
 1

EXTRACTING MANIFOLD AND FEATURE-ENHANCED MESH SURFACES FROM
BINARY VOLUMES

Charlie C.L. Wang
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
cwang@mae.cuhk.edu.hk

ABSTRACT

This paper presents an approach to automatically recover

mesh surfaces with sharp-edges for solids from their binary

volumetric discretizations (i.e., voxel models). Our method

consists of three steps. The topology singularity is first

eliminated on the binary grids so that a topology correct mesh

M
0
 can be easily constructed. After that, the shape of M

0
 is

refined and its connectivity is iteratively optimized into M
n
. The

shape refinement is governed by the duplex distance-fields

derived from the input binary volume model. However, the

refined mesh surface lacks sharp edges. Therefore, we employ

an error-controlled variational shape approximation (VSA)

algorithm to segment M
n
 into nearly planar patches, and then

recover sharp edges by applying a novel segmentation-enhanced

bilateral filter to the surface. Using the technique presented in

this paper, smooth regions and sharp edges can be automatically

recovered from raw binary volume models without scalar field

or Hermite data. Comparing to other related surface recovering

methods on binary volume, our algorithm needs less heuristic

coefficients.

KEYWORDS: surface reconstruction, binary volume model,

sharp edge recovery, reverse engineering, geometric modeling.

1. INTRODUCTION
The purpose of the research presented in this paper is to

develop technology for automatically converting binary volume

models into B-rep mesh surfaces, so that they can be directly

applied to the downstream CAD/CAM applications. Benefited

from the compact and intuitive mathematical representation,

many design optimization approaches employed the implicit

representation to optimize the shape and topology of products

[1-3]. In their approaches, the shape of optimized product is

sampled on regular grids (i.e., represented by voxels or pixels).

After determining the optimal structure, it is usually necessary

to convert the structures into a B-rep surface model so that it

can be explicitly modified and finally manufactured. This is the

motivation of our work – to develop a technique that can

automatically reconstruct two-manifold mesh surface with

sharp-edges from a given binary volume model.

More specifically, a binary volume model Η is a set of

integral vectors in 3Ζ . Elements 3
,,),,(Ζ⊂Η∈= kjis kji are

called voxels and are thought of as unit cubes centred at

),,(kji . We are going to reconstruct a two-manifold mesh

surface M to approximate, Η∂ , the surface of Η . The error

between M and Η∂ should be bounded, and we aim to recover

the sharp-edges which are damaged by the uniform sampling in
3Ζ . To simplify the description of the technique, we assume the

width of voxels is of unit length in the rest of this paper (the

change of voxel size can be easily implemented in practice).

1.1 Related work

The reason why we do not directly apply the famous

marching cubes algorithm [4] or its variants [5-17] to extract M

is twofold: the two-manifold preservation and the element shape

control. Marching cubes (MC) algorithm was first introduced

by Lorensen and Cline [4] and has become the most commonly

used method for isosurface extraction in scientific visualization.

As first noted by Duerst [5], the original MC algorithm [4] may

produce isosurfaces with holes due to topologically inconsistent

decisions on the reconstruction of ambiguous faces, where the

borders used by one incident cube do not match the borders of

the other incident cube. Several approaches addressing this

problem have been published (see [6, 7] for a review). As

addressed by [7], disambiguation techniques reported so far

have focused on two major concerns: topological consistency

[8-12] (i.e., producing closed surfaces by proper cube

polygonization), and topological correctness [13-17] (i.e.,

extracting a surface faithful to the geometry of the real surface).

A few works attempt to recover the original topology also

inside the ambiguous cubes either by using critical point

analysis [18, 19] or trilinear interpolation [20, 21]. All these

techniques are scalar-data-dependent and therefore cannot be

applied to binary grids. In [7], the authors propose global

strategies for optimizing several topological and combinatorial

measures of the isosurfaces including triangle count, genus, and

number of shells. However, the decisions of the measurements

to be given by users are not natural, i.e., novices feel difficult to

give good decision. Different from them, our algorithm follows

the Nyquist-Shannon Sampling Theorem to reconstruct mesh

surface with correct topology – no additional user input is

required. The authors of [62] employed an automatically

constructed lookup table to ensure the topology of resultant

mesh surfaces; similarly, the approach in [17] considered the

relationship between cubes to develop an extended MC table

for topological guarantees. However, the implementations of

these approaches are not as simple as our CellMerge algorithm,

and they always result in many sliver polygons as other MC-like

algorithms (e.g., see Figure 1).

 2

In MC algorithms, there is no control on the element shape

that is important to many downstream applications. As shown in

Figure 1(a), the resultant mesh by the algorithm in [17] has a lot

of thin triangles and short edges, however the result of our

approach shown in Figure 1(b) gives good element shapes.

Although post-processing steps, such as triangle decimation

techniques [22-24] and the re-tiling algorithm [25] can be

adopted to eliminate badly shaped triangles, directly applying

them to the result of MC algorithms gives no bound on the error

between Η∂ and the output of MC algorithms. In our

approach, we develop a method using duplex distance-fields to

control the error. The remeshing iteration of our algorithm

borrows some idea from the triangle decimation approaches.

Another class of isosurface generation is based on the

active model, where the constructed surface is deformed to

approximate the underground isosurface embedded in a scalar-

field. Crossno and Angel [26] employed particle systems to

extract isosurfaces, where particles are programmed to attract

towards a specific surface value while simultaneously repelling

adjacent particles. The repulsive forces are based on the

curvature of the surface at that location. The smooth shape

reconstruction step of our approach is also conducted in the

similar way, but is speeded up by the precomputed duplex

distance-fields. The SurfaceNets algorithm developed in [27] is

an alternative to MC for building globally smooth but locally

accurate triangle models from binary volume data. In [28] this

algorithm is further enhanced in the Kizamu system to generate

mesh models from distance values sampled on an adaptive grid.

During our implement of their algorithm, we find that the

EdgeFace table in [28] does not guarantee to generate a

manifold mesh surface (see Figure 1(c)). To solve this problem,

a two-manifold preserved algorithm will be developed in

section 3 to extract the connectivity of mesh surface from

binary grids. A recent surface reconstruction algorithm [63]

employs the similar method to generate mesh surfaces from

volume data.

