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Abstract

Microstructures with spatially-varying properties such as trabecular bone are widely seen in nature. These functionally graded
materials possess smoothly changing microstructural topologies that enable excellent micro and macroscale performance. The
fabrication of such microstructural materials is now enabled by additive manufacturing (AM). A challenging aspect in the computa-
tional design of such materials is ensuring compatibility between adjacent microstructures. Existing works address this problem by
ensuring geometric connectivity between adjacent microstructural unit cells. In this paper, we aim to find the optimal connectivity
between topology optimized microstructures. Recognizing the fact that the optimality of connectivity can be evaluated by the re-
sulting physical properties of the assemblies, we propose to consider the assembly of adjacent cells together with the optimization
of individual cells. In particular, our method simultaneously optimizes the physical properties of the individual cells as well as those
of neighbouring pairs, to ensure material connectivity and smoothly varying physical properties. We demonstrate the application of
our method in the design of functionally graded materials for implant design (including an implant prototype made by AM), and in
the multiscale optimization of structures.

Keywords: Topology optimization, Inverse homogenization, Functionally graded materials, Multiscale optimization, Compatible
microstructures

1. Introduction

In recent years, advances in additive manufacturing have
made it possible to fabricate cellular materials whose mechan-
ical properties are defined not only by their chemical compo-
sition, but also by their microscale topologies [1]. These mi-
crostructural materials, also referred to as architected materi-
als [2] or meta-materials [3], can be designed to possess highly
tailored or extreme physical properties not usually found in na-
ture.

A systematic approach in the computational design of mi-
crostructural materials is to define the material as a periodic
array of identical unit cells, and to formulate it as a topology
optimization problem [4]. This process, often called inverse ho-
mogenization [5], optimizes the material distribution within the
design space of a single unit cell, and uses homogenization the-
ory to evaluate the e↵ective properties of the material. Inverse
homogenization has been used to design periodic microstruc-
tures with exceptional properties such as maximized bulk mod-
ulus [5, 6], negative Poisson’s ratio [5, 7], and negative thermal
expansion [8], among others (cf. [9, 2]).

While the optimization of periodic microstructures has been
studied in depth, less attention has been paid to the assem-
bly of optimized microstructures with spatially-varying prop-
erties. Such inhomogeneous microstructures are of great im-
portance in engineering design. For instance, when designing
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Figure 1: Illustration of poorly connected microstructures. The unit cells are
individually optimized for maximum bulk modulus under linearly-varying vol-
ume fractions from 30% to 50%, from left to right.

orthopaedic implants, it may be desirable to have a continu-
ous transition from denser microstructures in the central region
to highly porous microstructures at the bone-implant interface.
This functional gradation promotes bony ingrowth at the bone-
implant interface, while maintaining structural integrity and in-
creasing the mechanical properties in the areas where bony in-
growth is irrelevant [10].

A critical issue in the assembly of spatially-varying mi-
crostructures relates to the compatibility of neighbouring mi-
crostructures. As illustrated in Fig. 1, individually optimized
neighbouring cells do not necessarily form an integral part, and
the physical properties along their shared boundaries are unpre-
dictable and often inferior to those of the individual microstruc-
tures.

Existing works typically address this problem by pursuing
geometric connectivity between adjacent microstructural unit
cells. In the design of functionally graded materials (FGMs),
Zhou and Li [11] proposed three methods to address the con-
nectivity issue, namely kinematic connective constraint, pseudo
load and unified formulation with non-linear di↵usion. In the
first two methods, unit cells are optimized individually, while
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constraints are imposed to connect optimized cells with pre-
defined common regions. The kinematic approach has been
adopted by Li et al. [12]. In the unified formulation, unit cells
are optimized all together, and a non-linear di↵usion term is
introduced in the objective function to penalize disconnection.
The computational e�ciency of the unified formulation is im-
proved by successively optimizing new unit cells while consid-
ering connection to cells that have been optimized [13]. An
alternative approach is to optimize some key microstructures,
and apply geometric interpolation to obtain intermediate mi-
crostructures between individually optimized unit cells [14].
This geometric approach works for microstructures of similar
topology.

In this paper, we aim to find the optimal connectivity be-
tween topology optimized microstructures. Given the fact that
the optimality of connectivity can be evaluated by the resulting
physical properties of the assemblies, we propose to consider
the assembly of adjacent cells together with the optimization of
individual cells. In particular, our method simultaneously op-
timizes the physical properties of the individual cells as well
as those of neighbouring pairs, to ensure material connectivity
and smoothly varying physical properties. This idea is substan-
tiated on the design of graded microstructures with maximized
bulk moduli under varying volume fractions. The graded mi-
crostructures are employed in designing an implant (cf. Fig. 2),
which is fabricated by additive manufacturing.

