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Abstract

A flattenable mesh surface is a polygonal mesh sur-

face that can be unfolded into a planar patch with-

out stretching any polygon. This paper presents a new

method for computing a slightly stretched flattenable

mesh surface M from a piecewise-linear surface patch

P ∈ <3, where the shape approximation error between

M and P is minimized and the strain of stretching on

M is controlled. Prior approaches result in either a flat-

tenable surface that could be quite different from the

input shape or a (discrete) developable surface has rel-

ative simple shape. The techniques investigated in this

paper overcome these difficulties. First, we introduce a

new surface modeling method to conduct a sequence

of nearly isometric deformations to morph a flatten-

able mesh surface to a new shape which has a better

approximation of the input surface. Second, in order

to get better initial surfaces for fitting and overcome

topological obstacles, a shape perturbation scheme is

investigated to obtain the optimal surface fitting result.

Last, to improve the scalability of our optimal surface

fitting algorithm, a coarse-to-fine fitting framework is

exploited so that very dense flattenable mesh surfaces

can be modeled and boundaries of the input surfaces

can be interpolated.
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1 Introduction

For human centric products fabricated by planner ma-

terials such as garments, shoes and furniture, consumers

prefer customization. However, due to lack of support

from design and manufacturing automation, customiza-

tion for human centric products is usually made manu-

ally in a trial-and-error manner. Compared with mass

produced products, current customized products con-

sume more manufacturing time and labors, therefore

become much higher priced and thereby are not popu-

larized. Moreover, the accuracy of products cannot be

guaranteed because of the absent of design and manu-

facturing automation. There are some efforts [1] made

trying to solve this problem by dividing customized

products design into four steps: 1) human body scan
(Fig.1(a)); 2) human body reconstruction and process-

ing (such as Fig.1(b)(c)); 3) design on/around human

body (Fig.1(d)(e)(f)) and manufacturing (Fig.1(g)). These

four steps can be thought as the general working flow

for automatized customized products design and fabri-

cation. With the popularization of low-cost consumer

level depth camera such as Microsoft Kinect and devel-

opment of computational methods associated such as

[2], step 1 and 2 are no longer barriers to keep con-

sumers from easily obtaining their 3D body shapes.

Based on given 3D human model, our previous work

[1] presents a computer-aided design framework with

various of automated or interactive tools for design-

ing human centric customized products fabricated by

planner materials. The designed 3D shape can be fab-

ricated by warping the 2D pattern back to 3D. From

the knowledge of differential geometry [3], only for de-

velopable surfaces, there exist 2D shapes which can be

warped back to 3D without any distortion, but the de-

sign 3D shapes are usually not developable. Therefore,
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(g) (f) 

Fig. 1 A typical work flow for customized wetsuit design – Human body point cloud data is acquired by 3D scanner (a), and
a mesh surface is reconstructed (b). The mesh model is then deformed into a posture when playing windsurfing. A wetsuit is
designed via a CAD system [1] (see (e)), processed by our approach and then flattened onto 2D (f). Eventually, a wetsuit is
fabricated for a windsurfing player according to the 2D shapes (g).

an urgent problem to be solved is how to convert the 3D

design into a shape which can be fabricated by planner

materials with as little as possible approximation er-

ror with 3D design. In practice, the planner materials

usually allow certain amount of stretchiness (measured

by strain) during the fabrication. The allowance strains

can be varied for different materials from less than 1%

for leather in shoe design, within 5% for cotton fabric in

jeans design and even high to around 10% for Neoprene

for wetsuit design.

Problem Definition: Given a designed 3D product H

represented by an assembly of several polygonal meshes

(which may be very dense) in disk-like topology, strain-

controlled flattenable mesh surfaces are computed to

approximate the surface patches on H. For any sur-

face patch P ∈ <3 on H, the computed mesh surface

M should have a controlled stretching strain compared

with a fully flattenable mesh surface and give a small

shape approximation error between P and M .

In differential geometry [3], developable surfaces

are used to model 3D shape that can be warped from

inextensible materials. Nevertheless, the shape of mod-

ern products could be complex (e.g., having freeform

surfaces, irregular boundaries, etc.), so it is difficult

to model them by developable surfaces although de-

velopable surfaces can always be warped from planar

materials without stretching. The shape optimization

methods developed in prior researches for discrete de-

velopable surfaces [4] (also called flattenable mesh sur-

faces in [5]) provide some preliminary trials of model-
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Fig. 2 For a given surface (a) which is highly curved, the resultant surface generated by the flattenable mesh processing
technique [6] can be fully developable. However, the processed flattenable mesh surface has a large shape variation to the input
(see the shape approximation error shown in (c)). An resultant flattenable mesh surface after fitting with 10% maximum strain
having a better fitting result to the input is shown in (d), which has a much smaller shape approximation error (see (e)). The
final result after relaxation with more tight strain limit (7.5% in maximum) is shown in (f), but the shape approximation (see
(g)) is still better than the one in (c).

ing surfaces in crumpling. However, they have defects

in either of the following two aspects: 1) the processed

surface could be quite different from the input shape

(i.e., the fitting error from a flattenable mesh surface

to the input surface patch has not been minimized [5]

– see also the example shown in Fig.2), or 2) only rela-

tively simple surface patches can be processed (e.g., the

developable surface strips in [4]). Moreover, fully inex-

tensible planar materials (e.g., paper) are rarely used

in commercial production as they provide less flexibility

for modeling highly curved shapes. Slightly extensible

planar materials are more widely used, which allow a

certain level of in-plate stretch during fabrication (e.g.,

less than 5% in textile industry).

