ⊆ ηd(Si)−∆(Pi+1,Pi, t)−
Pi ⊆ Fi+1 ∪ηd(Si)−∆(Pi+1,Pi, t)−Pi = Fi. Hence, we get Fi ⊇ Si.

Because ∆(Pi+1,Pi, t) is the self-support region on Pi+1, i.e., ∆(Pi+1,Pi, t) is a part of Pi+1, Fi+1
cannot include ∆(Pi+1,Pi, t). We have Fi+1 ∪ ηd(Si)− ∆(Pi+1,Pi, t) ⊇ Fi+1 =⇒ (Fi+1 ∪ ηd(Si)−
∆(Pi+1,Pi, t)−Pi)∪Pi ⊇ Fi+1 =⇒ Fi ∪Pi ⊇ Pi+1. Hence, we get Fi+1 ⊆ Fi ∪Pi.

¤
From Proposition 4 and 5, final support region Fi can be generated by algorithm RegionSubtrac-

tionFDM and also has the reliability property.
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FIGURE 1.12: Grid length illustration in first step of anchor map generation.

1.4.4 Anchor Support Generation for SLA

For an image-based layer manufacturing process like SLA, the support region is not expected to have
low topology complexity. In SLA, anchor support (vertical cylinders) is used instead of region filled
with supporting material. Hence, there is no need for region cleaning technique. Anchor support
generation approach is developed based on region subtraction technique. The algorithm is actually
the same as for RegionSubtraction except for using anchor map Ai to cover the support region Si.
The anchor map Ai represents the support region to be cured in SLA, which consists of several
isolated pixels indicating the position of the anchors needed. Since each anchor has its effective
region, the union of all the effective regions from anchors indicated on Ai should cover the general
support region Si. Each time calculating S̃i, instead of directly counting it as the support region that
needs to be filled with support material, an anchor map Ãi is used to cover S̃i. Meanwhile, instead of
Si+1, the anchor map Ai+1 is projected from the above layer into the current layer as PAi+1. Finally,
PAi+1 is integrated into anchor map Ai for the current layer. The associated pseudo-code follows.

Algorithm 4 RegionSubtractionSLA
Require: image li with part region Pi for current layer, image li+1 with part region Pi+1 and anchor

support map Ai+1, self-support feature threshold t, anchor effective region radius ta
Ensure: final anchor support map Ai on image li

1: Ψi ← Pi+1 −Pi;
2: PAi+1 ← Ai+1 −Pi;
3: S̃i ← GrowingSwallow(GrowingSwallow(Ψi,Pi,Pi+1, t),PAi+1,PAi+1, ta) ;
4: Ãi ← AnchorMapGen(S̃i, ta);
5: Ai ← Ãi ∪PAi+1;
6: return Ai;

Note that the algorithm AnchorMapGen in the above method requires the definition of two param-
eters. The first one is S̃i, the region that needs to be covered by resultant anchor map, and the second
one is the anchor effective region radius ta. The anchor map indicates the position of anchors using
pixels. For each anchor (a pixel xa on the resultant map Ãi), GrowingSwallow(S̃i,xa,xa, ta) is used
to remove its supporting region from S̃i. New anchors will be added until the whole region S̃i can be
supported by anchors in Ãi. An alternate pattern can be used for adding anchors on Ai. In our pro-
totyping system, for simplicity, we use a heuristic method to implement AnchorMapGen(S̃i, ta).
Figure 1.13 provides a demonstration for our implementation of AnchorMapGen. In the first
step, a uniform grid is used to sample the region S̃i and record the intersection points between
Ãi and grid nodes. Then we execute GrowingSwallow to exclude the supported region from S̃i (see
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FIGURE 1.13: An illustration of anchor map generation algorithm: (a) region that needs to be
covered by anchor map, (b) first step: use uniform grid node to intersect with the region and exclude
the anchor-support region with growing-swallow technique, (c) second step: use orthogonal rays of
the uniform grid to scan for remaining region, add anchors and further exclude anchor-support
region, (d) third step: scan the whole image for remaining region, add anchors and exclude anchor-
support region until there is no remainder, and (e) the resultant anchor map.