Our method could also be applied to improve multiscale
structural optimization, where poor connectivity across neigh-
bouring microstructures has recently received considerable at-
tention. For example, Cramer et al. [14] proposed a bottom-up
approach to multiscale optimization, where a set of optimized
and interpolated microstructures is used as building blocks for
macroscale optimization. To circumvent the connectivity issue
in optimized microstructures, parametrized lattice structures are
commonly used in bottom-up approaches (e.g. [15, 16, 17]).
The parametrization, nevertheless, reduces the design space and
limits the range of possible topologies. Our method places no
restrictions on the topology and generates optimized, compati-
ble microstructures. In a di↵erent approach, Zhu et al. [18] pro-
posed a two-scale method where the gamut of microstructures
is precomputed. In the subsequent mapping process, boundary
similarity across adjacent cell interfaces is taken into account
for selecting the microstructures.

Concurrently optimizing the microstructural material and the
macrostructure gives more flexibility in design. Rodrigues et
al. [19] proposed hierarchical optimization of material and
structure. This was later extended to 3D [20]. Integrating
our method into the hierarchical approach results in two-scale
structures with improved connectivity. A recent survey on hi-
erarchical optimization of material and structure is given by
Xia and Breitkopf [21]. In contrast to the isoparametric mi-
crostructures with four-fold rotational symmetry generated in
the design of FGMs, the microstructures generated in concur-
rent multiscale optimization possess two-fold rotational sym-
metry and therefore more topological variations and direction-
dependent properties. Wang and colleagues [22, 23] devel-
oped a level-set method to obtain topologically similar and,

Figure 2: An orthopaedic implant with functionally graded microstructures op-
timized by the proposed method. The di↵erent microstructures have distinct
topologies but are still well connected, forming an integral part.

thus, connectable, microstructures. Du and Kim [24] pro-
posed a physics-independent connectivity index, which ensures
good geometric connectivity by progressively modifying each
microstructure to be well connected to its nearest neighbour.
Alexandersen and Lazarov [25] and Wu et al.[26, 27] performed
structural analysis and optimization on the fully refined mi-
crostructure details, naturally ensuring the connectivity of the
resulting microstructures. The full scale analysis is computa-
tionally intensive, thereby limiting the microstructural details
that can be practically optimized.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the compound formulation for optimiz-
ing compatibility in microstructures, building upon inverse ho-
mogenization and density-based topology optimization. In Sec-
tion 3, we analyze the performance of optimized microstruc-
tures and demonstrate their usage in the design of an im-
plant. Section 4 demonstrates the applicability of the proposed
method in multiscale structure optimization. Finally, the most
important conclusions from this study are summarized in Sec-
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tion 5.

2. Compatibility Optimization with Compound Formula-

tion

To start with, let us consider the design of a 2D functionally
graded cellular material with a density gradation in one direc-
tion and periodicity in the other (see Fig. 3). The design do-
main of the graded material (referred to as GM) is composed
of N square subdomains, each for a unique unit cell. Generat-
ing the unit cells in isolation leads to the lack of connectivity
between adjacent cells. Here, we propose a holistic approach
that generates the unit cells simultaneously in a unified formu-
lation, incorporating the mechanical behaviour across adjacent
microstructures in the optimization.

The design of graded materials is formulated as an inverse
homogenization problem based on finite element analysis and
density-based topology optimization [28]. Let us denote the de-
sign domain of the GM by ⌦ and the subdomain of each unit
cell by ⌦n, n = 1, ...,N. Each subdomain is discretized into
square finite elements for mechanical analysis. For each ele-
ment, the volume fraction of solid material (also referred to as
pseudo density), ⇢n

e 2 [0, 1], serves as the design variable, with
⇢n

e = 0 (or ⇢n
e = 1) indicating that the element is empty (or

solid). The density distribution within each unit cell is opti-
mized to maximize a specific mechanical property (e.g. bulk
modulus), derived from the e↵ective elasticity tensor, and is
subject to a volume fraction constraint, which varies linearly
in the graded direction.

