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ABSTRACT 

This paper presents an approach to automatically recover 

mesh surfaces with sharp-edges for solids from their binary 

volumetric discretizations (i.e., voxel models). Our method 

consists of three steps. The topology singularity is first 

eliminated on the binary grids so that a topology correct mesh 

M
0
 can be easily constructed. After that, the shape of M

0
 is 

refined and its connectivity is iteratively optimized into M
n
. The 

shape refinement is governed by the duplex distance-fields 

derived from the input binary volume model. However, the 

refined mesh surface lacks sharp edges. Therefore, we employ 

an error-controlled variational shape approximation (VSA) 

algorithm to segment M
n
 into nearly planar patches, and then 

recover sharp edges by applying a novel segmentation-enhanced 

bilateral filter to the surface. Using the technique presented in 

this paper, smooth regions and sharp edges can be automatically 

recovered from raw binary volume models without scalar field 

or Hermite data. Comparing to other related surface recovering 

methods on binary volume, our algorithm needs less heuristic 

coefficients. 

 

KEYWORDS: surface reconstruction, binary volume model, 

sharp edge recovery, reverse engineering, geometric modeling. 

 

1.  INTRODUCTION 
The purpose of the research presented in this paper is to 

develop technology for automatically converting binary volume 

models into B-rep mesh surfaces, so that they can be directly 

applied to the downstream CAD/CAM applications. Benefited 

from the compact and intuitive mathematical representation, 

many design optimization approaches employed the implicit 

representation to optimize the shape and topology of products 

[1-3]. In their approaches, the shape of optimized product is 

sampled on regular grids (i.e., represented by voxels or pixels). 

After determining the optimal structure, it is usually necessary 

to convert the structures into a B-rep surface model so that it 

can be explicitly modified and finally manufactured. This is the 

motivation of our work – to develop a technique that can 

automatically reconstruct two-manifold mesh surface with 

sharp-edges from a given binary volume model. 

More specifically, a binary volume model Η  is a set of 

integral vectors in 3Ζ . Elements 3
,, ),,( Ζ⊂Η∈= kjis kji  are 

called voxels and are thought of as unit cubes centred at 

),,( kji . We are going to reconstruct a two-manifold mesh 

surface M to approximate, Η∂ , the surface of Η . The error 

between M and Η∂  should be bounded, and we aim to recover 

the sharp-edges which are damaged by the uniform sampling in 
3Ζ . To simplify the description of the technique, we assume the 

width of voxels is of unit length in the rest of this paper (the 

change of voxel size can be easily implemented in practice). 

1.1 Related work 

The reason why we do not directly apply the famous 

marching cubes algorithm [4] or its variants [5-17] to extract M 

is twofold: the two-manifold preservation and the element shape 

control. Marching cubes (MC) algorithm was first introduced 

by Lorensen and Cline [4] and has become the most commonly 

used method for isosurface extraction in scientific visualization. 

As first noted by Duerst [5], the original MC algorithm [4] may 

produce isosurfaces with holes due to topologically inconsistent 

decisions on the reconstruction of ambiguous faces, where the 

borders used by one incident cube do not match the borders of 

the other incident cube. Several approaches addressing this 

problem have been published (see [6, 7] for a review).  As 

addressed by [7], disambiguation techniques reported so far 

have focused on two major concerns: topological consistency 

[8-12] (i.e., producing closed surfaces by proper cube 

polygonization), and topological correctness [13-17] (i.e., 

extracting a surface faithful to the geometry of the real surface). 