Figure.1.13(b)). Note that the grid width of the uniform grid used in AnchorMapGen(S̃i, ta) should
be no bigger than

√
2ta in order to form a seamless region to cover S̃i (see Fig.1.12). In the second

step, a scan is performed with the orthogonal rays forming the uniform grid to detect whether there
is any remainder of S̃i. If a ray intersects with any remaining region of S̃i, then add the centroid
point of intersection line as anchor into Ãi. Then perform GrowingSwallow to further exclude the
region from S̃i [see Figure.1.13(c)]. In the last step, the whole image is scanned pixel by pixel to
see whether there is any remainder of S̃i and add anchors for them (see Fig.1.13(c)). Note that in
the second and third step, each time adding an anchor, a GrowingSwallow is performed to exclude
its supporting region from S̃i until all regions in S̃i are excluded. As introduced in [21], the pattern
for adding new anchors can be optimized using the centroidal voronoi tessellation (CVT) method in
order to use minimal number of anchors to cover S̃i. After generating anchor map Ai for all layers,
the position and length for each anchor can easily be determined. Usually there should be some
connection among these anchors for the purpose of providing rigidity.

We now introduce two approaches to generate connection graphs that indicate which pairs of
anchors need to be connected. One approach is based on a minimal spanning tree (MST) which
tends to minimize the number of connected anchor graphs and the total edge length of these graphs.
The other is based on a local strategy which simply connects the two closest neighbors for each
anchor. Before applying the MST algorithm, first generate input graphs for the MST algorithm.
Then evaluate each pair of anchors to see whether they are overlapped in the building direction.
When this is true, put an edge between these two anchors with the edge length being the distance
between them. Otherwise neglect this pair of anchors (see Fig.1.15). In such a way, one or several
graphs Ḡi are generated among all the anchors. Then use the Prim’s algorithm [16] to generate
minimal spanning tree with Ḡi as input graphs. For each Ḡi, we will have a resultant graph Gi,
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FIGURE 1.14: Anchor connection graphs generation illustration: (a) The top view of input anchors;
note that all the anchors overlap in the building direction in this example, (b) the resultant anchor
connection graph by MST-based approach, (c) the resultant anchor connection graphs by closest-
neighbor-based approach. Note that (b) has only one graph while (c) has two graphs.

FIGURE 1.15: An illustration of connection generation between pairs of anchors. The gray region
indicates the overlap range between two anchors.

and finally we have all the connection graphs Gi. For the closest neighbor-based approach, for each
anchor, connect it with its two closest neighbors that overlap with it. Hence, we can directly get
the connection graphs GI . Fig.1.14 gives an illustration for both MST-based approach and closest-
neighbor-based approach. In Section 1.4.5, a comparison and discussion about these two approaches
is provided.

For the operator that generates connection between two anchors in the overlap range, first calcu-
late a directing image between their projected positions on the binary image. All the pixels inter-
secting with the line segment connecting the two anchors are counted as connection structure pixels.
This image indicates the path that can connect the two anchors (see Fig.1.16). Then, distribute the
connection structure pixels on the path into the binary images of layers slicing a unit of connection
structure (a single connection structure in cross-shape). Figure 1.17 provides a demonstration for
the pattern of the distribution. For two adjacent layers, the pixels for the connection structure belong
to the connection path while the intersection of connection structure pixels between the two layers
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FIGURE 1.16: Directing image calculation for connection operator for SLA. The red pixels indicate
anchor positions and orange pixels indicate the connection structure pixels; (a) and (b) show the
resultant connection path for two different pairs of anchors.

FIGURE 1.17: Connection structure pixel distribution among consecutive layers.

should not be empty. The position of the connection structure pixels depends on the layer height in
a unit of connection structure.

1.4.5 Results and Discussion

We have implemented the proposed approach in a C++ program. The examples shown in this section
are all tested on a PC with Intel Core i5-3450 CPU @ 3.10GHz.

We tested several models to demonstrate the effectiveness and efficiency of the presented region
subtraction-based support generation approach (see Figuress.1.18, 1.19, 1.20, and 1.21). Compu-
tational statistics can be found in Table 1.2. All the tests are conducted with layer thickness 0.25
mm except for the two models shown in Fig.1.7. For simplicity, all the testing cases for SLA are
conducted with the setting t = ta and with the MST-based approach for connection graphs gener-
ation if not otherwise specified. In our prototyping system, we did not use parallel computing to
accelerate the proposed approach. As stated above that this approach is based on a binary image and
mainly used Boolean, morphological operations. If parallel computing is involved, this approach’s
performance can be further improved.