This paper investigates techniques in modeling

the complex shape of products that are fabricated from

slightly extensible planar materials. This leads to a new

geometric modeling framework for designing such prod-

ucts more efficiently and accurately, which will benefit

various industrial applications (e.g., ship and airplane

building and design automation of user-customized clothes).

The techniques exploited here include a surface fitting

method for flattenable mesh surfaces, a shape perturba-

tion based scheme for obtaining optimal fitting results,

and a coarse-to-fine fitting framework.

1.1 Previous work

Related previous work can be reviewed in the aspects of

developable surface modeling, mesh processing for dis-

crete developable surface, and mesh parameterization

and flattening.

The research work proposed in this project re-

lates to the study of developable surface in differen-

tial geometry [3], where the common forms of devel-

opable surface are generalized cylinders, conical sur-

faces (away from the apex), and tangent developable

surfaces. The developability of a surface can be char-

acterized by Gaussian curvature which is the product

of the maximum and minimum normal curvatures at a

given point. In general, a surface is developable if and

only if the Gaussian curvature of every point on it is

zero. When computing in a discrete form (i.e., piece-

wise linear surfaces), such a surface is named as flat-

tenable mesh surface that has zero Gaussian curvature

on non-boundary vertices [5]. Some prior approaches

[7–11] directly construct models by continuous devel-

opable ruled surfaces (or ruled surfaces in other repre-

sentations - e.g., B-Spline or Bèzier surface patches).

Although conical dislocations in crumpling have been

studied in [12], it is still not convenient to model the

freeform surfaces of modern products (e.g., the sports

suit shown in Fig.2) by continuous developable surfaces.

Another limitation of these approaches is that they can
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only model surface patches with 4-sided boundaries as

the surfaces are usually defined on a squared parametric

domain.

Another thread of research reformulates the prob-

lem and makes it computable in a discrete form (e.g., by

piecewise linear surfaces). Decaudin et al. [13] process

a given mesh surface by locally fitting a conical sur-

face at every vertex and then optimizing the positions

of vertices so that their normal vectors satisfy the re-

quirement of conical surface. More generally, the mesh

surface is directly optimized in [14] to minimize the ob-

jective in terms of discrete Gaussian curvature, which is

derived from a prior work in [15]. However, as the zero

value on discrete Gaussian curvature is formulated as

the soft constraints in these approaches, the resultant

surfaces are neither really developable (i.e., the Gaus-

sian curvatures are not zero) nor variants from flatten-

able mesh surfaces with controlled-strain. This problem

is somewhat solved in [6] which formulates the discrete

developablility as hard constraints in a numerical opti-

mization framework. However, the processed flattenable

mesh surface M gives a very poor approximation to the

input surface P (see Fig.2), which is a problem to be

solved in this research project.

Liu et al. in [4] presented a novel PQ mesh, which

can be used to model developable surfaces in strips. The

discrete developable surface constructed by [4] is still

simple - having a shape similar to ruled surfaces. Sim-

ilar problem occurs in the approach of [16]. A recent

interesting work in [17] models a discrete developable

surface by fitting a set of 2D quadrilateral pieces to the

original surface. The surface generated by this approach

can have creases. However, in some applications (e.g.,

clothes design and manufacturing), the processed flat-

tenable mesh surface M is required to interpolate the

boundary of the input surface S. The curved folding

method in [17] has difficulty in satisfying this bound-

ary interpolation requirement. When fitting to a highly

curved surface P (e.g., the patch shown in Fig.2), it is

difficult to find the ruling directions on P and therefore

is hard to conduct the quad dominant decomposition

by the algorithm of [17].

Originally motivated by the application of tex-

ture mapping, there are many algorithms were devel-

oped in the computer graphics community (e.g., [18–

22]) to find an optimal mesh parameterization for a

given 3D piecewise linear surface. In the computer-aided

design area, surface flattening is studied in [23–27] to

determine the shape of a planar pattern that can be

used to fabricate the 3D surface patches on a designed

product. In all of these researches, certain criteria (e.g.,

angles, areas and lengths) are employed to evaluate the

error between the 3D and the planar surfaces. A more

comprehensive review can be found in [28]. However,

the given 3D surface patch and the computed 2D pat-

tern can rarely be deformed between each other in an

isometric way as the stretching distortion is only mini-

mized but not eliminated. Converting an input surface

P into a flattenable mesh surface M while interpolat-

ing the surface boundary, ∂P is a better solution to

improve the manufacturability of a designed product

H containing S.

1.2 Contributions and overview

The major contribution of our work is a novel surface

modeling method to generate a slightly stretched flat-

tenable mesh surface from a piecewise linear surface,

which presents the following properties.

– Optimal Surface Fitting: The shape approxima-

tion error between the flattenable mesh surface M

and the input surface patch P is minimized, which is

benefitted by our new approach of isometric surface

fitting and the novel shape perturbation scheme.

The isometric surface fitting optimize the 3D shape

of M , and the shape perturbation scheme further

enlarge the optimization space by allowing variation

on the corresponding planar pattern of M .

– Constrained Stretching Strain: Nearly isomet-

ric deformation is conducted to iteratively morph

a flattenable mesh surface M into a shape approx-

imating the input surface patch, where the strain

of stretching on M is well controlled to ensure re-

sulting a surface that can be fabricated by slightly

extensible planar materials.

– Scalability: A coarse-to-fine fitting framework is

developed in this work to process surfaces with very

dense meshes. None of the existing multi-scale mesh

editing techniques (e.g. [29–32]) can be directly ap-

plied here due to the fact that we need to maintain

the flattenability during surface fitting while ensur-

ing the compatibility between boundaries of the re-

fined mesh surface and the input surface.

These properties enrich the geometric modeling ability

of flattenable mesh surfaces, which will help shorten the

design cycle of products fabricated by slightly extensi-

ble planar materials.