To ensure optimal connectivity between adjacent cells, the
idea is to directly incorporate into the objective function a term
which quantifies the degree of connectivity. A simple measure
of connectivity between adjacent cells is the number of shared
elements across the interface. This type of geometric measures,
however, does not reflect any mechanical properties of the con-
nection. An e↵ective and intuitive measure of the mechanical
connectivity considers the mechanical properties of the assem-
bled cells as a compound part. To this end, we introduce the
concept of compound cells. Each compound cell is composed
of two neighbouring unit cells (Fig. 4). The mechanical prop-
erties of the compound cell serve as an e↵ective measure of the
mechanical connectivity. The objective function is therefore
defined as a weighted average of the individual and compound
cell objectives.

The mathematical formulation of the optimization problem
is written as

max
⇢

J = (1 � !)
NX

n=1

f (EH(⇢n))+

!
N�1X

n=1

f (EH([⇢n, ⇢n+1]))

s.t. :
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e=1
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e⇢

n
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Figure 3: Illustration of a 2D graded material, comprising N unique unit cells.
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Figure 4: Unit cell n shown individually and a part of compound cells (n� 1, n)
and (n, n + 1).

In the objective function, an abstract function f derives an ob-
jective from the e↵ective elasticity tensor (EH), which depends
on the density vector ⇢n (or [⇢n, ⇢n+1]) of a unit (or compound)
cell. A weighting factor ! determines the influence of the com-
pound cells on the optimization of individual unit cells. With
! = 0, this objective function is equivalent to the microstruc-
ture design formulation where the connectivity is not taken into
account.

The first constraint restricts the volume fraction of each in-
dividual cell. M is the number of the finite elements per unit
cell. vn

e is the area or volume of a finite element. |Yn| is the area
or volume of the unit cell domain. Vn is a prescribed volume
fraction. The second constraint restricts the element density ⇢n

e
between 0 and 1. For the sake of clarity, the state equations
which are known in inverse homogenization for evaluating the
elasticity tensor (EH) are omitted here, and will be introduced
in the following subsection.

This formulation can be extended to achieve some desirable
properties of the graded material, e.g., gradation in multiple di-
rections. The optimization problem as formulated in Eq. 1 only
ensures that neighbouring unit cells are compatible along a sin-
gle direction. The compatibility along the other direction can be
ensured by a rotational symmetry constraint on each unit cell.
This constraint has been realized by assigning a single design
variable to, and averaging the sensitivities of, the elements that
are corresponding due to the symmetry condition [29].

More extensions will be discussed and their e↵ects on the op-
timized cells will be demonstrated in the results section. In the
following, we proceed to the essential steps in inverse homoge-
nization.

2.1. Homogenization

We make use of homogenization theory to predict the ef-
fective elasticity tensor of both individual and compound cells.
According to the homogenization theory [30, 5, 31], the e↵ec-
tive elasticity tensor (EH) for a periodic microstructure is given
by

EH
i jkl =

1
|Y |

Z

Y
Ei jpq("0(kl)

pq � "⇤(kl)
pq )dY, (2)

where |Y | is the area or volume of the cell domain Y in R2 or
R3, respectively. "0(kl)

pq corresponds to the independent unit test
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strains (in 2D there are three; e.g. unit strain in the horizon-
tal direction, unit strain in the vertical direction, and unit shear
strain). "⇤(kl)

pq is the Y-periodic solution to the variational type
problem

Z

Y
Ei jpq"

⇤(kl)
pq
@⌫i
@yi

dY =
Z

Y
Ei jpq"

0(kl)
pq
@⌫i
@yi

dY, 8⌫ 2 V, (3)

where ⌫ is a Y-admissible displacement field.
Using an energy-based approach [32], the elasticity tensor is

rewritten as

EH
i jkl =

1
|Y |

Z

Y
Epqrs

⇣
"0(i j)

pq � "⇤(i j)
pq

⌘⇣
"0(kl)

rs � "⇤(kl)
rs

⌘
dY. (4)

In finite element form, for a cell discretized into M elements,
the e↵ective tensor is approximated by

EH
i jkl =

1
|Y |

MX

e=1

(u⇤(i j)
e )T

keu
⇤(kl)
e , (5)

where u
⇤(i j)
e are the element displacement solutions correspond-

ing to the unit test strain fields "0(i j), and ke is the sti↵ness ma-
trix of an element.

It should be noted that the homogenization theory assumes
infinite periodicity of the microstructures, and as such may
not provide accurate results when used to generate spatially-
varying microstructure distributions. However, it has been
shown that reasonable accuracy can be expected if the gradi-
ent of material properties is su�ciently small [11]. This has
been confirmed in our numerical tests.