The accuracy of a marching cube algorithm is mainly

governed by the resolution of an underlying grid, so sharp

features cannot be preserved. Over-sampling could somewhat

reduce the aliasing error by taking the cost of increasing storage

memory. Furthermore, as being observed by Kobbelt et al. in

[29], even if an over-sampling is applied, the associated aliasing

error will not be absolutely eliminated since the surface normals

in the reconstructed model usually do not converge to the

normal field of the original model. Therefore, the technique of

recovering sharp edges on feature-insensitive sampled models is

desired. Some of currently existing approaches (e.g., [29-32])

encode the original surface normals during sampling, so that a

Hermite dataset is generated to reconstruct sharp features.

However, no Hermite dataset can be obtained on binary volume

models. The most recent sharpen and bend technique of Attene

et al. [33] gives two filters that improve the quality of sampled

surfaces which chamfer sharp features, so that the curved sharp

edges in triangular meshes produced by feature-insensitive

sampling can be recovered. However, the filters introduced in

[33] can only sharpen the “chamfered” edges. For the

insensitive sampled edges that are rounded (e.g., Figure 2(d)),

the algorithm of [33] fails. The rounded edges are usually

generated by dynamic surface extraction algorithms – e.g.,

ShrinkWrap [34], Skin [35], and our approach. Therefore, a

new sharpening algorithm is introduced in section 5. Different

from the approaches in [36] and [37], the newly developed

recovery technique for sharp-edges integrates the segmentation

and the bilateral filtering into a segmentation-enhanced bilateral

filter so that it is more robust than the approaches based on the

identification of “sharp” regions by normal variations.

1.2 Contributions

The techniques developed in this paper contribute in the

following three aspects:

• We propose a new algorithm to construct the coarse shape

of an isosurface. Our method automatically resolves the

topology ambiguity by simple rules, whose implementation

is much simpler than the marching cubes algorithm and its

variants.

• The refined shape of isosurface is determined by duplex

distance-fields and the smoothing operator, where the error

between the reconstructed surface and the given binary

volume model is bounded by the duplex distance fields.

• We integrate the segmentation into our algorithm to

identify regions with sharp edges, and then recover sharp

edges in these regions using a segmentation-enhanced

bilateral filtering algorithm.

Figure 1: A model contoured using Marching Cubes algorithm

[17] resulting in many triangles (a) and our approach resulting

in good shape triangles (b). (c) non-manifold edges (the bolded

ones are produced by using [28] to construct the connectivity

of isosurface.

 3

These techniques lead to the new function that flat regions,

curved regions, and sharp edges are automatically recovered

from raw binary volume models without requiring scalar field

or Hermite data. Compared to our previous work presented in

[36, 37, 60], the approach presented in this paper has the

following advancements.

• A new Topological Singularity Elimination algorithm has

been developed and governed by the Lemmas in section 3;

• A out-of-core extension of the CubeMerge algorithm (see

section 4);

• A new sharp edge recovery algorithm is presented in

section 5.

2. METHOD OVERVIEW
To recover the mesh surface with sharp-edges for solids

from their binary volumetric discretizations, our approach

consists of three steps as follows.

1) Topology reconstruction: The first step is to identify

and eliminate the topologically singular vertices/edges on

the input binary volume model Η . Based on the corrected

voxel set, a CubeMerge algorithm is developed, whose

output mesh surface 0Μ is guaranteed to be two-manifold

and consistent to the topology of H. 0Μ gives a coarse

mesh approximation Η∂ . We also give an out-of-core

implementation of the CubeMerge algorithm. Figure 2(b)

shows an example 0Μ generated from the input binary

grids in Figure 2(a).

2) Smooth shape reconstruction: The shape of 0Μ is

affected by aliasing artifacts, so the shape of 0Μ will be

smoothened in the second step. Meanwhile, the mesh

connectivity will also be improved iteratively from 0Μ to
nΜ (i.e., nΜ→→Μ→Μ L

10). In order to bound the

approximation error between iΜ and Η∂ , duplex

distance-fields (one by the boundary voxels in H, and

another by the boundary voxels in 3Ζ \H) are constructed

to govern the movement of vertices on M
i
. For example,

Figure 2(c) shows the duplex distance-fields for the binary

volume model in Figure 2(a), and Figure 2(d) gives the

output mesh, nΜ , of this step.

3) Recovery of sharp edges: No sharp edges exist on the

mesh from the previous step of our approach. A novel

segmentation and bilateral filtering based method is

developed to recover sharp edges. An error-controlled

variational shape approximation (VSA) algorithm is first

employed to segment nΜ into near planar patches (e.g.,

see Figure 2(e)). Then, the normal vectors on each triangle

of nΜ are filtered through a segmentation-enhanced

filtering. Finally, the surface vertices are updated to let

triangles follow filtered normal vectors so that sharp edges

Figure 2: Step-results for an example model with two cubes to

illustrate the overview of our approach: (a) the binary volume

model is shown on three cross-section planes, (b) the two-

manifold coarse mesh 0Μ approximating Η∂ with correct

topology, (c) duplex distance-fields – the left one is generated

by the boundary voxels in H and the right one is from the

boundary voxels in ΗΖ \
3 (where blank represents the point

with negative distance value), (d) the resultant mesh nΜ of

smooth shape reconstruction, (e) the segmented patches by

variational shape approximation, (f) the sharpening result from

segmentation-enhanced bilateral filtering.

Singular Vertex Singular Edge

Face NeighborsVertex Neighbors

Singular Vertex Singular Edge

Face NeighborsVertex Neighbors

Figure 3: Illustration for the vertex neighbors, the face

neighbors, the singular vertex and the singular edge.

Singularity Elimination Cells Construction Cells Merging

Solid voxels on the given binary model

Newly filled solid voxels for eliminating topology singularity

Surface boundary

cell with cellnodes

Singularity Elimination Cells Construction Cells Merging

Solid voxels on the given binary model

Newly filled solid voxels for eliminating topology singularity

Surface boundary

cell with cellnodes

Figure 4: Illustration for topology reconstruction.

 4

are formed and other regions are smoothed (see Figure

2(f)).