The rest of this paper is organized as follows. Our

method for computing the optimal shape approxima-

tion by flattenable mesh surfaces is presented in Section

2. Section 3 gives a multi-scale surface fitting framework

which can greatly improve the scalability of this shape

approximation algorithm so that the given surface with

very dense polygonal meshes can be processed and the

boundaries can be interpolated. Experimental results
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Fig. 3 Progressive results of surface fitting – our surface fitting approach can iteratively morph the shape of a flattenable
mesh surface to approximate the shape of an input surface by isometric deformations: (most left) the flattenable mesh surface
shown in Fig.2(b) before fitting, (most right) the fitting result has shown in Fig.2(c).

are given in Section 4 to demonstrate the functionality

of our approach, and our paper ends with the conclu-

sion section.

2 Optimal Shape Approximation

By using the flattenable mesh surface processing method

[5], we can process the input mesh surface P into a flat-

tenable mesh surface M by solving a constrained opti-

mization problem as

arg min
p∈int(P )

w1Jpos + w2Jfair s.t. θ(vp) ≡ 2π (1)

where int(· · ·) is the set of interior vertices on P , θ(vp) ≡
2π is the hard constraint to ensure the flattenability of

vertex vp, Jpos is a term attracting vp to its position on

S and Jfair is a term to improve the fairness on surface

by using Laplacian operator. In [6], the functional min-

imization is separated into two steps of the least-norm

based position estimation and the least-square based

surface shape update, where the algorithm is faster than

the method in [5]. However, as illustrated in Fig.2(b),

the resultant surface from [6] (and also [5]) presents a

shape quite different from P . Our isometric surface fit-

ting approach will solve this problem. Stimulated by

the method in [33], the shape derivation of M from the

input surface P is evaluated by a metric

E(M,P ) =
1

Atotal

∑
p∈M

Avor(vp)‖vpcp‖ (2)

with cp being the closest point of vp on the input sur-

face P , which can be efficiently evaluated by the method

in [34]. Avor(vp) denotes the voronoi area of a vertex

vp (ref. [35]), and Atotal is the surface area of M . Note

that all the colorful map of shape approximation errors

in this paper (e.g., Fig.2(c)) are generated by visualiz-

ing the distance between any vertex vp on M and the

input surface P (i.e., ‖vpcp‖).

2.1 Isometric surface fitting

Starting from a flattenable mesh surface M0 (e.g., the

one computed by [6]), we are going to use isometric

deformations to iteratively morph its shape into Mi

(i = 0, 1, . . .), and then minimize the shape approxima-

tion error between Mi and P . Specifically, after each

modification, the lengths of all edges on Mi before the

deformation should be preserved on the new mesh sur-

face Mi+1. The isometric constraint on any edge vivj

can be defined as (ref.[36])

C(vi,vj) = ‖vi − vj‖2/lij − lij ≡ 0 (3)

with lij being their undeformed length. To reduce the

accumulated round-off errors on the length constraints

after several deformations, we store a pair of 3D/2D

representations for the flattenable mesh surface Mi un-

der processing - i.e., every vertex on Mi will store its

coordinates both in 2D (for the planar shape before

fabrication) and 3D (for the current shape). The cor-

responding planar patch D of a flattenable mesh sur-

face M can be obtained by either using an unfolding

algorithm [25] which may accumulate round-off errors

during unfolding, or using the global method [20] to

distribute the round-off errors to the whole patch.

2.1.1 Nearly isometric deformation

Every flattenable mesh surface can be considered as a

piece of cloth to be deformed by some forces. In cloth

simulation (ref. [36,37]), these forces include external

loadings from gravity, wind flow, collided rigid objects,

frictions, etc. and the internal forces of stretch, bend

and shear. When using inextensible cloth simulation

[36] as a toolbox to govern isometric deformations on

flattenable mesh surfaces, internal forces on the physi-

cal model are kept since stretch and shear will help en-

force the isometric property and different bending stiff-

ness actually indicate the levels of expected smoothness

on the surface. In the surface fitting scenario of our ap-

proach, the external loadings in cloth simulation will be

replaced by the forces which drive particles to move to-

wards the input surface P and special treatment must

be given to the surface boundary ∂P . Different from

[36] that conducts quadrilateral meshes, we work on

triangular meshes here since the length of diagonals in

a quadrangle is not constrained if we only add length

constraints on polygonal edges as Eq.(3).
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Fig. 4 Applying too strict length-preservation constraints in
the isometric surface fitting will prevent the deformation of a
flattenable mesh surface towards the shape of input surface.
Considering about the patch shown in Fig.2(d) where has
maximal 10% extension on edges is allowed during the surface
fitting, the surface fitting result becomes poor when reducing
the allowed length variation to 4% (left). Further reducing
the allowed extension on edges to 0.4% (right) will let the
shape almost stuck at the shape before surface fitting (i.e.,
similar to Fig.2(b)).

The constraints on invariant edge lengths are

slightly released to provide more flexibility in the sur-

face fitting and mimic the behavior of slightly extensi-

ble materials. Specifically, the fast projection loop stops

when the strains on all edges are less than 10%. Apply-

ing too strict length preservation constraints here will

lead to very poor fitting results. Details will be dis-

cussed below.

2.1.2 Surface fitting

The isometric surface fitting is based on the routine of

inextensible cloth simulation to preserve the isometric

deformation during the surface evolution. The surface

fitting procedure is expected to minimize the shape ap-

proximation error defined in Eq.(2) on the deformed

mesh surfaceMi. More than that, the boundary vertices

of Mi are demanded to be coincident to the boundary
vertices on the input surface P . Two types of external

forces are defined.

ffitp = w1((vp − cp) · ncp)ncp (4)

f bndb = w2(vP
b − vb) (5)

ffitp is employed for driving an interior vertex vp of Mi

onto the surface P , where cp is the closest point of vp on

P and ncp is the unit normal vector of the surface at cp.