2.1.1. Equilibrium equations
To evaluate the elasticity tensor, equilibrium equations corre-

sponding to the linearly independent unit test strain fields must
be solved for each individual and compound cell. For the indi-
vidual cells, the equilibrium is written as:

KnU
A(kl)
n = F

(kl)
n , k, l = 1, ..., d, n = 1, ...,N, (6)

and for the compound cells:

Kn,n+1U
A(kl)
n,n+1 = F

(kl)
n,n+1, k, l = 1, ..., d, n = 1, ...,N � 1, (7)

where, for each individual cell n, Kn is the global sti↵ness ma-
trix, U

A(kl)
n and F

(kl)
n are the global displacement vector and ex-

ternal force vector of the test case (kl), respectively. Similarly,
for each compound cell (n, n + 1), Kn,n+1 is the global sti↵ness
matrix, U

A(kl)
n,n+1 and F

(kl)
n,n+1 are the global displacement vector and

external force vector of the test case (kl), respectively.
The individual contributions of each element to the global

sti↵ness matrix Kn are calculated as ke = Ee(⇢e)k0, where k0 is
the sti↵ness matrix of a solid element and Ee(⇢e) is the Young’s
modulus corresponding to element e, interpolated via the mod-
ified solid isotropic material with penalization (SIMP), given
by

Ee(⇢e) = Emin + ⇢
�
e (E0 � Emin), (8)

where E0 is the Young’s modulus of a solid element, Emin is a
small term assigned to prevent the global sti↵ness matrix from
becoming singular, and � is a penalization factor (typically � =
3).

2.1.2. Objective function
The objective function is formulated to maximize or mini-

mize a specific material property, derived from the elasticity
tensor. Using the engineering notation with 11 ! 1, 22 ! 2,
and 12! 3, the elasticity tensor, EH

i jkl in Eq. (5), is rewritten as

Gi j =
1
|Y |

MX

e=1

(u⇤(i)e )T
keu

⇤( j)
e . (9)

For the individual and compound cells, respectively, the ob-
jective is defined generically as:

f (G(⇢n)) =
3X

i, j=1

ri jGn
i j, (10)

and

f (G([⇢n, ⇢n+1])) =
3X

i, j=1

ri jGn,n+1
i j , (11)

where ri j are constant values, typically 1 or 0. For maximizing
bulk modulus, r11 = r22 = r12 = r21 = 1, all others are 0. Gn,n+1

i j
represents the elasticity tensor of the compound cell composed
of unit cells n and n + 1.

The optimization problem is solved by the method of mov-
ing asymptotes (MMA) [33]. The required sensitivities for the
objective functions (10) and (11) are, respectively

@ f
@⇢

✓
G(⇢n)

◆
=

3X

i, j=1

ri j
@Gn

i j

@⇢
, (12)

and
@ f
@⇢

✓
G([⇢n, ⇢n+1])

◆
=

3X

i, j=1

ri j
@Gn,n+1

i j

@⇢
, (13)

where
@Gn

i j

@⇢ and
@Gn,n+1

i j

@⇢ are computed using the adjoint method [4]

@Gi j

@⇢
=

1
|Y |�⇢

��1
e (E0 � Emin)(u⇤(i)e )T

k0u
⇤( j)
e . (14)

2.2. Three-field SIMP

We make use of the three-field approach in topology opti-
mization using SIMP [34, 35, 36]. Rather than directly optimiz-
ing the density field ⇢, a design field � is introduced. The design
field � is smoothed by a density filter, obtaining a smoothed
field �̃. This is followed by a projection operation using a
smoothed Heaviside function to obtain the density field ⇢ = �̃.

2.2.1. Filtering
The density filter eliminates common checkerboard (i.e., re-

gions of alternating solid and void elements) inherent to low
order discretization. The smoothed density �̃e is defined as a
weighted average of the neighbouring design variables, i.e.,

�̃e =

P
i2Me !i,e�iP

i2Me !i,e
, (15)
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where the neighbourhood of element e is defined as

Me = {i| kxi � xek2  re}, (16)

where re is the filter radius and the weighting factor!i,e depends
linearly on the distance between elements, i.e.,

!i,e = 1 � kxi � xek2
re

. (17)

The density filter is applied over the ordered sequence of unit
cells in the GM, rather than within individual unit cells. This
strategy has been used by Radman et al. [13]. This global fil-
tering has the e↵ect of reducing sharp features, and thus pro-
motes smooth transitions at the boundaries between adjacent
unit cells.