Details of these three steps will be introduced in sections 3 to 5

consecutively. Section 6 gives the experimental results and

discussion. Lastly, our paper ends with the conclusion section.

3. TOPOLOGY RECONSTRUCTION

3.1 Singularity elimination

In the binary volume model, the basic element voxel
3Ζ∈s , if Η∈s , it is called solid; otherwise, called empty for

ΗΖ∈ \
3

s .

Definition 1 Two voxels 3, Ζ∈ts are vertex-neighbors if

1=−
∞

ts , and are called face-neighbors if 1
1

=− ts .

To identify singular topology shown in the given binary volume

model, we define some local region sets.

Definition 2 A local volume set vR is defined as

 }}1,0{,,:{ ,, ∈= +++ γβαγβα kjiV sR , (1)

and three local planar sets xR , yR , and zR are defined as

 }}1,0{,:{ ,, ∈= ++ γβγβ kjix sR , (2)

 }}1,0{,:{ ,, ∈= ++ γαγα kjiy sR , (3)

 }}1,0{,:{ ,, ∈= ++ βαβα kjiz sR . (4)

By above two definitions, the following lemmas are derived to

detect singular vertices and singular edges, where L gives the

number of elements in a set.

Lemma 1 For two solid voxels VRts ∈, , if 3
1

=− ts and

2=ΗIVR , s and t are linked by a singular vertex.

Lemma 2 For two solid voxels aRts ∈, , if 2
1

=− ts and

2=ΗIaR , s and t are linked by a singular edge parallel to a-

axis with a be x, y, or z.

An illustration of singular edges and singular vertices is shown

in Figure 3.

Assumption 1 On the binary volume model H, if two solid

voxels s and t are vertex-neighbors, the two spaces inside s and

t are assumed to be connected.

Based on this assumption, and Lemma 1 and 2, we introduce

the Topological Singularity Elimination algorithm (TSE in

short) which detects and eliminates singularities in two runs: at

first, the local volume sets containing singular vertices and the

local planar sets holding singular edges are detected on the

given model H; secondly, all empty voxels in both the local

volume sets and the local planar sets containing singularities are

changed to solid voxels (i.e., H is modified to Η′).

3.2 Construct meshes with correct topology

After computing the singularity eliminated Η′ , we can

construct a coarse mesh surface 0Μ whose topology is

consistent with Η∂ under Assumption 1 in section 3.1. The

basic idea of our method is under a cube-merging strategy so

that it is named as the CubeMerge algorithm. Firstly, B-rep

cubes are created for every solid voxels. The cubes, whose

corresponding voxels are face-neighboured, are then merged by

merging relevant nodes and removing the face in-between. The

CubeMerge results in a two-manifold polygonal mesh surface
0Μ . Since we only merge polygons on those face-neighboring

cubes, the two-manifold topology is preserved during the cubes

merging. Detail analysis of manifold-preservation can be found

in our previous publication [60]. Figure 4 gives a two-

dimensional illustration for the principle of our algorithm,

where polygons are first constructed on the boundary of cells

and then eliminated into a two-manifold polygonal mesh 0Μ

during the cubes merging. Note that for models with complex

topology, new singularities may be generated on Η′ .

Observation 1 The singular vertices or edges on Η′ should

be separated in order to follow the topology of Η∂ .

This is because that the singularities only on Η′ but not on H

is formed by the newly added solid voxels in TSE, which

originally are empty. When only merging face-neighboring

cubes, the mesh surface generated by our CubeMerge algorithm

follows the above observation. The combination of TSE and

CubeMerge gives the following property on the resultant mesh
0Μ .

Property 1 Holes on the given binary volume model H, whose

size are not less than two unit widths, will not be damaged.

According to the Nyquist-Shannon Sampling Theorem, the

signal sampled into discretizations can be reconstructed only if

the sampling rate is greater than two times of the highest

frequency embedded in the original signal before sampling.

Applying this theorem to the discretization of binary volumes,

holes should be sampled into more than two voxels width. If the

sampling process satisfies this rate, our topology reconstruction

algorithms can reconstruct a mesh surface 0Μ with the

consistent topology to Η∂ . Only H, not any other heuristic

input, is needed here.

Implementation Detail The implementation of CubeMerge

algorithm is based on two entities – cell and cellnode, and three

operators – cell-create, node-merge and cell-merge. Their

details are listed in Table 1 and Table 2. We first apply the cell-

create operator to every solid voxel in Η′ to create cubes.

After that, for each cell ci,j,k, if it has not been merged with one

of its face neighboring cell cf, we apply the cell-merge operator

on ci,j,k and cf. Finally, polygons are constructed only on the

faces of cells where there is no neighbour. An illustration for

cells merging has been given in Figure 4. The implementation is

simple but needs a lot of memory when the resolution of H is

high.

The out-of-core extension of the above basic CubeMerge

algorithm is conducted in a layer by layer manner – here a layer

means all voxels in 3Ζ with the same z-coordinate. In the

following pseudo-code of our out-of-core implementation, we

maintain two layers simultaneously. Starting from the layer with

 5

the lowest z-coordinate, the 3D polygons for 0Μ are

progressively constructed. Note that in step 8 and 9, polygons

are constructed only on the faces of cells where there is no

neighbour.

Algorithm CubeMerge

1. Sort all voxels in 3Ζ into layers by z-coordinate;

2. Start from the layer z = 0;

3. Create an empty layer (named as bottom-layer);

4. Repeat {

5. Create cells for solid voxels in the layer z – this layer is

named as top-layer;

6. Merge cells in the top-layer;

7. Merge cells between the top-layer and the bottom-layer;

8. Create polygonal faces perpendicular to x- or y-axis on

the cells in the bottom-layer;

9. Create polygonal faces perpendicular to z-axis between

the top-layer and the bottom-layer;

10. Free the memory of cells in the bottom-layer;

11. Assign top-layer to be the bottom-layer;

12. z = z + 1;

13. } Until (z has arrived the upper-bound of 3Ζ);

14. Free the memory of cells in the top-layer;

15. Construct 0Μ by the polygonal faces.

Figure 5 illustrates the progressive results from the out-of-all

algorithm for the example shown in the top row of Figure 4.