According to the analysis in [38], fitting onto the tan-

gent plane of the closest point (i.e., ∀x, (x−cp)·ncp = 0)

can effectively avoid the local sticking problem which

often happens when directly fitting onto the closest

point cp. f bndb is used for letting a boundary vertex vb

to be coincident to its corresponding vertex vP
b ∈ P .

To enforce the boundary interpolation constraints, w2

should have more weight than w1. We always choose

w1 = 0.01 and w2 = 1.0 in our implementation.

Incorporating these external forces into the in-

extensible cloth simulation routine can efficiently drive

the shape of a flattenable mesh surface M0 into a sur-

face minimizing the shape approximation error defined

in Eq.(2). The inner loop of inextensible cloth simula-

tion is an iteration called fast projection, which enforces

the strains on polygonal edges under a user specified

threshold ε. A smaller value is given for ε, the isometric

property is preserved more strictly. However, applying

an over-strong enforcement on the extension could be-

come an obstacle to prevent the deformation of mesh

surfaces for surface fitting. As demonstrated in Fig.4,

the shape of a flattenable mesh surface cannot be effec-

tively changed by the forces defined in Eq.(4)) when a

very small threhold is used (e.g., 0.4%). Increasing the

magnitude of the forces or the weight will bring very

high stiffness to the numerical system, therefore hurt

its numerical stability (ref. [37]). We solve this problem

by choosing a relative large tolerance (e.g., 10%) in the

fast projection, and the strains on triangular edges are

enforces by adding a relaxation step after the surface

fitting (details will be given in Section 2.3).

2.1.3 Problem of numerical singularity

The procedure of using inextensible cloth simulation

to deform a flattenable mesh surface by the external

forces defined in Eqs.(4) and (5) actually equals to a

constrained optimization procedure, where the shape

similarity is the objective function and the enforcement

of invariant edge lengths is the hard constraints. The

solution is found by the method of Lagrange multipli-

ers. The update vector for the multipliers are first de-

termined, and then the update vector for the vertex

positions can be obtained. However, when the num-
ber of constraints is greater than the degree-of-freedom

(DOF) on a dynamic mesh surface, the linear system

for determining the update vector for multipliers will

become singular. Therefore, the computation of inex-

tensible cloth simulation will diverge. Our surface fit-

ting setup introduced above does not have this problem

of numerical singularity.

Study for the connectivity of a triangular mesh

gives the following remark (Proof is given in Appendix).

Remark 1 For a triangular mesh surface having

disk-like topology, the number of vertices V (including

VI interior vertices – VI > 0 and VB boundary vertices)

and the number of edges E (including EI interior edges

and EB interior edges) satisfy 1) 3V > E and 2) 3VI <

EI .

In our surface fitting, V vertices each has 3-DOF

give 3V -DOF for the dynamic surface. E triangular

edges satisfying the invariant length constraints in Eq.(3)

lead to E constraints. According to Remark 1, 3V > E
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Fig. 5 When isometric deformation is conducted to optimize
the shape of a flattenable mesh surface, the computation may
not converge because of topological obstacles. (Left) If the op-
timal moving direction of a vertex qU is pointing towards qL

and all pis are not allowed to move, the movement of qU is
prevented since the lengths of edges, ‖qUpi‖, should not be
changed during isometric deformation. Here, the patches in
pink and green are isometric to each other, and they are both
isometric to the planar patch (shown in the middle). (Right)
If the same shape is represented by a finer mesh, the opti-
mization will not be prevented – the red dash curve could be
the trajectory of moving qU to qL during the optimization.
The refined mesh in 2D is shown by gray dash lines (in the
middle).

– i.e., the degree-of-freedom is is greater than the num-

ber of constraints on the dynamic surface. If we enforce

the boundary interpolation in a hard way by substi-

tuting the coordinates of boundary vertices on P , the

dynamic mesh will only present 3VI -DOF but has EI

constraints. Since 3VI < EI , the problem of numeri-

cal singularity occurs. Therefore, we do not enforce the

boundary interpolation constraints in the surface fitting

step as they can be easily solved in the relaxation step

for accurate strain control (Section 2.3).

2.2 Shape perturbation for optimal fitting

A tough problem in the above surface evolution mecha-

nism is how to find a good initial guess (i.e., M0) for the

fitting process. The difficulty comes from two aspects:

– Once the shape of the planar patch D is determined

by the flattenable mesh surface M0 computed by

[6], the shape of D will not be changed in the 3D

surface evolution. This limits the domain of finding

an optimal solution.

– Moving vertices for optimization may be prevented

by topological obstacles. See Fig.5 for an example,

where the movement from qU to the position of qL

is stuck by the isometric constraints on edges qUpi.

This prevents the convergence of computation for

surface fitting.

We develop a shape perturbation method to overcome

this difficulty of finding a good initial guess. Before ap-

plying the method in [6] to convert P into a flattenable

mesh surface, we change the shape of P randomly by

Fig. 6 Different flattenable mesh surfaces varied from the
flattenable mesh surface obtained by [6] may give different
shape approximation errors on the isometric fitting results:
(a) the surface patch P on a user-customized sport-suit (see
more details about this application in [1]), (b) the flattenable
mesh surface M generated by [6] and its fitting results (the
distribution of shape approximation error is visualized by the
color mesh), (c) a flattenable mesh surface Mj varied from
M via shape perturbation and its fitting result which has a
smaller error in E(Mj , P ).

perturbation into several variations – i.e., P 1, P 2, . . .,

PN∗ , all sharing the same boundary curve, ∂P . Then,

they will be converted into m flattenable mesh surfaces

M1, M2, . . ., MN∗ . After that, all of them will be fit

onto the input P via near isometric deformations. m

fitting results will be obtained, and the one with the

smallest error in E(M,P ) (as defined in Eq.(2)) is con-

sidered as the best result. Figure 6 gives an illustration

that different flattenable mesh surfaces varied from M

will lead to different shape approximation errors on the

fitting results.