A few works attempt to recover the original topology also 

inside the ambiguous cubes either by using critical point 

analysis [18, 19] or trilinear interpolation [20, 21]. All these 

techniques are scalar-data-dependent and therefore cannot be 

applied to binary grids. In [7], the authors propose global 

strategies for optimizing several topological and combinatorial 

measures of the isosurfaces including triangle count, genus, and 

number of shells. However, the decisions of the measurements 

to be given by users are not natural, i.e., novices feel difficult to 

give good decision. Different from them, our algorithm follows 

the Nyquist-Shannon Sampling Theorem to reconstruct mesh 

surface with correct topology – no additional user input is 

required. The authors of [62] employed an automatically 

constructed lookup table to ensure the topology of resultant 

mesh surfaces; similarly, the approach in [17] considered the 

relationship between cubes to develop an extended MC table 

for topological guarantees. However, the implementations of 

these approaches are not as simple as our CellMerge algorithm, 

and they always result in many sliver polygons as other MC-like 

algorithms (e.g., see Figure 1). 
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In MC algorithms, there is no control on the element shape 

that is important to many downstream applications. As shown in 

Figure 1(a), the resultant mesh by the algorithm in [17] has a lot 

of thin triangles and short edges, however the result of our 

approach shown in Figure 1(b) gives good element shapes. 

Although post-processing steps, such as triangle decimation 

techniques [22-24] and the re-tiling algorithm [25] can be 

adopted to eliminate badly shaped triangles, directly applying 

them to the result of MC algorithms gives no bound on the error 

between Η∂  and the output of MC algorithms. In our 

approach, we develop a method using duplex distance-fields to 

control the error. The remeshing iteration of our algorithm 

borrows some idea from the triangle decimation approaches. 

Another class of isosurface generation is based on the 

active model, where the constructed surface is deformed to 

approximate the underground isosurface embedded in a scalar-

field. Crossno and Angel [26] employed particle systems to 

extract isosurfaces, where particles are programmed to attract 

towards a specific surface value while simultaneously repelling 

adjacent particles. The repulsive forces are based on the 

curvature of the surface at that location. The smooth shape 

reconstruction step of our approach is also conducted in the 

similar way, but is speeded up by the precomputed duplex 

distance-fields. The SurfaceNets algorithm developed in [27] is 

an alternative to MC for building globally smooth but locally 

accurate triangle models from binary volume data. In [28] this 

algorithm is further enhanced in the Kizamu system to generate 

mesh models from distance values sampled on an adaptive grid. 

During our implement of their algorithm, we find that the 

EdgeFace table in [28] does not guarantee to generate a 

manifold mesh surface (see Figure 1(c)). To solve this problem, 

a two-manifold preserved algorithm will be developed in 

section 3 to extract the connectivity of mesh surface from 

binary grids. A recent surface reconstruction algorithm [63] 

employs the similar method to generate mesh surfaces from 

volume data. 

The accuracy of a marching cube algorithm is mainly 

governed by the resolution of an underlying grid, so sharp 

features cannot be preserved. Over-sampling could somewhat 

reduce the aliasing error by taking the cost of increasing storage 

memory. Furthermore, as being observed by Kobbelt et al. in 

[29], even if an over-sampling is applied, the associated aliasing 

error will not be absolutely eliminated since the surface normals 

in the reconstructed model usually do not converge to the 

normal field of the original model. Therefore, the technique of 

recovering sharp edges on feature-insensitive sampled models is 

desired. Some of currently existing approaches (e.g., [29-32]) 

encode the original surface normals during sampling, so that a 

Hermite dataset is generated to reconstruct sharp features. 

However, no Hermite dataset can be obtained on binary volume 

models. The most recent sharpen and bend technique of Attene 

et al. [33] gives two filters that improve the quality of sampled 

surfaces which chamfer sharp features, so that the curved sharp 

edges in triangular meshes produced by feature-insensitive 

sampling can be recovered. However, the filters introduced in 

[33] can only sharpen the “chamfered” edges. For the 

insensitive sampled edges that are rounded (e.g., Figure 2(d)), 

the algorithm of [33] fails. The rounded edges are usually 

generated by dynamic surface extraction algorithms – e.g., 

ShrinkWrap [34], Skin [35], and our approach. Therefore, a 

new sharpening algorithm is introduced in section 5. Different 

from the approaches in [36] and [37], the newly developed 

recovery technique for sharp-edges integrates the segmentation 

and the bilateral filtering into a segmentation-enhanced bilateral 

filter so that it is more robust than the approaches based on the 

identification of “sharp” regions by normal variations. 