Since the memory of cells is released layer by layer during the

bottom-up advancement, the requested memory is only linear to

the cells contained in one layer.

4. SMOOTH SHAPE RECONSTRUCTION
The zigzag shape of 0Μ will be processed iteratively:

nΜ→→Μ→Μ L
10 so that the shape of nΜ approximates

Η∂ smoothly. The element shape on a mesh surface is also

optimized for the downstream applications – ideally, every

element is expected to be regular.

4.1 Duplex distance-fields for surface reshaping

Different from the pure surface smoothing algorithm (e.g.,

[38-42]), the reference geometry in our approach is not the

given mesh surface 0Μ . Instead, Η∂ will be the reference

surface here. However, the shape of Η∂ is not explicitly

defined on the model H. The boundary of voxels in H is just

one candidate among all possible surfaces. More specifically, a

good shape approximate of Η∂ will be a surface falling in the

region between the two surfaces formed by the centres of

boundary voxels1 in H and the centres of boundary voxels in
3Ζ \H (in short, \H). For example, for the model H given in

1 For a set of solid voxels, a voxel which has any empty face neighbor is a

boundary voxel of this voxel-set.

Figure 5: 2D illustration for the progressive results from the

out-of-core implementation of CubeMerge algorithm – every

2D quadrilateral denotes a cubic cell in 3D.

Empty voxels in Z3

Regions embedding
possible approximation

surfaces

Voxel center

Solid voxels on the given

binary model

(a) (b)

Empty voxels in Z3

Regions embedding
possible approximation

surfaces

Voxel center

Solid voxels on the given

binary model

(a) (b)

Figure 6: By a given binary volume model H in the left, the

region holding reasonable approximation of Η∂ is shown in

the right.

Table 1: Entities – cell and cellnode

Entity cell {

cellnode* nodes[8];

bool bMerged[6];

}

// the pointer of 8 nodes in a cell

// the flag to identify whether the cell

// in the ith direction has been merged

Entity cellnode {

float pos[3];

cell** cellList;

int num;

}

// the position of this node

// the list of cells containing this node

// the number of cells in cellList

Table 2: Operators – cell-create, node-merge and cell-merge

Operator cell-create {

Construct a cell, and its eight cellnodes which are positioned at

the 8 corners of a solid voxel;

The pointer to the cell is saved in the cellList of every node;

The merge flags in the cell are all set to false;

}

Operator node-merge { // applied on two nodes v1 and v2

Replace the pointer in every cell linked to v2 by the v1;

Add all cells in the cellList of v2 into the cellList of v1;

Delete v2;

}

Operator cell-merge { // applied on two cells c1 and c2

There are four pairs of nodes to be merged – they are merged by

applying the operator node-merge pair by pair;

Turn the corresponding merge flags in c1 and c2 to true.

}

 6

Figure 6(a), the approximation of Η∂ should be in the region

shown by Figure 6(b). The problem is how to effectively and

efficiently control the shape of iΜ in this region during the

evolution of meshes. We introduce the idea of duplex distance-

fields for this purpose.

Definition 3 For a given surface S, a signed distance-field

defined on it is a function),,(zyxD assigning to every point
3),,(ℜ∈zyx its distance)),,,((),,(SzyxdistzyxD = with a

positive sign for points outside the region enclosed by S and

negative for points inside S.

A convenient way to store the distance-field D in an efficient

data structure is to sample D on a uniform spatial grid

),,(,, khjhihd kji = . For a point),,(zyxp = with

))1(,[hiihx +∈ ,))1(,[hjjhy +∈ ,))1(,[hkkhz +∈ ,

its Euclidean distance to S can be interpolated on the grid

))1(,[))1(,[))1(,[hkkhhjjhhiih +×+×+

by a tri-linear function such that we obtain a piecewise tri-linear

approximation)(pD for the original distance-field)(pD .

Meanwhile, a corresponding isosurface S* defined by

0)(=pD gives an approximation to S. The smaller grid size

h chosen, the more accurate approximation of)(pD is given

by)(pD , but more memory is needed for storing)(pD . In

our approach, a balance is found when h is twice of the voxel

width on H. The grid nodes are located at the centre of the

voxels.

Two signed distance-fields are defined – one is for H (as

ΗD) while another for \H (as Η\D). For constructing a signed

distance-field ΗD for a voxel set H, the grid nodes in ΗD ,

whose positions are coincident to the centres of boundary

voxels, will be firstly detected and the distance value on them

are assigned as zero. Then, after setting the distance values of

other sample points to ∞ , the vector distance transforms

(VDTs) presented in [43] are applied to propagate the distance

values to all grid nodes. The sign of distance at every sample

point),,(khjhih can be detected by whether the voxel kjis ′′′ ,,

centred at this point is in H. If Η∈′′′ kjis ,, , the sign is negative,

otherwise a positive distance value is given. The processing

time of VDTs in [43] is linear to the number of grid nodes. The

distance-field Η\D can be constructed similarly from the voxel

set \H. ΗD and Η\D together are named as the duplex

distance-fields, which are employed to constrain the shape of
iΜ during the evolution. Note that the original voxel set H

(but not Η′) is used to generate duplex distance-fields here.

4.2 Surface remeshing and reshaping

Using the duplex distance-fields generated in section 4.1,

the mesh surface 0Μ is refined and optimized to give a quality

approximation of Η∂ . Similar to previous explicit remeshing

approaches [44-47], we iteratively equalize edge lengths and

vertex valences so that it remeshes the give surface. We

perform the following steps by a given target edge length L

(in our implementation, we choose hL =):

1. Split all edges which are longer than L2 at their midpoint;

2. Collapse all edges shorter than L75.0 into their midpoint;

3. Flip edges to minimize the deviation of valence from 6;

4. Relocate vertices by DH, D\H and the area-gravity-weighted

centroid;

After repeating these steps for several runs (about 5), we obtain

a triangular mesh 0Μ whose edges have length close to L

and whose vertices have valence close to 6. Note that the edge

collapse and edge flip operations which lead to topology

degeneration will be prevented (ref. [48]).