Simply moving all interior vertices on P at ran-

dom will result in a mesh surface with many unwanted

crumpling regions (see Figs.7(a) and (b)), and the shapes

of triangles will become poor (i.e., with caps and nee-

dles) which may make the numerical computation on

them unstable. Although the flattenable mesh process-

ing techniques in [5,6] have already integrated the Lapla-

cian term in their formulation, the quality of mesh sur-

faces after such processing is still poor (see Fig.7(c)). In
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Fig. 7 An illustration of shape perturbation methods: (a) the given mesh surface, (b) the surface generated by applying
perturbation on all interior vertices, (c) the result of flattenable mesh processing [6] on the patch in (b), (d) the anchor points
(in red) are generated by the farthest point sampling [39], (e) the shape perturbation result by the least-square mesh (LS-mesh)
based scheme, and (f) the result of flattenable mesh processing on the patch in (e). It is easy to find that (e) and (f) have
much more regular meshes than (b) and (c).

order to solve this problem, we propose a Least-square

mesh based perturbation scheme. Specifically, a few ver-

tices are selected among the interior vertices on S as

anchor points (the red ones in Fig.7(d)) by the farthest

point sampling [39]. Then, the positions of these anchor

points are randomly moved with magnitudes smaller

than a specified value. The positions of all the remain-

ing vertices are determined by finding the least square

solution of a linear system that encodes the relationship

between the anchor points and the remaining vertices

(details about LS-mesh can be found in [40]). As il-

lustrated in Figs.7(e) and 7(f), the shape perturbation

conducted in this way gives smoother mesh surfaces

and the mesh has better quality. The result shown in

Fig.6(c) is generated by the LS-mesh based shape per-

turbation.

2.3 Relaxation for accurate strain control

As the constraints about maximal strains on the tri-

angular edges have been released to 10% during the

isometric surface fitting, we need an additional relax-

ation step for achieve more accurate strain control on

the resultant mesh. The relaxation step can be defined

as an unconstrained optimization

arg min
p∈int(M)

∑
(‖vivj‖ − lij)2, (6)

where int(· · ·) is the set of interior vertices onM , vivj is

an edge on M , and lij denotes the length of this edge in

the corresponding planar patch D. This unconstrained

method can effectively solved by the Newton’s method

equipped with line search [41]. The Newton iteration

of this relaxation step is stopped when the maximum

strain of all interior edges on M is less than a user spec-

ified threshold. Figure 8 shows the results with different

thresholds for the termination of iterations.

Fig. 8 The relaxation step gives accurate strain control the
resultant mesh surfaces: (a) the input surface P to be approx-
imated and the processed result by FL mesh, (b) the nearly
flattenable mesh surface after fitting with maximum strain
Emax at 10% and average strain Eave at 3.2%, (c) the mesh
surface after the relaxation gives the Emax at 5% and Eave

at 0.5%, and (d) the mesh surface after being processed to
reach the Emax at 1% and Eave at 0.04%. The strains on
triangular edges are visualized by colors.

3 Multi-scale Surface Fitting

In this section, the scalability of the above surface fit-

ting algorithm will be improved by a coarse-to-fine shape

approximation strategy. A given surface patch P with

a very dense polygonal mesh will first be coarsened into

a mesh surface Ps with smaller number of vertices (e.g.,

less than 1,000). After that, m flattenable mesh surfaces

at the coarse level will be obtained from Ps by the shape

perturbation method proposed above. The one, M∗,
having minimal shape approximation error in Eq.(2)

will be selected and further refined by splitting every

triangle on M∗ into four triangles, moving the vertices

to a position closer to P (for the fitting purpose) while

smoothing the mesh surface. To be scalable, local com-

putation schemes are used for fitting and smoothing.
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Fig. 9 An illustration of our multi-scale surface fitting framework. (a) The input surface from a user-customized wetsuit has
more than 100k vertices, (b) The coarsened mesh surface based on CVD – from the zoom view, we can find that the site points
(red dots) of voronoi diagram adjacent to boundary are located on the boundary. (c) The examples of flattenable mesh surfaces
that are generated by the shape perturbation scheme, where the color maps show the shape approximation error (as defined
in Eq.(2)) on surface patches. (d) The flattenable mesh surface with the minimal shape approximation error (circled by the
red dash lines) is selected for the further refinement and update. (e) The refinement is taken on the selected flattenable mesh
surface, where the color map shows the strains on edges. (f) For the comparison purpose, results of the variational subdivision
scheme of FL mesh proposed in [5] are given. The maximum strain is set to 5% for the final result.

The refinement is conducted on both the 3D and 2D

representations. However, applying such a refinement

step on Mi may result in a mesh surface that is not

flattenable; in other words, the 2D and 3D representa-

tions of the same mesh are not isometric to each other.

A spring-mass system similar to [25] that can be eval-

uated in a local manner will be conducted to relax the

difference between the 2D and 3D lengths of triangular

edges on Mi by moving the 3D positions of vertices.

These refinement and relaxation steps will be applied

repeatedly to the mesh surface until a user specified

level is reached (e.g., when having a similar number of

vertices compared with that of the given mesh surface

P ). The maximum strain of resultant mesh surface is

controlled below a user specified threshold throughout

the whole procedure. In order to interpolate the bound-

ary of P , special refinement schemes will be developed

for the triangles on the boundary of the refined mesh

surface. An illustration of our multi-scale surface fitting

framework is given in Fig.9.