We also have a comparison between the MST-based anchor connection and closest-neighbor-
based connection. Table 1.1 gives the comparison for the four different models in terms of the
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FIGURE 1.18: Support structure generation for dragon model: (a) original dragon model in LDNI,
(b) anchor support for SLA with t = ta = 3.81 mm, and (c) support for FDM with t = 0.51 mm.

FIGURE 1.19: The support structure generated for helmet model: (a) original helmet model in
LDNI, (b) support for FDM with t = 0.51 mm, and (c) support for SLA with t = ta = 3.81 mm.

FIGURE 1.20: The support structure generated for chair model: (a) original model, (b) anchor
support generation with t = ta = 3.81 mm, and(c) support for FDM with t = 0.51 mm.
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FIGURE 1.21: The support structure generated for visa-lion model: (a) original model, (b) anchor
support generation with t = ta = 3.81 mm, (c) support for FDM with t = 0.51 mm.

resultant connection volume and connection graphs generation time. There is no significant differ-
ence in the resultant connection volume between the two approaches. In fact, both of them take
effort to minimize the edge length of the connection graphs. The MST-based approach tends to
perform global minimization while the closest-neighbor-based approach tends to locally minimize
the edge length. As for the time efficiency, there is also difficulty in observing any significant differ-
ence. For the connection structure the term rigidity refers to two aspects: self-support and withstand
shearing force (usually due to sweeping operation or platform acceleration) during the building pro-
cess. In terms of self-support, the closest-neighbor-based approach is better since it tends to avoid
long-distance connection. Long distance connection requires a large overlap between the two an-
chors (see Figure.1.22). When building the connection link, long distance connection is easier to
fail due to its larger weight. As for withstanding the shearing force, ideally it requires the anchors to
form loops and the dimension of the loop in the shearing direction should not be too small. While
this two strategies do not enforce this as a hard constraint, we need to compromise between rigidity
and material efficiency. Although two strategies work well in our present prototype system, a more
sophisticated approach can be developed in the future by modeling the shearing force case by case
and optimizing material efficiency within sufficient rigidity.

The proposed support generation approach gives the user flexibility to control the self-support
feature threshold according to the different specifications for different layer manufacturing systems.
We also investigate the influence of the self-support feature threshold t and anchor effectiveness
region radius ta on support structure generation for both FDM and SLA. Figure 1.23 shows that the
larger the value of t is, the less FDM support is needed because there will be more of a self-support
feature. A similar result can be found in Figure 1.25. Figure 1.24 provides the data analysis for
support generation for FDM with experimental tests on the dragon model. From Figure.1.24(b) we
can see that the overall time consumption initially drops dramatically and then rises up slowly as
t increases. The overall time consumption consists of the support region preparation time and the
support contour extraction time. The main reason for the overall time drop at the beginning is due to
the drop of support contour extraction. When t is small, the support region for each layer becomes
larger. Consequently, this will increase the total region boundary length and also the contour ex-
traction processing time. The support region processing time increases slowly as t increases, while
the contour extraction time drops slowly after t = 0.254 mm. As indicated by Figure.1.24(c), the
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FIGURE 1.22: Long distance connection demonstration. Note that the overlap region between
Anchors 3 and 4 is not big enough for even one unit of connection. And the connection between
Anchors 2 and 3 may fail during building because the unit’s self-weight is greater than the connec-
tion between Anchors 1 and 2.