The purposes of the 4
th
 step in the above algorithm are to

move all vertices of iΜ to Η∂ and relax the distribution of

vertices on iΜ . The surface Η∂ is simulated by the

isosurfaces 0=ΗD and 0\ =ΗD . When relocating a vertex
i

v Μ∈ , v is attracted to move towards these two isosurfaces.

Meanwhile, to improve the regularity, every vertex is expected

to be close to its gravity-weighted centroid. The functional

below governs the vertex repositioning

−

+

 + ∑

=

ΗΗ

2

1

2
\

2
)(

)(

1
)()(min vqqA

vA
vDvD

n

k

kk
v

λω . (5)

In the second term, qks are the one-ring neighbours of v, where

each vertex qk is assigned with a gravity that equals its Voronoi

area A(qk) and A(v) is the sum of A(qk). This follows the area-

equalization in [45, 47]. For the weights of functional terms, we

choose 125.0=ω and 25.0=λ in our implementation to

balance the weights of attraction and relaxation. For relocating

vertices, their positions are repeatedly updated to minimize the

above functional as below with a damping factor 0.1 for about

10 iterations.

)(1.0 Jvv v−∇+←′ . (6)

where J denotes the objective function in Eq.(5).

5. RECOVERY OF SHARP EDGES
The mesh surface reconstructed by previous two steps of

algorithm lacks sharp edges. This section introduces the method

to recover sharp edges through a novel algorithm which

integrates the error-controlled segmentation and a normal-based

bilateral filtering.

5.1 L
2,1

 planar segmentation

The given model nΜ will first be segmented into nearly

planar patches by the Variational Shape Approximation (VSA)

algorithm [49]. We control the shape approximation error

instead of the proxy number. Starting from one seed, we

incrementally add more seeds into the k-proxy clustering

algorithm until the maximal approximation error shown on all

proxies is less than a given tolerance. Following [49], the 1,2
L

approximation error is computed on every triangle of nΜ . For

a triangle iT of area iT , of normal in , and of associated

proxy h , its 1,2L error is computed as

iii TnnTL
21,2),(hh −= . (7)

 7

hn is the normalized vector by summing area weighted

triangles normals on h , i.e.,

∑∑ ∈∈
=

hh
h

jj T
jj

T
jj nTnTn . (8)

Note that hn in Eq.(8) will only be updated after the

completion of clustering but not changed during clustering in

each iteration. Details can be found in [49]. If AL ε>1,2max

(A is the average triangle area on H), we increase k seeds into

k+1 and apply the Lloyd algorithm [61] based clustering again.

Here 4.0=ε is determined by experiences. Usually, a smaller

ε makes resultant proxies more planar, while a larger ε leads

to smaller number of proxies but each with larger 1,2L

approximation error. The newly inserted seed is located on the

triangle which gives the maximal 1,2L error. The k-proxy

clustering algorithm is detailed by Cohen-Steiner et al. in [49].

The error-controlled VSA results in a number of small

patches on a model with aliasing error near sharp edges (e.g.,

Figure 7). The boundaries of patches are refined by the

minimum-cut method akin to [50] so that the zigzag effects are

improved. More specifically, a fuzzy area Γ around the

boundaries defined above is determined. The faces in this fuzzy

area Γ are converted to nodes of a weighted graph, and the

edges on faces in Γ are corresponding to the arcs in the graph.

The weight on the arc from an edge e is defined by the length of

e weighted by

)_/)((1

1

angavgeang
we

+
= , (9)

where)(eang is the angle between normals on its adjacent two

faces, and angavg _ denotes the average angle between all

adjacent faces on nΜ . The re-partition of triangles can be

found by a maximum-flow (minimum-cut) algorithm (ref. [51])

on the weighted graph. The refinement is repeated for a few

times (2 or 3) to remove the small/narrow patches. Results of

the two-cubes example are shown in Figure 7. This planar

segmentation actually provides the region that may embed sharp

edges – i.e., regions near the boundary of each patch. We define

the potential sharp region as follows.

Definition 4 An edge is named as boundary edge if its left

and right faces belonging to different proxies. When centering

at a vertex on a boundary edge, all its two-ring neighbours are

called sharp region vertices and the regions occupied by them

are defined as the potential sharp regions.

Faces in potential sharp regions and the rest of surface will be

processed separately in the segmentation-enhanced bilateral

filtering below.

5.2 Bilateral recovering of sharp edges

Based on the planar segmentation result, we apply a

normal-based bilateral filtering to process the normal vectors of

each triangle and then reposition vertices to follow the normals

on the adjacent triangles. Using this process the sharp edges can

be recovered.

The segmentation-enhanced bilateral filter is extended from

the bilateral filter on 2D image, which is a nonlinear feature-

preserved image filter proposed separately by Smith and Brady

[52] and Tomasi and Manduchi [53]. Recent research [54, 55]

shows that this filter has close connections with the robust

estimation and anisotropic diffusion. For a mesh face f with the

unit surface normal nf and centered at cf, the filtered normal fn

at the face f is computed by

∑
∈

−=
)(

)),(()(),(
)(

1

fNq

qsqfcpf nqfIWccWqfW
fk

n , (10)

where

∑
∈

−=
)(

)),(()(),()(

fNq

sqfcp qfIWccWqfWfk ,

N(f) is the neighbor of f and defined to be the set of triangles

}2:{)(cfq ccqfN σ<−= . (11)

22
2/

)(ct
c etW

σ−= , (12)

is the standard Gaussian filter with parameter cσ , and
22

2/
)(st

s etW
σ−= , (13)

is a similarity weight function for feature-preserving with

parameter sσ that penalizes large variation in face normals.

),(qfI defines the projection of the normal difference on the

face normal nf as

)(),(qff nnnqfI −⋅= . (14)

Our filter is different from the bilateral filters in [36, 56-58] for

3D models. It has one more step function),(qfW p with

parameter pσ to reduce the blurred effect near sharp features

≥⋅

<⋅
=

)(1

)(0
),(

)()(

)()(

pgf

pgf

p nn

nn
qfW

σ

σ

hh

hh
, (15)

where)(fh returns the proxy that the face f belongs to, and

)(fnh is the proxy normal vector computed by Eq.(8) but not

the face normal. Note that this step function seldom produces

unwanted sharp-edges on smooth regions since many small

pieces are segmented on curved smooth regions. As the

segmented regions are small, the variation between the proxy

normals should be always smaller than pσ .