3.1 Coarsening, local update and relaxation

To obtain simplified surfaces with good mesh quality,

Centroidal Voronoi Diagram (CVD) [42,43] will be com-

puted on the given surface P and then the site points

of CVD are used as the vertices of Ps. Following the

strategy of [42], the CVD can be computed by alterna-

tively applying the two steps of 1) region classification

and 2) site selection. After randomly selecting k points

on the surface as sites, the region classification step

assigns the triangles on the given surface into differ-

ent voronoi regions. The site selection step updates the

position of sites inside their voronoi region. To speed

up the computation, a local update scheme suggested

in [42] is employed to re-classify the triangles after the

sites are moved. The dual triangulation of a CVD on the

input surface is the coarsening result. When a surface

with dense mesh is given, the coarsening gives very reg-

ular triangles as result. Different from [42], we are pro-

cessing (i.e., remeshing) an open surface. Specifically,

we need to locate the sites of some voronoi regions on

the boundary of the given surface P to be coarsened,
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Fig. 10 For the highly curved surfaces, using a V-spring based inflation can improve the shape of resultant patch in surface
fitting. (a) The front piece of a sports vest is highly curved. (b) One flattenable mesh surface patch generated by shape
perturbation and its results after repeatedly applied inflation and refinement. (c) Another flattenable mesh surface patch with
larger shape approximation error at the coarse level and its corresponding results after inflation and refinement. 10% strain is
allowed on the fitting result.

therefore the coarsened triangular mesh Ps has bound-

ary vertices located on ∂P . Such result can be obtained

by enforcing only boundary vertices are selected as sites

in the regions containing boundary edges. Although this

works, a more sophisticated approach is used to improve

the quality of flattenable mesh surfaces. Details will be

presented in Section 3.2.

The refinement procedure is similar to the vari-

ational subdivision framework proposed in [44]. For a

pair of patches in 3D and 2D (M j , Dj) at the jth level,

a topological splitting operator is first conducted to

introduce new vertices to increase the number of de-

gree of freedom by inserting new vertices in the mid-

dle of every edges not on the boundary. Note that the

M j and Dj pair shares the same topological graph on

their meshes, therefore their connectivities are always

changed together. After the triangle subdivision, the

geometry of refined mesh must also be updated by the

following steps – all conducted locally.

– Fitting and smoothing : For each interior vertex vi

on M j , a vector hi = cvi − vi indicates its updat-

ing direction with cvi being it closest point on M j .

To generate a smooth surface, the update vector

hi assigned to all interior vertices are filtered by a

Laplacian operator

hi =
1

|N(vi)|
∑

vk∈N(vi)

hk (7)

for 3 to 5 times with N(vi) being the 1-ring neigh-

bors of vi and | · · · | getting the number of elements.

Then, the positions of all interior vertices are up-

dated by

vi = vi+
wfit

|N(vi)|
(

hi

‖hi‖
∑

vk∈N(vi)

‖vivk‖+
∑

vk∈N(vi)

vivk),(8)

which tends to move the vertices closer to the input

surface P – therefore have a better shape approxi-

mation. wfit = 0.1e−j is a weight to adjust the im-

portance of fitting, which is progressively reduced

from 0.1 during the refinement with j increasing.

– Remeshing (Optional): After that, the connectiv-

ity of M j and Dj is optimized by applying the

area-equalizing remeshing method [30]. The lengths

of edges used as criteria for splitting and collaps-

ing are evaluated on the planar patch Dj as the

lengths in 3D may retain residual strains. As work-

ing on open surfaces with boundary interpolation

constraints, the remeshing operators are prevented

on the edges containing boundary vertices and the

boundary vertices are not moved.

– Inflation (Optional): Besides remeshing, we find that

for some models with highly curved shape like the

one in Fig.10, the smoothness may be still poor after

applying the fitting and smoothing operator defined

above. This problem can be solved by the inflation

deformation proposed in [45] using V-springs.

– Relaxation: After moving the interior vertices in above

steps, the distance between two neighboring vertices

vi and vk could be different from their distance lik
in 2D. In other words, the deformation between M j

and Dj is not isometric. To preserve the isometric

property, we adopt a spring-mass system similar to

[25] to move the interior vertices on M j by minimiz-

ing the energy function
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Fig. 11 Gap between boundary edge on the refined mesh
surface Mn

F and boundary edges on input mesh surface P ,
where vi and vi+1 are two neighboring vertices on both P
and the boundary of Mn

F .

∑
(vi,vk)∈Mj (‖vivk‖ − lik)2.

To efficiently compute the positions of interior ver-

tices by relaxing the residual strains on edges, the

power of parallel computing on the Graphics Pro-

cessing Unit (GPU) is utilized here.

The remeshing and the inflation steps are optional and

only applied to the first two to three levels of the re-

finement.

3.2 Boundary constraints of interpolation

The above refinement and local update operations do

not process the boundary edges so that the refined mesh

surface does not interpolate the boundary of the input

surface P . There are gaps between the refined flatten-

able mesh surface Mn
F and the boundary of P , which

are separated by the vertices on the boundary of Mn
F .

Without loss of generality, as shown in Fig.11, vi and

vi+1 are two neighboring boundary vertices on Mn
F and

there are totally m other vertices, bj (j = 1, ...,m),

between them on the boundary curve ∂P to be inter-

polated. A triangulation algorithm [46] is used here to

link the boundary curve ∂P between vi and vi+1 (i.e.,

{vi,b1,b2, ...,bm,vi}) and the edge vivi+1 by trian-

gles.