2.2.2. Projection
To ensure convergence to a binary (i.e. solid and void) so-

lution, we use the parametrized projection function. The pro-
jected physical density is

⇢ = �̃e =
tanh(�⌘) + tanh(�(�̃e � ⌘))
tanh(�⌘) + tanh(�(1 � ⌘) . (18)

The parameter � controls the sharpness of the threshold func-
tion. To avoid instability, we use a parameter continuation start-
ing with � = 1 and double its value every certain number of
iterations. The parameter ⌘ is the projection threshold. Follow-
ing the robust formulation proposed by Wang et al. [37], dilated
⇢d, intermediate ⇢i and eroded ⇢e designs are formulated using
thresholds ⌘, 0.5, and (1 � ⌘), with ⌘ = 0.25. This enforces a
minimum length scale on both solid and void phases.

3. Results and Analysis

The proposed method has been implemented in Matlab based
on the code developed by Xia and Breitkopf [31]. In this sec-
tion, we present and analyze the results.

3.1. 2D functionally graded materials (FGM)
A 2D FGM is optimized for maximum bulk modulus with

linearly-varying volume fraction from 30% to 80%. The do-
main is discretized into 8 unique microstructures, each with
200 ⇥ 200 elements. Fig. 5 a) and b) compare results without
(! = 0) and with compound formulation (! = 1).

The results confirm that the compound formulation ensures
material connectivity between adjacent microstructures, partic-
ularly between the first and second and between the third and
fourth cells, which are otherwise poorly connected. More-
over, the material transitions between adjacent cells are very
smooth despite each microstructure exhibiting remarkably dif-
ferent topologies from one to another.

To assess the mechanical compatibility between adjacent
structures, the bulk modulus for each individual and compound
cell is plotted in Fig. 6, together with the theoretical Hashin-
Shrickman (HS) upper bounds [38]. Several observations can
be made from the results of the compound formulation. Firstly,

the performance of the individual cells agrees well with the HS
bounds, meaning that the optimization of connectivity does not
compromise the optimality of individual cells. This can be at-
tributed to the large design space in topology optimization. Sec-
ondly, the performance of compound cells is close to the theo-
retical limit. This contrasts the performance of those obtained
via the reference formulation (! = 0), which are frequently
inferior to those of either of their constituent microstructures.

3.2. FGM with maximum length scale
The formulation can be extended to allow control over the

maximum length scale on the design. Together with the min-
imum length scale, this can reduce the variation in the thick-
ness of the microstructures. We make use of the local volume
constraint [26] to (approximately) control the maximum length
scale. The constraint is formulated as:

⇢̂e  ↵, 8e, (19)

where ↵ is the prescribed upper bound on ⇢̂e, which is the aver-
age element density in a neighbourhood N surrounding e, i.e.,

⇢̂e =

P
i2Ne ⇢iP
i2Ne 1

. (20)

The neighbourhood Ne is defined as the set of elements within
an influence radius Re of element e, i.e.,

Ne = {i| kxi � xek2  Re}. (21)

Figure 5 c) shows the e↵ects of a maximum length-scale con-
straint. Here, besides prescribing a global volume fraction for
each microstructure, a local volume bound (↵ = 95%) is also
used. This constraint enriches the topology especially in the
unit cells with a high volume fraction. The connectivity be-
tween unit cells of distinct topologies can be observed.

The bulk moduli of individual and compound cells optimized
with and without a maximum length scale are plotted in Fig. 7.
It can be observed that the bulk moduli in both settings agree
well with the HS bounds. To the right of the plot (i.e., mi-
crostructures with high material volume fractions), the cells op-
timized with this local constraint have a smaller global volume
fraction than those without this constraint. This is due to the
fact that local volume constraints are more restrictive. Simi-
lar e↵ects have been reported in a study where local volume
constraints were originally proposed for compliance minimiza-
tion [26].

3.3. FGM for orthopaedic implant design
FGMs are extremely useful in the design of mechanical com-

ponents with spatially-varying requirements. We apply the
compound formulation to the design of an orthopaedic hip im-
plant with high porosity on the bone-implant interface and high
density in the core region. We include an isotropy constraint
in the form of a cubic-symmetry constraint and an additional
constraint on the sti↵ness tensor:

G11 +G22 � (G12 +G21) � 4G33 = 0. (22)
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a)

b)

c)

d)

e)

Figure 5: 2D FGMs optimized for maximum bulk modulus under linearly-varying volume fraction from 30% to 80% a) with ! = 0; b) with ! = 1; c) with local
volume constraint (↵ = 95%, Re = 10); d) with additional isotropy constraint; e) with mutual compatibility.