The normal processing is repeatedly applied to all triangles

for several runs (about five in our implementation). Then, the

vertices are repositioned to follow the processed face normal

Figure 7: Results of L
2,1

 planar segmentation (a) with 68

patches and the followed boundary refinements (b) with 14

patches and (c) with 12 patches on the two-cubes example.

 8

vectors by minimizing the following least square error (LSE)

defined on the faces

()∑ ∑
∈ ∈

−⋅=
)(

2
)()(

istarj Ff

jifi

ij

vvnvE , (16)

where)(istar denotes the 1-ring neighboring vertices of vi, and

ijF represents the two faces that are adjacent to the edge jivv .

)(ivE can be iteratively minimized by the update given in [59]

∑ ∑
∈ ∈

−+←′

)(

)(

istarj Ff

ij
T
ffii

ij

vvnnvv τ . (17)

In implementation, we choose the parameters: Lc 2=σ

and 25.0== ps σσ to process normal vectors. To speed up

the search of N(f), we only search triangles locally starting from

f by using the connectivity on the given mesh surface. Once all

the newly added triangles are with the distance to cf greater than

cσ2 , the search stops. The positions of vertices in the potential

sharp region and the rest of surface (smooth regions) are

updated separately. The positions of vertices in smooth regions

are updated by Eq.(17) in 30 runs with each run using 1.0=τ

as the damping factor of update. The sharp region vertices are

re-positioned also in 30 runs with 1.0=τ . This separation

prevents the shrink effect which is in general shown on

diffusion procedures. When processing the smooth region, the

sharp regions act as a keel to prevent surface shrinkage. During

the sharpening, smooth regions act as keels to prevent

shrinkage. As shown in Figure 8, if all vertices are updated

together (see the circled region in Figure 8(c)), the surface is

slightly blurred – so that the cylinder is sloped. By separating

the two steps, the sloping effect is reduced (see Figure 8(d)).

6. RESULTS AND DISCUSSION
We applied the approach presented in this paper to several

models, and successfully generated two-manifold mesh surface

with sharp edges (Figure 9). The input binary volume models

are also listed in Figure 9. We implemented the approach

presented in this paper on a PC with PIV 3.0GHz CPU and

1GB RAM. The processing of all examples shown in this paper

can be finished in tens to a few hundred seconds. Computing

time of the topology-extraction step is comparable to the MC

algorithms – can be completed very fast. The smooth shape

reconstruction step usually takes about few seconds. The most

time-consuming step is the L
2,1

 planar segmentation, which

takes about 60%-70% of the processing time.

An interesting test is illustrated in Figure 10, where the

meshes are extracted for the same model but with different

resolution of binary volume inputs. It can be found that our

surface reconstruction algorithm converges while increasing the

sampling rate (i.e., generates more and more accurate surfaces

with increasing the resolution of input). When the sampling rate

is increased, the results after smooth reconstruction move closer

to the results after sharp edges recovery.

The last test is conducted to illustrate the functionality of

our novel bilateral filtering method for sharp edges extraction.

As Eq.(10), with 1),(≡qfWp , our filter degenerates to the

bilateral filter in [58]. Figure 11 compares the results from our

segmentation-enhanced bilateral filter, the normal-based

bilateral filter in [58], and the position-based bilateral filter of

[57] on the mesh generated from the 929292 ×× binary

volume model. Our filter gives the best result, the normal-based

bilateral filter damages the original shape, and the position-

based bilateral filter accumulates edges around the sharp

features so that the element shape becomes worse. Figure 12

gives similar results on the anchor plate model. However, the

proposed sharpening filter does not work very well on the

freeform models like the flower model in Figure 13. It is

because that the VSA algorithm cannot give clear boundary on

highly-curved freeform objects, which is the major drawback of

our segmentation-enhanced bilateral filter.

7. CONCLUSION

Figure 8: Comparison of position update all together (c) vs.

separately for smooth region and shape region (d), where

unwanted slopes are generated in (c). (a) the segmentation

result, and (b) all patch boundary edges.

Figure 9: Results of our approach on various models.

 9

A three-step algorithm has been presented in this paper to

automatically reconstruct a two-manifold mesh surface with

sharp edges from a binary volume model. Smooth regions and

sharp edges can be automatically recovered from raw binary

volume models without scalar field or Hermite data. Comparing

to other related surface recovering methods on binary volume

input, our algorithm needs less heuristic coefficients – only 4

coefficients: ε , cσ , sσ , and pσ are needed. In short, our

technical contributions are

• an algorithm to construct the connectivity of isosurface

with consistent topology to H;

• using duplex distance-fields to give error bound on

reconstructed smooth surfaces;

• a segmentation-enhanced sharpening filter for recovering

sharp edges.

Our future research will focus on how to construct faces

with less memory in the topology construction step and how to

extract more semantic design features from the mesh surface

generated by this approach.

ACKNOWLEDGMENTS
The authors would like to acknowledge the valuable

comments by the reviewers and the support by CUHK Direct

Research Grant CUHK/2050374 and Hong Kong RGC/CERG

Grant CUHK/416307.

Figure 11: Results of sharpened mechanical part from (a) our

segmentation-enhanced bilateral filter, (b) the normal-based

bilateral filter [58], and (c) the position-based bilateral filter

[57] with the same cσ and sσ .

Figure 12: Results of the sharpened anchor plate from (a) our

filter, (b) the normal-based bilateral filter [58], and (c) the

position-based bilateral filter [57] with the same cσ and sσ .

Figure 13: Results of the sharpened flower model from (a) our

filter, (b) the normal-based bilateral filter [58], and (c) the

position-based bilateral filter [57] with the same cσ and sσ .

Figure 10: The output of our approach gives more and more

accurate result while increasing the sampling rate on input

binary models with (a) 929292 ×× , (b) 128128128 ×× , (c)

160160160 ×× and (d) 192192192 ×× voxels. The left

column shows the results from smooth surface reconstruction

(step 2) and the right column gives the result after recovering

sharp edges (step 3).