1.2 Contributions 

The techniques developed in this paper contribute in the 

following three aspects: 

• We propose a new algorithm to construct the coarse shape 

of an isosurface. Our method automatically resolves the 

topology ambiguity by simple rules, whose implementation 

is much simpler than the marching cubes algorithm and its 

variants. 

• The refined shape of isosurface is determined by duplex 

distance-fields and the smoothing operator, where the error 

between the reconstructed surface and the given binary 

volume model is bounded by the duplex distance fields. 

• We integrate the segmentation into our algorithm to 

identify regions with sharp edges, and then recover sharp 

edges in these regions using a segmentation-enhanced 

bilateral filtering algorithm. 

 

Figure 1: A model contoured using Marching Cubes algorithm 

[17] resulting in many triangles (a) and our approach resulting 

in good shape triangles (b). (c) non-manifold edges (the bolded 

ones are produced by using [28] to construct the connectivity 

of isosurface. 
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These techniques lead to the new function that flat regions, 

curved regions, and sharp edges are automatically recovered 

from raw binary volume models without requiring scalar field 

or Hermite data. Compared to our previous work presented in 

[36, 37, 60], the approach presented in this paper has the 

following advancements. 

• A new Topological Singularity Elimination algorithm has 

been developed and governed by the Lemmas in section 3; 

• A out-of-core extension of the CubeMerge algorithm (see 

section 4); 

• A new sharp edge recovery algorithm is presented in 

section 5. 

2.  METHOD OVERVIEW 
To recover the mesh surface with sharp-edges for solids 

from their binary volumetric discretizations, our approach 

consists of three steps as follows. 

1) Topology reconstruction:  The first step is to identify 

and eliminate the topologically singular vertices/edges on 

the input binary volume model Η . Based on the corrected 

voxel set, a CubeMerge algorithm is developed, whose 

output mesh surface 0Μ  is guaranteed to be two-manifold 

and consistent to the topology of H. 0Μ  gives a coarse 

mesh approximation Η∂ . We also give an out-of-core 

implementation of the CubeMerge algorithm. Figure 2(b) 

shows an example 0Μ  generated from the input binary 

grids in Figure 2(a). 

2) Smooth shape reconstruction:  The shape of 0Μ  is 

affected by aliasing artifacts, so the shape of 0Μ  will be 

smoothened in the second step. Meanwhile, the mesh 

connectivity will also be improved iteratively from 0Μ to 
nΜ  (i.e., nΜ→→Μ→Μ L

10 ). In order to bound the 

approximation error between iΜ  and Η∂ , duplex 

distance-fields (one by the boundary voxels in H, and 

another by the boundary voxels in 3Ζ \H) are constructed 

to govern the movement of vertices on M
i
. For example, 

Figure 2(c) shows the duplex distance-fields for the binary 

volume model in Figure 2(a), and Figure 2(d) gives the 

output mesh, nΜ , of this step. 

3) Recovery of sharp edges:  No sharp edges exist on the 

mesh from the previous step of our approach. A novel 

segmentation and bilateral filtering based method is 

developed to recover sharp edges. An error-controlled 

variational shape approximation (VSA) algorithm is first 

employed to segment nΜ  into near planar patches (e.g., 

see Figure 2(e)). Then, the normal vectors on each triangle 

of nΜ  are filtered through a segmentation-enhanced 

filtering. Finally, the surface vertices are updated to let 

triangles follow filtered normal vectors so that sharp edges 

 

Figure 2: Step-results for an example model with two cubes to 

illustrate the overview of our approach: (a) the binary volume 

model is shown on three cross-section planes, (b) the two-

manifold coarse mesh 0Μ  approximating Η∂  with correct 

topology, (c) duplex distance-fields – the left one is generated 

by the boundary voxels in H and the right one is from the 

boundary voxels in ΗΖ \
3  (where blank represents the point 

with negative distance value), (d) the resultant mesh nΜ  of 

smooth shape reconstruction, (e) the segmented patches by 

variational shape approximation, (f) the sharpening result from 

segmentation-enhanced bilateral filtering.  