Figure 6: Bulk modulus vs. material volume fraction for FGM generated with
(! = 1) and without (! = 0) compound formulation.

0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Without LS constraint (individual)
Without LS constraint (compound)
With LS constraint (individual)
With LS constraint (compound)
Hashin-Shtrickman upper bound

Figure 7: Bulk modulus vs. material volume fraction for the optimized FGM
with/without a maximum length scale (LS).

The isotropy constraint is included to reduce the sensitivity of
the structure to loading conditions . The e↵ects of the isotropy
constraint are shown in Fig. 5 d). We also introduce a local
volume constraint (↵ = 95%,Re = 10), which limits the size of
solid material regions, thus increasing the number and size of
pores necessary for dendritic bone ingrowth.

We first optimize a set of 9 microstructures for maximum
bulk modulus under linearly-varying volume constraint from
40% to 90%. Each cell is discretized into 100 ⇥ 100 finite
elements. We then map the optimized microstructures into the
implant to obtain the desired functional gradation. The process
and final geometry are shown in Fig. 8. The 2D microstructures
are extruded to obtain a 3D model. Fig. 9 shows a titanium
specimen fabricated via selective laser melting.

A similar methodology can be applied to the design of infill
patterns for 3D printing where spatially-varying structural
requirements exist. In this case, the density distribution can
be user-defined or determined based on the stress distribution.
We then optimize a family of microstructures for maximum
bulk modulus in a specific range of volume fraction and map
them into the structure in the same way as for the orthopaedic
implant.

3.4. Granularity

When mapping microstructures into a macrostructure for
both FGM design and bottom-up multiscale optimization (to be
introduced in the next section), the discretization of a continu-
ous density distribution introduces some error that is inversely
correlated to the granularity of the discretization. It is therefore
useful to be able to generate large families of microstructures.
However, the computational e↵ort required to simultaneously
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1) 2) 3) 4)

Figure 8: Implant development: 1) Define density distribution; 2) Discretize distribution; 3) Generate compatible microstructures; 4) Map microstructures into
discretized density distribution.

Figure 9: A specimen fabricated using selective laser melting (SLM). Mate-
rial: Ti-6Al-4V ELI ASTM B348 with a particle size range of 10-45 micron.
Machine: Realizer SLM125, Additive Manufacturing Laboratory, TU Delft.

Figure 10: Interpolated GM optimization scheme. a) Key unit cells are opti-
mized as a reduced GM. b) Intermediate unit cells are optimized as GMs with
fixed key unit cells at either ends.

Figure 11: Key cell family (top) and interpolated cell family belonging to key
cells two and three (bottom).

design a large number of unit cells may become problematic.
Instead, an interpolation method can be used to break-up the
problem into a series of more manageable ones. Firstly, a re-
duced set of uniformly distributed key unit cells is optimized.
Subsequently, the intermediate unit cells between the key cells
are optimized as smaller GMs with key cells set as fixed bounds
and using the key cells as an initial guess. Fig. 10 depicts
the process graphically. A set of interpolated cells is shown
in Fig. 11. As a reference, we also optimized the full granu-
larity of 100 cells simultaneously. Fig. 12 compares the bulk
modulus on the interpolated cells as depicted in Fig. 11. The
bulk modulus of the interpolated cells is very close to that of
the full-granularity optimized cells. For cells with low volume
fraction, the di↵erence in modulus is relatively large, but still
less than 5%.
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Figure 12: Bulk modulus vs. material volume fraction for cells optimized with
and without the interpolation method.

a) b)

Figure 13: Cantilevered beam with two microstructural regions (50% and 60%):
a) with homogenized properties assigned to each macroscale element; b) full-
scale structure with m ⇥ m microstructural unit cells for each macroscale ele-
ment.