 10

REFERENCES
[1] Wang M.Y. and Wang X, 2004, “A level-set based variational

method for design and optimization of heterogeneous objects,”

Computer-Aided Design, vol.37, pp.321-337.

[2] Habbal A., Petersson J., and Thellner M., 2004,

“Multidisciplinary topology optimization solved by a Nash

game,” International Journal for Numerical Methods in

Engineering, vol.61, pp.949-963.

[3] Cappello F. and Mancuso A., 2003, “A genetic algorithm for

combined topology and shape optimizations,” Computer-Aided

Design, vol.35, pp.761-769.

[4] Lorensen W. and Cline H., 1987, “Marching cubes: a high

resolution 3D surface construction algorithm,” Computer

Graphics, vol.21, no.4, pp.163-169.

[5] Duerst M. J., 1988, “Letters: Additional reference to marching

cubes,” Computer Graphics, vol.22, no.2, pp.72-73.

[6] Ning P. and Bloomenthal J., 1993, “An evaluation of implicit

surface tillers,” IEEE Computer Graphics and Applications,

vol.13, no.6, pp.33-41.

[7] Andujar C., Brunet P., Chica A., Navazo I., Rossignac J., and

Vinacua A., 2004, “Optimizing the topological and

combinatorial complexity of isosurfaces,” Computer-Aided

Design, vol.37, no.8, pp.847-857.

[8] Lachaud J.-O., 1996, “Topologically defined iso-surfaces,” In

Proc. 6th Discrete Geometry for Computer Imagery (DGCI'96),

Lyon, France, pp.245-256. Springer-Verlag, Berlin.

[9] Montani C., Scateni R., and Scopigno R., 1994, “A modified

look-up table for implicit disambiguation of marching cubes,”

The Visual Computer, vol.10, no.6, pp.353-355.

[10] Bloomenthal J., 1994, “An implicit surface polygonizer,” In Paul

S. Heckbert, editor, Graphics Gems IV, pp.324-349.

[11] Zahlten C., 1992, “Piecewise linear approximation of isovalued

surfaces,” In F. H. Post and A. J. S. Hin, editors, Advances in

Scientific Visualization, pp.105-118. Springer-Verlag.

[12] Nielson G.M., Foley T.A., Hamann B., and Lane D., 1991,

“Visualizing and modeling scattered multivariate data,” IEEE

Computer Graphics and Applications, vol.11, no.3, pp.47-55.

[13] Wallin A., 1991, “Constructing isosurfaces from CT data,” IEEE

Computer Graphics and Applications, vol.11, no.6, pp.28-33.

[14] Nielson G.M. and Hamann B., 1991, “The asymptotic decider:

Resolving the ambiguity in marching cubes,” In Proc. of IEEE

Visualization 91, pp.83-91.

[15] Wilhelms J. and Van Gelder A., 1990, “Topological

considerations in isosurface generation,” Computer Graphics,

vol.24, no.5, pp.79-86.

[16] Wyvill G., McPheeters C., and Wyvill B., 1986, “Data structures

for soft objects,” The Visual Computer, vol.2, no.4, pp.227-234.

[17] Lewiner T., Lopes H., Vieira A.W., and Tavares G., 2003,

“Efficient Implementation of Marching Cubes’ Cases with

Topological Guarantees,” Journal of Graphics Tools, vol.8, no.2,

pp.1-15.

[18] Weber G.H., Scheuermann G., Hagen H., and Hamann B., 2002,

“Exploring scalar fields using critical isovalues,” In Proc. of

IEEE Visualization 2002, pp. 171-178.

[19] Stander B.T. and Hart J.C., 1997, “Guaranteeing the topology of

an implicit surface polygonization for interactive modeling,” In

Proceedings of SIGGRAPH 97, pp.279-286.

[20] Nielson G., 2003, “On marching cubes,” IEEE Trans. on

Visualization and Computer Graphics, vol.9, no.3, pp.283-297.

[21] Cignoni P., Ganovelli F., Montani C., and Scopigno R., 2000,

“Reconstruction of topologically correct and adaptive trilinear

isosurfaces,” Computers & Graphics, vol.24, no.3, pp.399-418.

[22] Schroeder W., Zarge J., and Lorensen W., 1992, “Decimation of

triangle meshes. Computer Graphics,” vol.26, no.2, pp.65-70.

[23] Hoppe H., DeRose T., Duchamp T., McDonald J., and Stuetzle

W., 1993, “Mesh optimization,” In Proc. of SIGGRAPH 1993,

pp.19-26.

[24] Kalvin A. and Taylor R., 1996, “Superfaces: polygonal mesh

simplification with bounded error,” IEEE Computer Graphics

and Applications, vol.16, no.3, pp.64-77.

[25] Turk G., 1992, “Re-tiling polygonal surfaces. Computer

Graphics,” vol.26, no.2, pp.55-64.

[26] Crossno P. and Angel E., 1997, “Isosurface extraction using

particle systems,” In Proc. of IEEE Visualization 97, pp.495-498.

[27] Gibson S., 1998, “Using distance maps for smooth surface

representation in sampled volumes,” In Proc. of 1998 IEEE

Volume Visualization Symposium, pp.23-30.

[28] Perry R.N. and Frisken S.F., 2001, “Kizamu: a system for

sculpting digital characters,” In Proc. of ACM SIGGRAPH

2001, pp.47-56.

[29] Kobbelt L.P., Botsch M., Schwanecke U., and Seidel H.-P., 2001,

“Feature sensitive surface extraction from volume data,” In Proc.

of SIGGRAPH 2001, pp.57-66.

[30] Ju T., Losasso F., Schaefer S., and Warren J., 2002, “Dual

contouring of Hermite data,” ACM Trans. on Graphics, vol.21,

no.3, pp.339-346.

[31] Ohtake Y. and Belyaev A., 2003, “Dual-prime mesh optimization

for polygo-nized implicit surfaces with sharp features,” In Proc.

of ACM Solid Modeling Symposium 2003, pp. 171-178.

[32] Ohtake Y., Belyaev A., and Pasko A., 2003, “Dynamic mesh

optimization for polygonized implicit surfaces with sharp

features,” The Visual Computer, vol.19, pp.115-126.