Singular Vertex Singular Edge

Face NeighborsVertex Neighbors

Singular Vertex Singular Edge

Face NeighborsVertex Neighbors

 

Figure 3: Illustration for the vertex neighbors, the face 

neighbors, the singular vertex and the singular edge. 

Singularity Elimination Cells Construction Cells Merging

Solid voxels on the given binary model

Newly filled solid voxels for eliminating topology singularity

Surface boundary

cell with cellnodes

Singularity Elimination Cells Construction Cells Merging

Solid voxels on the given binary model

Newly filled solid voxels for eliminating topology singularity

Surface boundary

cell with cellnodes  

Figure 4: Illustration for topology reconstruction. 
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are formed and other regions are smoothed (see Figure 

2(f)). 

Details of these three steps will be introduced in sections 3 to 5 

consecutively. Section 6 gives the experimental results and 

discussion. Lastly, our paper ends with the conclusion section. 

3.  TOPOLOGY RECONSTRUCTION  

3.1 Singularity elimination 

In the binary volume model, the basic element voxel 
3Ζ∈s , if Η∈s , it is called solid; otherwise, called empty for 

ΗΖ∈ \
3

s .  

Definition 1 Two voxels 3, Ζ∈ts  are vertex-neighbors if 

1=−
∞

ts , and are called face-neighbors if 1
1

=− ts .  

To identify singular topology shown in the given binary volume 

model, we define some local region sets. 

Definition 2 A local volume set vR  is defined as 

 }}1,0{,,:{ ,, ∈= +++ γβαγβα kjiV sR ,          (1) 

and three local planar sets xR , yR , and zR  are defined as 

 }}1,0{,:{ ,, ∈= ++ γβγβ kjix sR ,     (2) 

 }}1,0{,:{ ,, ∈= ++ γαγα kjiy sR ,   (3) 

 }}1,0{,:{ ,, ∈= ++ βαβα kjiz sR .   (4) 

By above two definitions, the following lemmas are derived to 

detect singular vertices and singular edges, where L  gives the 

number of elements in a set. 

Lemma 1 For two solid voxels VRts ∈, , if 3
1

=− ts  and 

2=ΗIVR , s and t are linked by a singular vertex.  

Lemma 2 For two solid voxels aRts ∈, , if 2
1

=− ts  and 

2=ΗIaR , s and t are linked by a singular edge parallel to a-

axis with a be x, y, or z.  

An illustration of singular edges and singular vertices is shown 

in Figure 3. 

Assumption 1 On the binary volume model H, if two solid 

voxels s and t are vertex-neighbors, the two spaces inside s and 

t are assumed to be connected.  

Based on this assumption, and Lemma 1 and 2, we introduce 

the Topological Singularity Elimination algorithm (TSE in 

short) which detects and eliminates singularities in two runs: at 

first, the local volume sets containing singular vertices and the 

local planar sets holding singular edges are detected on the 

given model H; secondly, all empty voxels in both the local 

volume sets and the local planar sets containing singularities are 

changed to solid voxels (i.e., H is modified to Η′ ). 