For given a loop of vertices, {vi,b1,b2, ...,bm,vi}
as boundary, there are many possible ways to triangu-

late them into boundary-triangular mesh surfaces. To

select an optimal one among all the possible triangula-

tion, Barequet and Sharir in [46] developed a dynamic

programming based method to obtain a triangulation

with minimal value on an particular objective function.

As the triangulation may result in faces the normal vec-

tors of which are significantly different from the normal

of triangle on Mn
F next to the edge vivi+1 (see Fig.12),

we wish to minimize the area of this newly triangulated

region. Therefore, a minimal area triangulation is gen-

erated by [46] to fill the gap. After filling all the gaps,

the resultant flattenable surface, M∗F , interpolating the

given boundary ∂P is obtained.

Remark 2 The boundary triangulation that fills

the gap between the refined surface Mn
F and the bound-

ary of the given surface M will not change the flatten-

ability of resultant mesh surface M∗F .

This is because that all the vertices on the newly

created triangles are boundary vertices and the trian-

gulation will not convert any boundary vertex to an

interior one. The corresponding planar patch, D∗F , can

be obtained by flattening the newly created triangles

onto plane and stitching them to the boundary one by

one.

3.2.1 Optimal boundary coarsening

The minimal area triangulation can help to reduce the

artifact generated on the resultant surface; however, the

artifact can be further reduced if we design a special al-

gorithm to generate a coarsened boundary B by mak-

ing it as similar as possible to ∂P . Basically, we need

an algorithm like the line segment algorithm used in

computer vision (ref. [47]). However, the line segments

generated here must have their endpoints located on

the given boundary curve ∂P . For a boundary curve

∂P with l vertices as {b1,b2, ...,bl}, starting from the

longest segment bsbs+1, we can iteratively generate a

simplified set of line segments for B by the following

steps.

– Using bs as the starting point of a line segment, a

vertex be is to be determined which let ‖bsbe‖ as

close as possible to 1√
n
‖∂P‖ and the summed area

of triangles

As:e =
∑

s<i<e

Area(∆bsbibi+1) (9)

less than a threshold ε. Area(...) gives the area of

a triangle and ‖∂P‖ denotes the length of surface

boundary ∂P . Here, we actually triangulate the line

segments {bs,bs+1, ...,be} into triangles:∆bsbs+1bs+2,

∆bsbs+2bs+3, ..., ∆bsbe−1be. We could use ε =

100Ā as our threshold with Ā being the average tri-

angle area on M , and n is the number of vertices

that is expected on the coarsened mesh surface.

– After determining the vertex be by above method,

the line segments is inserted into B as a new edge.

Then a new search is started from be.

– These steps are repeatedly run until the vertex, from

which the computation begins, is reached.

The vertices inB will then serve as site points of voronoi

regions at the boundary, and these sites are fixed in the

CVD based coarsening. As a result, we can generate a

coarse mesh M0 by using vertices in B as boundary ver-

tices. The gap filling result on the optimal boundaries

can be found in the right of Fig.12.
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Fig. 12 For a patch from a sofa model (left), the final result starting from a model generated by our boundary optimization
algorithm (middle) gives better smoothness near the boundary compared to the result starting from the one generated by a
heuristic method (right).

Fig. 13 The result on a shoe product: (a) the designed sur-
face patch, (b) the result at coarse level after fitting and re-
laxation with 1% maximum strain, (c) the result at fine level
after fitting and relaxation with 1% maximum strain, and
(d) color map to illustrate the shape approximation error on
surface shown in (c).

4 Results and Discussion

We have implemented the proposed algorithm into a

prototype program by C++. All the examples presented

in this paper are tested on a laptop PC with Intel core

i7 2.67GH CPU and 2GB RAM running Windows 7

system.

We have tested our approach by several models

from various industrial applications. Besides the exam-

ples that have been shown in previous Figs.2, 6, 8, 9,

10 and 12, another test on the shoe design is shown in

Fig.13. The computational statistics are listed in Table

1.

We compare our method with FL mesh process-

ing [6] in Figs.2, 8 and 9. Our method shows much bet-

ter shape approximation in terms of both visual effect

and shape approximation error (see color map in Fig.2).

The good scalability is verified on both apply-

ing our method directly on models with small number

of faces (Figs.2, 6 and 8), and models with large num-

ber faces (Figs.9, 10, 12 and 13) under the multi-level

framework.

For different types of materials, different allowed

strains are adopted. For materials with high elasticity

like nylon and neoprene, we set maximum allowance

strain as 5% (Figs.6 and 9), 7.5% (Fig.2) or even 10%

for some highly curved shape (Fig.10). For those mate-

rials with small elasticity, like textile (Figs.8) or leather

(Figs.12 and 13), we set only 1% allowance strain. Ta-

ble 1 also lists out the average strain which measures

the total stretching of the result.

The processing time is dominated by the shape

perturbation. In shape perturbation,N∗ flattenable mesh

surfaces are generated. In principle, the greater N∗ is,

the more chance a optimal fitting result will be ob-

tained, and obviously the more time will be taken. We

set different m or different tested models. For most of

the cases, small N∗ (i.e., 10) is good enough, but for

some models (Figs.10 and 12), larger N∗ (i.e., 100) is

adopted to guarantee an optimal fitting results.

4.1 Discussion

In literature, several existing approaches compute the

optimal planar pattern DP from a given 3D surface P

by minimizing the length variation on edges (e.g., [48])

or the non-rigid deformation on triangles (e.g., [22]).

When the given surface P is not flattenable, the defor-

mation between DP and P is not isometric.