[33] Attene M., Falcidino B., Spagnuolo M., and Rossignac J., 2005,

“Sharpen&Bend: Recovering curved edges in triangle meshes

produced by feature-insensitive sampling,” IEEE Trans. on

Visualization and Computer Graphics, vol.11, no.2, pp.181-192.

[34] van Overveld K. and Wyvill B., 2004, “Shrinkwrap: An efficient

adap-tive algorithm for triangulating an iso-surface,” The Visual

Computer, vol.20, no.6, pp.362-379.

[35] Markosian L., Cohen J.M., Crulli T., and Hughes J., 1999, “Skin:

a constructive approach to modeling free-form shapes,”

Proceedings of SIGGRAPH 99, pp.393-400.

[36] Wang C.C.L., 2006, “Bilateral recovering of sharp edges on

feature-insensitive sampled meshes,” IEEE Trans. on

Visualization and Computer Graphics, vol.12, no.4, pp.629-639.

[37] Wang C.C.L., 2006, “Incremental reconstruction of sharp edges

on mesh surfaces,” Computer-Aided Design, vol.38, no.6,

pp.689-702.

[38] Taubin G., 1995, “A signal processing approach to fair surface

design,” In Proceedings of SIGGRAPH 95, pp.351-358.

[39] Desbrun M., Meyer M., Schröder P., and Barr A.H., 1999,

“Implicit fairing of irregular meshes using diffusion and

curvature flow,” Proceedings of SIGGRAPH 99, pp.317-324.

[40] Bajaj C.L. and Xu G., 2003, “Anisotropic diffusion of surfaces

and functions on surfaces,” ACM Trans. on Graphics, vol.22,

no.1, pp.4-32.

[41] Hildebrandt K. and Polthier K., 2004, “Anisotropic filtering of

non-linear surface features”, Computer Graphics Forum, vol.23,

no.3.

 11

[42] Meyer M., Desbrun M., Schroder P., and Barr A.H., 2002,

“Discrete differential-geometry operators for triangulated 2-

manifolds,” Proceeding of Visualization and Mathematics.

[43] Jones M.W. and Satherley R.A., 2001, “Shape representation

using space filled sub-voxel distance fields,” Proceedings of

International Conference on Shape Modeling and Applications

2001, pp.316-325.

[44] Surazhsky V., Alliez P., and Gotsman C., 2003, “Isotropic

remeshing of surfaces: a local parameterization approach,” In

Proc. of 12th International Meshing Roundtable.

[45] Surazhsky V. and Gotsman C., 2003, “Explicit surface

remeshing,” In Proc. of the Eurographics/ACM SIGGRAPH

Symposium on Geometry Processing, pp.20-30.

[46] Vorsatz J., Rössl C., and Seidel H.-P., 2003, “Dynamic

remeshing and applications,” In Proc. of Solid Modeling and

Applications, pp.167-175.

[47] Botsch M. and Kobbelt L., 2004, “A remeshing approach to

multiresolution modeling,” In Proc. of Eurographics /ACM

SIGGRAPH Symposium on Geometry Processing, pp/185-192.

[48] Hoppe H., DeRose T., Duchamp T., McDonald J., Stuetzle W.,

1993, “Mesh optimization,” Extended TR UW CSE 1993-01-01,

http://research.microsoft.com/~hoppe/.

[49] Cohen-Steiner D., Alliez P., and Desbrun M., 2004, “Variational

shape approximation,” ACM Trans. Graphics, SIGGRAPH

2004, vol.23, pp. 905-914.

[50] Katz S. and Tal A., 2003, “Hierarchical mesh decomposition

using fuzzy clustering and cuts,” ACM Trans. Graphics, Proc. of

SIGGRAPH 2003, vol.22, no. 3, pp. 954-961.

[51] Cormen T.H., Leiserson C.E., Rivest R.L., and Stein C.,

Introduction to Algorithms (2nd ed.), MIT Press, 2001.

[52] Smith S.M. and Brady J.M., 1997, “SUSAN – a new approach to

low level image processing”, International Journal of Computer

Vision, vol.23, pp.45-78.

[53] Tomasi C. and Manduchi R., 1998, “Bilateral filtering for gray

and color images,” Proc. of IEEE International Conference on

Computer Vision, pp.836-846.

[54] Barash D., 2002, “A fundamental relationship between bilateral

filtering, adaptive smoothing and the nonlinear diffusion

equation,” IEEE Trans. on Pattern Analysis and Machine

Intelligence, vol.24, no.6.

[55] Black M.J., Sapiro G., Marimont D.H., and Heeger D., 1998,

“Robust anisotropic diffusion,” IEEE Trans. on Image

Processing, vol.7, no.3, pp.421-432.

[56] Fleishman S., Drori I., Cohen-Or D., 2002, “Bilateral mesh

denoising,” ACM Trans. on Graphics, vol.22, no.3, pp. 950-953.

[57] Jones T.R., Durand F., and Desbrun M., 2003, “Non-iterative,

feature-preserving mesh smoothing,” ACM Trans. on Graphics,

vol.22, no.3, pp. 943-949.

[58] Lee L.-W. and Wang W.-P., 2005, “Feature-preserving mesh

denoising via bilateral normal filtering,” Proc. of 9th

International Conference on Computer Aided Design and

Computer Graphics, pp.275-280.

[59] Taubin G.., 2001, “Linear anisotropic mesh filtering,” Technical

Report of IBM Research, TR-RC2213.

[60] Wang C.C.L., 2006, “Direct extraction of surface meshes from

implicitly represented heterogeneous volumes,” Computer-Aided

Design, vol.39, no.1, pp.35-50.

[61] Lloyd S., 1982, “Least square quantization in PCM,” IEEE

Trans. on Inform. Theory, vol.28, pp.129-137.

[62] Ju T., Schaefer S., and Warren J., 2003, “Convex contouring of

volumetric data,” The Visual Computer, vol.19, pp.513-525.

[63] Azernikov S. and Fischer A., 2006, “A new volume warping

method for surface reconstruction,” Journal of Computing and

Information Science in Engineering, ASME Transactions, vol.6,

no.4, pp.355-363.