3.2 Construct meshes with correct topology 

After computing the singularity eliminated Η′ , we can 

construct a coarse mesh surface 0Μ  whose topology is 

consistent with Η∂  under Assumption 1 in section 3.1. The 

basic idea of our method is under a cube-merging strategy so 

that it is named as the CubeMerge algorithm. Firstly, B-rep 

cubes are created for every solid voxels. The cubes, whose 

corresponding voxels are face-neighboured, are then merged by 

merging relevant nodes and removing the face in-between. The 

CubeMerge results in a two-manifold polygonal mesh surface 
0Μ . Since we only merge polygons on those face-neighboring 

cubes, the two-manifold topology is preserved during the cubes 

merging. Detail analysis of manifold-preservation can be found 

in our previous publication [60]. Figure 4 gives a two-

dimensional illustration for the principle of our algorithm, 

where polygons are first constructed on the boundary of cells 

and then eliminated into a two-manifold polygonal mesh 0Μ  

during the cubes merging. Note that for models with complex 

topology, new singularities may be generated on Η′ .  

Observation 1 The singular vertices or edges on Η′  should 

be separated in order to follow the topology of Η∂ .  

This is because that the singularities only on Η′  but not on H 

is formed by the newly added solid voxels in TSE, which 

originally are empty. When only merging face-neighboring 

cubes, the mesh surface generated by our CubeMerge algorithm 

follows the above observation. The combination of TSE and 

CubeMerge gives the following property on the resultant mesh 
0Μ . 

Property 1 Holes on the given binary volume model H, whose 

size are not less than two unit widths, will not be damaged.  

According to the Nyquist-Shannon Sampling Theorem, the 

signal sampled into discretizations can be reconstructed only if 

the sampling rate is greater than two times of the highest 

frequency embedded in the original signal before sampling. 

Applying this theorem to the discretization of binary volumes, 

holes should be sampled into more than two voxels width. If the 

sampling process satisfies this rate, our topology reconstruction 

algorithms can reconstruct a mesh surface 0Μ  with the 

consistent topology to Η∂ . Only H, not any other heuristic 

input, is needed here. 

Implementation Detail The implementation of CubeMerge 

algorithm is based on two entities – cell and cellnode, and three 

operators – cell-create, node-merge and cell-merge. Their 

details are listed in Table 1 and Table 2. We first apply the cell-

create operator to every solid voxel in Η′  to create cubes. 

After that, for each cell ci,j,k, if it has not been merged with one 

of its face neighboring cell cf, we apply the cell-merge operator 

on ci,j,k and cf. Finally, polygons are constructed only on the 

faces of cells where there is no neighbour. An illustration for 

cells merging has been given in Figure 4. The implementation is 

simple but needs a lot of memory when the resolution of H is 

high.  

The out-of-core extension of the above basic CubeMerge 

algorithm is conducted in a layer by layer manner – here a layer 

means all voxels in 3Ζ  with the same z-coordinate. In the 

following pseudo-code of our out-of-core implementation, we 

maintain two layers simultaneously. Starting from the layer with 
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the lowest z-coordinate, the 3D polygons for 0Μ  are 

progressively constructed. Note that in step 8 and 9, polygons 

are constructed only on the faces of cells where there is no 

neighbour. 

Algorithm CubeMerge  

1. Sort all voxels in 3Ζ  into layers by z-coordinate; 

2. Start from the layer z = 0; 

3. Create an empty layer (named as bottom-layer); 

4. Repeat { 

5. Create cells for solid voxels in the layer z – this layer is 

named as top-layer; 

6. Merge cells in the top-layer; 

7. Merge cells between the top-layer and the bottom-layer; 

8. Create polygonal faces perpendicular to x- or y-axis on 

the cells in the bottom-layer; 

9. Create polygonal faces perpendicular to z-axis between 

the top-layer and the bottom-layer; 

10. Free the memory of cells in the bottom-layer; 

11. Assign top-layer to be the bottom-layer; 

12. z = z + 1; 

13. } Until ( z has arrived the upper-bound of 3Ζ ); 

14. Free the memory of cells in the top-layer; 

15. Construct 0Μ  by the polygonal faces. 

Figure 5 illustrates the progressive results from the out-of-all 

algorithm for the example shown in the top row of Figure 4. 