Table 1.1: Comparison Between MST-Based and Closest Neighbor Based Anchor Connection Gen-
eration for SLA*

Examples Support Volume in mm3 Support Volume in mm3 Time in sec Time in sec
(MST) (Closest Neighbor) (MST) (Closest Neighbor)

Dragon 88.07 94.80 0.79 0.70
Helmet 5,590.76 5,470.00 3.33 2.35
Chair 22,836.05 23,052.01 3.63 4.77
Vase-lion 590.09 552.24 2.28 1.43

*Reported SLA tests use the setting t = ta = 3.81 mm, the time consumption includes only the
anchor connection generation time.

volume of support structure for FDM keeps dropping as t increases while the slope becomes smaller
and smaller. Figure 1.26 provides the data analysis for support generation for SLA with experimen-
tal tests on a helmet model. From Figure.1.26(b) we can see that the overall time consumption
drops as t and ta increase. It consists of anchor map preparation time and connection structure gen-
eration time. When the t,ta is small, the number of anchors is large. This results in more time at
the initial stage of generating a connection structure. When t,ta become large, there will be fewer
anchors and hence, the time for connection structure generation tends to decrease to a very low
level. The time consumption for anchor map generation drops slightly as t,ta increase. When t,ta
become large, the anchor map time consumption starts to dominate the overall time consumption.
From Figure.1.26(c) we can see that the volume for SLA support decrease as t, ta increases while
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Table 1.2: Statistics of Experimental Tests of Support Generation for FDM and SLA

Examples Model Size (x mm×z mm×y mm) r′ (mm) Time for FDM* (min) Time for SLA# (min)
Dragon 50.80×22.86×28.956 0.050 0.79 0.70
Helmet 84.58×108.71×73.66 0.114 3.33 2.35
Chair 67.82×71.12×132.08 0.101 3.63 4.77
Vase-lion 56.39×46.23×76.20 0.076 2.28 1.43

*Reported FDM tests use the setting t = 0.381 mm; the time consumption includes final support
region Fi generation and contour ∂Fi extraction.
#Reported SLA tests use the setting t = ta = 3.81 mm; the time consumption includes the anchor
support map Ai for all layers and connection structure generation.

FIGURE 1.23: The comparison of different FDM support for different t value: (a) FDM support
with t = 0.508 mm, (b) FDM support with t = 0.381 mm, and (c) FDM support with t = 0.254 mm.

the slope becomes smaller.

1.5 Topologically Faithful Slicing Contour Generation
Slicing CAD models is a crucial operation for generating tool paths in layered manufacturing. Con-
ventional slicing algorithms focus on computing the intersection curves between a model repre-
sented by triangular meshes and a sequence of parallel planes, which becomes an unstable step
for the whole procedure of layered manufacturing if the triangular meshes are self-intersected (or
overlapped). In addition, more and more modeling approaches represent objects with complex struc-
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FIGURE 1.24: Data analysis for FDM support generation on dragon model: (a) the chart of time
consumption for different t values, and (b) the chart of total support volume for different t values.

FIGURE 1.25: The comparison of different anchor support for different t, ta values: (a) anchor
support with t = ta = 2.54 mm, (b) anchor support with t = ta = 3.81 mm, (c) anchor support with
t = ta = 5.08 mm, and (d) anchor support with t = ta = 6.35 mm.

tures by implicit solids since such representations are mathematically compact and robust. When
conventional slicing methods are used, the implicit solids must be first tessellated into triangular
meshes and then be intersected by slicing planes. However, generating a self-intersection free and
topologically faithful polygonal model from an implicit solid is not easy (see [14, 27] for detailed
discussions). Specifically, the triangular models produced always have problems like gaps, degener-
ated triangles, overlapped facets, non-manifold entities, and self-intersections. Using conventional
slicing techniques to generate contours for layered manufacturing from such problematic triangular
meshes will result in an incorrect object. For example, as shown in Figure.1.2, unexpected gaps are
produced on the Buddha model fabricated by FDM. This gap is caused by the self-intersected polyg-
onal model, which brings in inverse in/out membership classifications to some planar contours.

The topology of the final model to be fabricated is usually required to be homeomorphic to the
given solid. This is very important to applications such as biomedical engineering, e.g., a fabri-
cated model with an incorrect topology may merge two tubes which should be separated into one,
which is very dangerous for medical treatments. Meanwhile, shape approximation errors between
the extracted contours and the exact ones defined by intersecting the given solid with the slicing
plane must also be controlled. To fabricate an object with high accuracy in a conventional way of
tessellation, a massive number of triangles may be generated, and storing them in-core will use up
the memory of a computer system. This motivates our research on the development of a direct slic-
ing algorithm to generate self-intersection free and topologically faithful contours from a general
implicit solid.