3.5. Full-scale analysis
Homogenization theory assumes the separation of

scales [30]. In engineering however it is impractical to
fabricate an infinite array of periodic microstructures. This
leads to an unavoidable discrepancy in structural performance
between homogenization-based analysis and a full-scale
analysis on the non-infinite array of microstructures. To
investigate this discrepancy, we set up a cantilevered beam
made up of two microstructural regions, as shown in Fig. 13.
Each microstructural region is discretized with m⇥m elements.
In Fig. 13 a) each element is assigned with the homogenized
properties, while in Fig. 13 b) each element is realized by
the microstructural unit cell. Fig. 14 plots the normalized
compliance regarding the resolution of the microstructural
array. The normalized compliance is defined as the compliance
obtained with homogenized properties over the compliance
of the full-scale structure. As the resolution increases, the
normalized compliance approaches 1. The error is within
5% with microstructural resolutions as low as 18 ⇥ 18. In
this example the two regions have a large di↵erence (10%) in
material fraction. This error becomes small as the di↵erence
in material fraction decreases. The full-scale analysis is
performed using a multigrid-CG solver [39].

We compare this discrepancy with microstructures optimized
without consideration for compatibility. The numbers are re-
ported in Table 1. A resolution of 10 ⇥ 10 is used for both
types of microstructures. It is observed that the compliance of a
full-scale structure made up of incompatible microstructures is

Figure 14: Normalized compliance vs. microstructural resolution.

Table 1: The structural compliance evaluated by homogenization and by full-
scale analysis on the array of microstructures with and without consideration of
compatibility.

Homogenized Full scale analysis
Individual formulation 2.436 ⇥ 102 1.899 ⇥ 108

Compound formulation 2.682 ⇥ 102 2.892 ⇥ 102

several orders of magnitude higher than predicted by numerical
homogenization. In contrast, with the compound formulation
(! = 1) the discrepancy is small.

4. Applicability to Multiscale Optimization

The proposed method for ensuring mechanical compatibility
is also applicable to multiscale optimization. Rather than devel-
oping a new multiscale optimization framework, our intent here
is to demonstrate the general applicability of the compound for-
mulation for existing multiscale frameworks. In particular, we
demonstrate it on a bottom-up approach [14] and a concurrent
approach [19].

4.1. Bottom-up multiscale optimization
Following the method proposed by Cramer et al. [14], decou-

pled multiscale optimization is performed by first generating a
family of microstructures optimized for maximum bulk modu-
lus under linearly-varying volume constraint, and subsequently
fitting their properties to a functional which then replaces the
SIMP model (Eq. 8) in the macroscale optimization procedure.

This bottom-up approach is useful for some challenging
loading conditions where density-based topology optimization
methods do not converge to black-white solutions. Fig. 15 a)
shows one such case. The beam is fixed at two ends, under a dis-
tributed load on the top and subject to a local volume constraint
↵ = 60%. The density-based method [26] failed to produce
binary structures and resulted in grey elements. Our method
enables physically realizable microstructures to be mapped into
such non-binary structures, shown in Fig. 15 b). Fig. 15 c) and
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d) show alternative binary microstructures for comparison. In
Fig. 15 c) the graded microstructures are generated by adapt-
ing the thickness of an ’X’-shaped unit. Parametrized lattices
have been commonly used (e.g. [15, 16, 17]). In Fig. 15 d)
the graded microstructures are optimized with a density filter
across the unit cell domains to promote connectivity, follow-
ing the approach proposed by Radman et al. [13]. Using full
scale analysis, the compliance of the microstructures generated
by our method is smaller than the other two, and is close to the
compliance using homogenized properties.

The compound formulation generates families of microstruc-
tures which are compatible with their nearest neighbours on
either side. In order to use the resulting microstructures in a
bottom-up multiscale optimization procedure, the formulation
has been modified to generate families of mutually compatible
microstructures. In other words, each cell is compatible to any
other cell in the family. The modified objective function for
generating mutually compatible microstructures is:

max
⇢

J = (1 � !)
NX

n=1

f (G(⇢n))+

!
NX

n=1,m>n

f (G([⇢n, ⇢m])).

(23)

As an example, Fig. 16 shows a sequence of microstructures
generated with the original and modified compound formula-
tion. In the latter case, non-adjacent microstructures possess
improved compatibility with one another. The e↵ects of the
mutual compatibility are also shown in Fig. 5 e) for compari-
son to other options. This formulation increases the number of
compound pairs from N � 1 to N(N�1)

2 , and can impede conver-
gence.

The elasticity tensor for linearly-varying volume constraint
is fitted by a functional which replaces the SIMP model. The
functional takes the form:

G f it
i j (⇢) = G0

i j

⇣
1 � 1 � ⇢

1 + ai j⇢

⌘
, (24)

where G0
i j corresponds to a fully solid microstructure, and ai j

is the fitted coe�cient. The functional matches the data very
closely, and has the appropriate boundary values, i.e., G f it

i j (0) =
0 and G f it

i j (1) = G0
i j (see Fig. 17).