Since the memory of cells is released layer by layer during the 

bottom-up advancement, the requested memory is only linear to 

the cells contained in one layer. 

4.  SMOOTH SHAPE RECONSTRUCTION  
The zigzag shape of 0Μ will be processed iteratively: 

nΜ→→Μ→Μ L
10  so that the shape of nΜ  approximates 

Η∂  smoothly. The element shape on a mesh surface is also 

optimized for the downstream applications – ideally, every 

element is expected to be regular. 

4.1 Duplex distance-fields for surface reshaping 

Different from the pure surface smoothing algorithm (e.g., 

[38-42]), the reference geometry in our approach is not the 

given mesh surface 0Μ . Instead, Η∂  will be the reference 

surface here. However, the shape of Η∂  is not explicitly 

defined on the model H. The boundary of voxels in H is just 

one candidate among all possible surfaces. More specifically, a 

good shape approximate of Η∂  will be a surface falling in the 

region between the two surfaces formed by the centres of 

boundary voxels1 in H and the centres of boundary voxels in 
3Ζ \H (in short, \H). For example, for the model H given in 

                                                           
1 For a set of solid voxels, a voxel which has any empty face neighbor is a 

boundary voxel of this voxel-set. 

 

Figure 5: 2D illustration for the progressive results from the 

out-of-core implementation of CubeMerge algorithm – every 

2D quadrilateral denotes a cubic cell in 3D. 

Empty voxels in Z3

Regions embedding 
possible approximation 

surfaces

Voxel center

Solid voxels on the given 

binary model

(a) (b)

Empty voxels in Z3

Regions embedding 
possible approximation 

surfaces

Voxel center

Solid voxels on the given 

binary model

(a) (b)  

Figure 6: By a given binary volume model H in the left, the 

region holding reasonable approximation of Η∂  is shown in 

the right. 

Table 1: Entities – cell and cellnode 

Entity cell { 

cellnode* nodes[8]; 

bool bMerged[6]; 

 

} 

 

// the pointer of 8 nodes in a cell 

// the flag to identify whether the cell 

// in the ith direction has been merged 

Entity cellnode { 

float pos[3]; 

cell** cellList; 

int num; 

} 

 

// the position of this node 

// the list of cells containing this node 

// the number of cells in cellList 

Table 2: Operators – cell-create, node-merge and cell-merge 

Operator cell-create { 

Construct a cell, and its eight cellnodes which are positioned at 

the 8 corners of a solid voxel; 

The pointer to the cell is saved in the cellList of every node; 

The merge flags in the cell are all set to false; 

} 

Operator node-merge { // applied on two nodes v1 and v2 

Replace the pointer in every cell linked to v2 by the v1; 

Add all cells in the cellList of v2 into the cellList of v1; 

Delete v2; 

} 

Operator cell-merge { // applied on two cells c1 and c2 

There are four pairs of nodes to be merged – they are merged by 

applying the operator node-merge pair by pair; 

Turn the corresponding merge flags in c1 and c2 to true. 

} 
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Figure 6(a), the approximation of Η∂  should be in the region 

shown by Figure 6(b). The problem is how to effectively and 

efficiently control the shape of iΜ  in this region during the 

evolution of meshes. We introduce the idea of duplex distance-

fields for this purpose.  

Definition 3 For a given surface S, a signed distance-field 

defined on it is a function ),,( zyxD  assigning to every point 
3),,( ℜ∈zyx  its distance )),,,((),,( SzyxdistzyxD =  with a 

positive sign for points outside the region enclosed by S and 

negative for points inside S.  