Recall that for a given implicit solid H, its reconstructed surface M and a slicing plane P, we com-
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FIGURE 1.26: Data analysis for SLA support generation on helmet model: (a) the chart of time
consumption for different t and ta values, and (b) the chart of total support volume for different t
and ta values.

pute contours C = M∩P, which are topologically faithful and self-intersection free. The presented
approach consists of three major steps. First, a binary image I of an r-regular solid H is sampled
on the slicing plane P, where an appropriately selected sampling distance r′ (with its bound relating
to the value r) ensures that the contour C̄0 generated from I is homeomorphic to C. Second, C̄0 is
iteratively smoothed into C̄m by a constrained Laplacian operator that prevents topological changes
and self-intersections. Finally, a constrained contour simplification is applied to simplify C̄m into a
contour C̃, which has fewer line segments, and C̃ satisfies the three requirements previously given
in the problem definition. Proofs for the correctness of C̃ can be found in [11]. A flowchart of the
provided direct slicing approach is presented in Figure.1.27.

FIGURE 1.27: A flowchart of our direct slicing approach [11].
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FIGURE 1.28: A comparison of different smoothing strategies on the contour generated for the
binary image region shown in Fig. 1.4(c): (a) the contour reconstructed by the topology preserving
marching square method, (b) the shrinking contour after ordinary Laplacian smoothing, (c) the re-
sultant contour after projection-based constrained smoothing, (d) the resultant contour after sliding-
based constrained smoothing, and (e) the zoom-in view of contour vertices stuck in sub-optimal
shape.

1.5.1 Contouring and Constrained Smoothing

After obtaining a binary image, the marching square method introduced in [18] is used to generate
an approximate contour C̄0 that is topologically faithful. Defining the edge on a square grid with
different in/out status on its two endpoints as a stick, the contour C̄0 can be formed by the line
segments linking the middle points of sticks in all grids. Since line segments on the contour C̄0

are generated by linking the middle point of sticks, there is no self-intersection on C̄0. However,
the shape of C̄0 is not smooth [e.g., the contour shown in Fig. 1.28(a)], so a Laplacian operator-
based smoothing technique is applied to improve it. The advantage of Laplacian smoothing is its
efficiency and stability, but the major drawback is that the unwanted shrinkage always occurs when
it is iteratively applied to a closed shape (in 2-D or 3-D). A constrained Laplacian smoothing is
developed here, which intrinsically solves the shrinkage problem since we guarantee generation of
topologically faithful contours. In other words, the smoothed contours cannot violate the in/out
status of any sampling node on the binary image I. To ensure that, a good strategy is to constrain
each vertex vi on the contour only to slide on the stick gripping it during the smoothing. In addition,
by applying this ”sliding-on-stick” strategy, we can guarantee that the resultant contours are self-
intersection free [11].
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FIGURE 1.29: An illustration of contour simplification for the smoothed contour shown in
Fig.1.28(d): (a) the variational clustering result on the contour with different line types representing
different regions and (b) the final simplified contour after topology and distortion verification.

1.5.2 Contour Simplification

The smoothed contour, C̄m, usually provides a very good shape approximation of the exact contour
generated by ∂H ∩P. However, to ensure the topological faithfulness, a relatively small value of
r′ may be selected for a model with large dimensions. This leads to contours with a lot of very
short line segments, which significantly increase the memory cost. The situation becomes more
serious if the software controlling the RP machine does not run in an out-of-core manner (i.e.,
loading the contours for all layers from the contour file at the same time). Moreover, using too
many small line segments to represent the contours will dramatically decrease the efficiency of
subsequent processing steps in RP, like generation of supporting structure and tool-path planning.
Based on our observation, in the smoothed contours, there are always several successive edges lying
almost in the same straight line, which implies these edges can be simplified into one single edge
with little distortion error introduced (see Fig. 1.29). Therefore, a contour simplification algorithm
preserving topology and shape approximation error is investigated in this section to further improve
the topologically faithful contours for slicing implicit solids. Details can be found in [11].

1.5.3 Results and Discussion

Our approach has been implemented in a C++ program. The examples shown in this section are all
tested on a PC with Intel Core 2 Quad CPU Q6600 2.4 GHz.