An isotropy constraint is imposed to ensure that the entries
of the e↵ective elasticity matrices vary monotonically with the
average material density. Moreover, it reduces the number of
parameters required to build the sti↵ness matrix from 6 (2D) or
21 (3D) to 2. This restriction reduces the computational cost
of the optimization procedure, particularly for 3D implementa-
tions.

4.2. Concurrent multiscale optimization
In previous sections, the compound formulation has been ap-

plied to the design of structures with a finite number of unique
microstructures. This formulation can also be adapted for use in
concurrent multiscale optimization procedures, which typically

a)

b)

c)

d)

!"#$%&'()*+ ,-./,01023/

!"#$%&'()*+ 4"#+0,-5/601023/0 78%%+0,-./301023/0

!"#$%&'()*+ 4"#+0/-9./01023/0 78%%+0/-,/,01023/0

!"#$%&'()*+ 4"#+0,-/:601023/0 78%%+0:-9,.01023/0

Figure 15: a) Non-convergent fixed beam under distributed load and subject to
local volume fraction ↵ = 60%. The binary structure can be realized by map-
ping b) compatible microstructures optimized by our method, c) ’X’-shaped
lattices with varying thickness, and d) microstructures optimized by a density
filter across the unit cell domains. For the binary structures, the compliances
evaluated by homogenized properties (Hom) and by full scale analysis (Full)
are reported.
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1 2 3 1 3

1 2 3 1 3

b)

a)

Figure 16: Sequence of microstructures generated: a) with compound formula-
tion (Eq. 1), b) with modified compound formulation considering mutual com-
patibility (Eq. 23).

Figure 17: Fitted material property interpolation functions.

result in an unlimited number of microstructures. We follow the
hierarchical concurrent material and structure scheme proposed
by Rodrigues et al. [19]. In line with the compound formula-
tion, we update the homogenized macroscale element sti↵ness
tensor to be a weighted average of the element itself and a su-
perelement, defined as the 3 ⇥ 3 (in 2D) Moore neighbourhood
centred about the element, i.e.,

Gnm
i j = (1 � !)Gnm

i j + !Gn±1,m±1
i j (25)

where n and m are the macro level element coordinates. Fig. 18
shows a simply supported beam with 45 ⇥ 24 macro-elements
and 60 ⇥ 60 micro-elements, subject to a 30% material con-
straint, optimized for minimum compliance using the concur-
rent multiscale scheme with and without the compound for-
mulation. The boundary conditions are depicted in Fig. 18.
The results show improved connectivity between adjacent mi-
crostructures and smoother topological gradation across the
macrostructure. Furthermore, from multiple numerical tests
it was observed that with the compound formulation the re-
sults are less dependent on the initialization of the design vari-
ables. Using full scale analysis it was observed that the im-
proved connectivity reduces the compliance by more than four
orders of magnitude. We note, however, that the compound
formulation increases the homogenization-based compliance of
the optimized structure by 28.8%. This could be explained by
some distortion of the microstructures for ensuring compati-
bility. Moreover, even with improved connectivity there is a

large discrepancy between the homogenization-based predic-
tions and the results by full scale analysis.

5. Conclusions

In this paper, we have presented a novel method to en-
sure mechanical compatibility among topology optimized mi-
crostructures. By optimizing the mechanical properties of the
compound cells, together with the properties of the individual
cells, our method generates microstructures that form an inte-
gral part. Our results show that the bulk moduli of individ-
ual cells reach the theoretical bounds predicted by the Hashin-
Shtrikman model, meaning that the optimization of compatibil-
ity does not compromise the performance of individual cells.
Furthermore, the bulk moduli of neighbouring pairs also agree
well with the Hashin-Shtrikman bounds. The method has been
extended to allow maximum length scale and isotropy in mi-
crostructures. In a number of designs, including functionally
graded materials and multiscale structures, we have demon-
strated the e↵ectiveness of the proposed method. The opti-
mized microstructures can be fabricated by additive manufac-
turing technologies.

As future work, we are particularly interested in the follow-
ing aspects. Firstly, this method is directly applicable to 3D
design problems. To alleviate the computational burden in 3D,
the GPU-based topology optimization framework [29] can be
used. Secondly, while we have applied the compound formu-
lation for maximizing bulk modulus, its applicability to other
physical problems such as conductivity [40] is left to be demon-
strated.
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