Remark 3 There is no guarantee that a planar

patch DP computed from a surface P ∈ <3 by mini-

mizing the distortion between DP and P can be iso-
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Table 1 Computational Statistics

# Input # Result Maximum Average Perturbation Total
model face face* strain strain time (mins)† time (mins)
Fig.2 1008 - 7.5% 1.2% 1.05 (10) 1.55
Fig.6 1105 - 5% 0.61% 1.06 (10) 1.56
Fig.8 1382 - 1% 0.04% 1.4 (10) 3.24
Fig.9 212k 184k 5% 0.3% 1.2 (10) 2.6
Fig.10 333k 201k 10% 3% 12.6 (100) 13.9
Fig.12 480k 260k 1% 0.13% 18.6 (100) 24
Fig.13 217k 183k 1% 0.07% 1.62 (10) 4.62

* Some models are processed directly, thus have no change on result face number.
† The values in the bracket indicate the number of models generated by shape perturbation.

metrically warped back into a 3D shape interpolating

the boundary of P .

Considering about two points bs and be on ∂P ,

their corresponding points on the boundary of DP are

ds and de. As the deformation between DP and P is

not isometric, there is no guarantee about the value dif-

ference between ‖dsde‖ and ‖bsbe‖. When ‖dsde‖ <
‖bsbe‖, there is no way to warp DP to a shape interpo-

lating bs and be on ∂P since no distance between two

points in a surface can be shorter than the Euclidean

distance between them.

Therefore, the 3D ⇒ 2D flattening approaches

cannot be used to solve the flattenable surface fitting

problem when the boundary interpolation is required.

Different from the surface flattening techniques, we com-

pute the flattenable surface in 3D at coarse level directly

by using the nonlinear optimization. However, there is

no consensus whether such numerical computation will

result in a flattenable mesh surface.

Given a triangular mesh MB interpolating the

boundary, ∂P , of a surface patch P with disk-like topol-

ogy, MB is called boundary-triangular mesh if the ver-

tices ofMB are on ∂P . A surface represented by boundary-

triangular mesh is flattenable. This is because that there

is no interior vertex on a boundary-triangular mesh sur-

face. For a boundary ∂P with more than three edges,

the boundary triangulation is not unique (ref. [49–51]).

It is also proved in [51], for the boundary curve with

one loop, there always exist a boundary triangulation.

We thus have the following remark.

Remark 4 For a given boundary curve with

one loop, solutions of the fitting problem by flattenable

mesh surface exist.

Any boundary triangulation is a solution for this

fitting problem (although may be not an optimal solu-

tion). Starting from a boundary-triangular mesh sur-

face MB , we can morph the surface MB into other

flattenable mesh surfaces interpolating ∂P . The flat-

tenablity of a deformed surface can be guaranteed by

preserving the isometric mapping between the dual rep-

resentation of a surface in both 3D and 2D. All of these

flattenable mesh surfaces satisfy the condition that the

geodesic distance between any two boundary vertices is

greater than the Euclidean distance between them. The

solution space of our surface fitting problem is spanned

by these deformed flattenable mesh surfaces.

5 Conclusion

We present a new method for computing a slightly stretched

flattenable mesh surface M , which approximates the

shape of the given mesh surface P ∈ <3. Different from

prior approaches that result in either a flattenable sur-

face that could be quite different from the input shape

or a (discrete) developable surface has relative simple

shape, the techniques investigated in this paper over-

come these difficulties in three aspects. First, a new
surface modeling method is introduced to conduct a

sequence of nearly isometric deformations to morph a

flattenable mesh surface to a new shape which has a

better approximation of the input surface. Second, a

shape perturbation scheme is investigated to obtain the

optimal surface fitting result which can get better initial

surfaces for fitting and overcome topological obstacles.

Lastly, a coarse-to-fine fitting framework is exploited

so that very dense flattenable mesh surfaces can be ef-

ficiently modeled and boundaries of the input surfaces

can be interpolated. Experimental tests from different

industrial applications have been shown to demonstrate

the function of techniques developed in this paper.
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Appendix

The proof of Remark 1 is given below.
Proof. For a triangle adjacent to the boundary of a mesh

surface, if there is only one boundary edge in the triangle,
such boundary edge is defined as type-I; if there are two
boundary edges in the triangle, these boundary edges are de-
fined as type-II. The number of type-I boundary edges is de-
noted by EB1, and the number of type-II boundary edges is
EB2. The Euler characteristic for mesh surface with disc-like
topology is 1 – i.e., V − E + F = 1.

From the definitions of internal edge, type-I and type-
II boundary edges, we have the fact that every internal edge
has 2 faces adjacent to it, every type-I boundary edge has one
face adjacent, and two type-II boundary edges share one face
(i.e., each has 1/2 face adjacent). Considering every triangular
face has 3 edges, we get the following edge-face relationship:
2EI +EB1 + 1

2
EB2 = 3F . Another important relationship is

VB = EB1 + EB2. Grouping the conditions together, we can
derive the following relationship.

V − E + F = 1
E = EI + EB1 + EB2

V = VB + VI

3F = 2EI + EB1 + 1
2
EB2

VB = EB1 + EB2

⇒ 3VI = EI−(EB1+
1

2
EB2−3)(10)

In general, the boundary curve has more than three edges
(i.e., EB1 + 1

2
EB2 − 3 > 0); therefore, we have 3VI < EI .

As V = VI + VB and VB = EB1 + EB2, we can derive the
following formulas:

3VI = EI − (EB1 + 1
2
EB2 − 3)

VB = EB1 + EB2

V = VI + VB

E = EI + EB1 + EB2

⇒ 3V = E+(EB1+
3

2
EB2+3).(11)

As EB1 ≥ 0 and EB2 ≥ 0, we can have 3V > E based on the
above formula. Therefore, the remark is proved.

Q.E.D.