A convenient way to store the distance-field D in an efficient 

data structure is to sample D on a uniform spatial grid 

),,(,, khjhihd kji = . For a point ),,( zyxp =  with 

))1(,[ hiihx +∈ , ))1(,[ hjjhy +∈ , ))1(,[ hkkhz +∈ , 

its Euclidean distance to S can be interpolated on the grid  

))1(,[))1(,[))1(,[ hkkhhjjhhiih +×+×+  

by a tri-linear function such that we obtain a piecewise tri-linear 

approximation )( pD  for the original distance-field )( pD . 

Meanwhile, a corresponding isosurface S* defined by 

0)( =pD  gives an approximation to S. The smaller grid size 

h  chosen, the more accurate approximation of )( pD  is given 

by )( pD , but more memory is needed for storing )( pD . In 

our approach, a balance is found when h is twice of the voxel 

width on H. The grid nodes are located at the centre of the 

voxels. 

Two signed distance-fields are defined – one is for H (as 

ΗD ) while another for \H (as Η\D ). For constructing a signed 

distance-field ΗD  for a voxel set H, the grid nodes in ΗD , 

whose positions are coincident to the centres of boundary 

voxels, will be firstly detected and the distance value on them 

are assigned as zero. Then, after setting the distance values of 

other sample points to ∞ , the vector distance transforms 

(VDTs) presented in [43] are applied to propagate the distance 

values to all grid nodes. The sign of distance at every sample 

point ),,( khjhih  can be detected by whether the voxel kjis ′′′ ,,  

centred at this point is in H. If Η∈′′′ kjis ,, , the sign is negative, 

otherwise a positive distance value is given. The processing 

time of VDTs in [43] is linear to the number of grid nodes. The 

distance-field Η\D  can be constructed similarly from the voxel 

set \H. ΗD  and Η\D  together are named as the duplex 

distance-fields, which are employed to constrain the shape of 
iΜ  during the evolution. Note that the original voxel set H 

(but not Η′ ) is used to generate duplex distance-fields here.  

4.2 Surface remeshing and reshaping 

Using the duplex distance-fields generated in section 4.1, 

the mesh surface 0Μ  is refined and optimized to give a quality 

approximation of Η∂ . Similar to previous explicit remeshing 

approaches [44-47], we iteratively equalize edge lengths and 

vertex valences so that it remeshes the give surface. We 

perform the following steps by a given target edge length L  

(in our implementation, we choose hL = ): 

1. Split all edges which are longer than L2  at their midpoint; 

2. Collapse all edges shorter than L75.0  into their midpoint; 

3. Flip edges to minimize the deviation of valence from 6; 

4. Relocate vertices by DH, D\H and the area-gravity-weighted 

centroid; 

After repeating these steps for several runs (about 5), we obtain 

a triangular mesh 0Μ  whose edges have length close to L  

and whose vertices have valence close to 6. Note that the edge 

collapse and edge flip operations which lead to topology 

degeneration will be prevented (ref. [48]).  

The purposes of the 4
th
 step in the above algorithm are to 

move all vertices of iΜ  to Η∂  and relax the distribution of 

vertices on iΜ . The surface Η∂  is simulated by the 

isosurfaces 0=ΗD  and 0\ =ΗD . When relocating a vertex 
i

v Μ∈ , v is attracted to move towards these two isosurfaces. 

Meanwhile, to improve the regularity, every vertex is expected 

to be close to its gravity-weighted centroid. The functional 

below governs the vertex repositioning 

















−













+





 + ∑

=

ΗΗ

2

1

2
\

2
)(

)(

1
)()(min vqqA

vA
vDvD

n

k

kk
v

λω . (5) 

In the second term, qks are the one-ring neighbours of v, where 

each vertex qk is assigned with a gravity that equals its Voronoi 

area A(qk) and A(v) is the sum of A(qk). This follows the area-

equalization in [45, 47]. For the weights of functional terms, we 

choose 125.0=ω  and 25.0=λ  in our implementation to 

balance the weights of attraction and relaxation. For relocating 

vertices, their positions are repeatedly updated to minimize the 

above functional as below with a damping factor 0.1 for about 

10 iterations. 