The two engineering models shown in Figs.1.30 and 1.31 give a comparison between the tradi-
tional slicing approach and the proposed approach. Due to the self-intersection in the tessellated
triangular meshes from implicit solids, the traditional slicing approach may produce incorrect con-
tours and consequently, the toolpath of part material will also have defects [see Figs.1.30(b) and
1.31(b)]. As a result, unwanted films will be produced for both of the two examples . In addition,
the filigree and truss models demonstrate that the presented approach can easily handle the solids
with complex topology.
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FIGURE 1.30: An example of slicing the Filigree model: (a) a mesh tessellated from implicit
Filigree model; the self-intersection feature is shown in the black circle, (b) the contours and their
corresponding tool path (in green) generated by InsightT M version 7.0 on the layer with 19.56 mm
height; the yellow arrow is pointing to the incorrect contour generation, (c) the contours generated
by the presented approach for the same layer and their corresponding tool path, and (d) the rendered
slicing contours generated by the presented approach.

FIGURE 1.31: An example of slicing the Truss model: (a) a mesh tessellated from implicit Truss
model; the self-intersection feature is shown in the black circle, (b) the contours and their cor-
responding tool path (in green) generated by InsightT M version 7.0 on the layer with 61.97 mm
height; the yellow arrow is pointing to the incorrect contour generation, (c) the contours generated
by the presented approach for the same layer and their corresponding tool path, and (d) the rendered
slicing contours generated by the presented approach.

1.6 Conclusion
In this chapter, two major parts of algorithms for layered manufacturing in image space are pre-
sented. First, in Section 1.4, a support generation approach based on sampled binary images for
slices is introduced, then an error-bound conservative region subtraction which can produce safety
guaranteed and material efficient support region is presented. Support generation methods are de-
veloped for FDM and SLA with the region subtraction as a core technique. Meanwhile, the proofs
for the good properties of the presented support generation approach are provided. Second, in Sec-
tion 1.5, a direct slicing approach for implicit models is presented, which directly slices an implicit



30 Algorithms for Layered Manufacturing in Image Space

model by sampling a binary image on each layer and extracting self-intersection free and topology
correct contours.

The presented approach is generally more robust than conventional support generation and slicing
approaches, according to the following aspects.

• As shown in Section 1.1, the robustness of the conventional approach highly depends on the
quality of input triangular mesh. Any non-manifold feature may lead to incorrect contour,
and hence incorrect part obtained in fabrication.

• For support structure generation, the model-based conventional method uses triangular mesh
to generate support mesh directly and then slice the support mesh. Its robustness highly de-
pends on the quality of the input model. Moreover, it suffers from the numerical errors, as
mentioned above, when tracing the contour on the support mesh. The slicing-based con-
ventional method requires polygonal operations including offset, Boolean operation in order
to calculate support structure contours from part slicing contours. While the provided sup-
port generation method is totally based on discrete binary image operations like Boolean and
morphology to compute the support structure region, it can provide self-intersection free con-
tour using the proposed contour processing technique if needed. It is obvious that discrete
Boolean and morphological operation on a binary image is much more robust than polygonal
operations based on floating-point arithmetic.

• As stated in Section 1.4, the presented support generation method calculates the reliability
support region, which cannot be guaranteed by present slicing-based support generation ap-
proaches. The reliable property of the support region will make the fabrication process more
robust.

• In our direct slicing, instead of tracing the contour on the model, which is not robust, a bi-
nary image is sampled on the slicing plane and extract contour from the 2-D uniform grid. In
the tracing-based contour generation, one needs to use floating-point arithmetic to determine
whether an edge intersects with the slicing plane. This may lead to tracing failure due to
numerical errors in cases like when the edge is nearly parallel with the slicing plane. On the
other hand, in binary image sampling, only query with respect to implicit model is required.
Since the implicit model is always mathematically compact, the query should be robust to
evaluate and the result should be accurate. Also, the marching square method can guaran-
tee self-intersection free and topology correct contours, which is important to fabricate part
robustly.

Since most processes of the presented approach are based on binary image operations, which
gives us an opportunity to boost the performance using parallel computing architecture on devices
like Graphics Processing Unit (GPU).

• For support generation: the region subtraction stage should not be difficult to parallelize
fully. It consists of scan-based discrete distance map evaluation, Boolean operation, and mor-
phological operation on binary image. Boolean and morphology operations can be easily
parallelized with each thread handling one pixel. For scan-based discrete distance map cal-
culation, there is already an algorithm presented in [23] dealing with it. For region cleaning
technique for FDM, the closing operation involved is also a morphological operation which
can be implemented by a dilation followed by an erosion. Hence, this technique can also be
parallelized. In anchor support generation for SLA, the scan-based anchor generation portion
can be implemented as three grow-swallow operations with each grow-swallow per scan. As
we mentioned above, grow-swallow only consists of Boolean and morphological operations
and can be parallelized. For the anchor connection graph construction, there is already some
recent approach on parallelizing MST algorithm on GPU [28]. The anchor connection oper-
ator needs to calculate the connection path on binary image between two anchors. This can
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be parallelized with the anchor graph stored in shared memory and each thread handling one
pixel. The pixel for connection structure can also be determined in a parallel way with each
thread handling one pixel.

• For direct slicing: the binary image sampling can be highly parallelized since the in/out clas-
sification of each pixel can be evaluated independently. In the marching square method, each
thread can handle one grid edge independently to see if it is a stick. After finding all the
sticks, the rest is just creating instances for vertices and edges and there is little computation
involved. Hence this portion does not need to be parallelized. For the constrained smoothing
stage, each vertex can be stored with its two neighboring vertex coordinates in a single thread
in order to calculate the intersection point and update the vertex position independently in
each thread. For the simplification stage, the variational segmentation requires requires global
adjustment of not only the number of the segment regions but also the shape of each region in
order to optimize the global error metric. Hence, it is difficult to parallelize the segmentation
at present. In the topology and distortion verification, the verification can be conducted in
each segment region independently and so, this portion can be parallelized. However, if the
region needs to be further segmented, this can only be performed on a CPU as stated above.

According to the analysis presented in this section, except for the contour simplification stage,
almost all the other processing of the presented approach can be parallelized using hardware accel-
eration. Hence, the presented approach still has the potential for boosting its performance and the
parallelization falls within our plans for future work.
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1.7 Nomenclature
1.7.1 Abbreviations

1. STL stereolithography, page 3

2. LDNI layered depth normal image, page 4

3. FDM fused decomposition modeling, page 4

4. SLA stereolithography, page 5

5. MLS moving least square, page 6

6. UDM euclidean distance mapping, page 6

7. CVT centroidal voronoi tessellation, page 18

8. MST minimal spanning tree, page 18

9. TVS truncated volume segment, page 31
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1.7.2 Symbols

1. H Input implicit model, page 5

2. ∂H Boundary of the model H, page 7

3. li Slicing image for the ith layer, page 4

4. Pi Part region (a set of pixels) on li, page 5

5. li+1 The above adjacent slicing image of li, page 7

6. Pi+1 Part region on li+1, page 7

7. Si General support region produced by region subtraction on li, page 5

8. Si+1 General support region on li+1, page 7

9. Fi Support region produced for FDM on li, page 5

10. Ai Anchor map produced for SLA on li, page 5

11. ∂Pi Boundary contour for the part region Pi, page 5

12. ∂Fi Boundary contour for the support region Fi, page 5

13. M Reconstructed boundary surface for input model H, page 7

14. r Radius of the osculating ball used to define r-regular solid, page 7

15. r′ Cube width of the 3-D sampling grid, page 7

16. P Slicing plane, page 7

17. d Self-support feature threshold, page 7

18. 4 Self-support region, page 7

19. I Binary image sampled on the slicing plane P, page 7

20. C̃ Final region contour generated from I, page 7

21. C̄0 Initial region contour generated from I, page 8

22. Ψ Shadow region, page 10

23. Γ Outward offset region, page 10

24. S̃i Intermediate support region to produce Si, page 10

25. C Element structure, page 10

26. γ Dilation, page 10

27. ε Erosion, page 10

28. ζ Opening, page 10

29. η Closing, page 10

30. Ai+1 Anchor map on layer li+1, page 17
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31. Ãi Intermediate anchor map to produce Ai, page 17

32. ta Anchor effective region radius, page 17

33. C̄m Contour after smoothing operation, page 28
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