)(1.0 Jvv v−∇+←′ .                (6) 

where J denotes the objective function in Eq.(5).  

5.  RECOVERY OF SHARP EDGES  
The mesh surface reconstructed by previous two steps of 

algorithm lacks sharp edges. This section introduces the method 

to recover sharp edges through a novel algorithm which 

integrates the error-controlled segmentation and a normal-based 

bilateral filtering. 

5.1 L
2,1

 planar segmentation 

The given model nΜ  will first be segmented into nearly 

planar patches by the Variational Shape Approximation (VSA) 

algorithm [49]. We control the shape approximation error 

instead of the proxy number. Starting from one seed, we 

incrementally add more seeds into the k-proxy clustering 

algorithm until the maximal approximation error shown on all 

proxies is less than a given tolerance. Following [49], the 1,2
L  

approximation error is computed on every triangle of nΜ . For 

a triangle iT  of area iT , of normal in , and of associated 

proxy h , its 1,2L  error is computed as 

iii TnnTL
21,2 ),( hh −= .              (7) 
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hn  is the normalized vector by summing area weighted 

triangles normals on h , i.e., 

∑∑ ∈∈
=

hh
h

jj T
jj

T
jj nTnTn .         (8) 

Note that hn  in Eq.(8) will only be updated after the 

completion of clustering but not changed during clustering in 

each iteration. Details can be found in [49]. If AL ε>1,2max  

( A  is the average triangle area on H), we increase k seeds into 

k+1 and apply the Lloyd algorithm [61] based clustering again. 

Here 4.0=ε  is determined by experiences. Usually, a smaller 

ε  makes resultant proxies more planar, while a larger ε  leads 

to smaller number of proxies but each with larger 1,2L  

approximation error. The newly inserted seed is located on the 

triangle which gives the maximal 1,2L  error. The k-proxy 

clustering algorithm is detailed by Cohen-Steiner et al. in [49].  

The error-controlled VSA results in a number of small 

patches on a model with aliasing error near sharp edges (e.g., 

Figure 7). The boundaries of patches are refined by the 

minimum-cut method akin to [50] so that the zigzag effects are 

improved. More specifically, a fuzzy area Γ  around the 

boundaries defined above is determined. The faces in this fuzzy 

area Γ  are converted to nodes of a weighted graph, and the 

edges on faces in Γ  are corresponding to the arcs in the graph. 

The weight on the arc from an edge e is defined by the length of 

e weighted by 

)_/)((1

1

angavgeang
we

+
= ,            (9) 

where )(eang  is the angle between normals on its adjacent two 

faces, and angavg _  denotes the average angle between all 

adjacent faces on nΜ . The re-partition of triangles can be 

found by a maximum-flow (minimum-cut) algorithm (ref. [51]) 

on the weighted graph. The refinement is repeated for a few 

times (2 or 3) to remove the small/narrow patches. Results of 

the two-cubes example are shown in Figure 7. This planar 

segmentation actually provides the region that may embed sharp 

edges – i.e., regions near the boundary of each patch. We define 

the potential sharp region as follows. 

Definition 4 An edge is named as boundary edge if its left 

and right faces belonging to different proxies. When centering 

at a vertex on a boundary edge, all its two-ring neighbours are 

called sharp region vertices and the regions occupied by them 

are defined as the potential sharp regions. 

Faces in potential sharp regions and the rest of surface will be 

processed separately in the segmentation-enhanced bilateral 

filtering below. 

5.2 Bilateral recovering of sharp edges 

Based on the planar segmentation result, we apply a 

normal-based bilateral filtering to process the normal vectors of 

each triangle and then reposition vertices to follow the normals 

on the adjacent triangles. Using this process the sharp edges can 

be recovered.  

The segmentation-enhanced bilateral filter is extended from 

the bilateral filter on 2D image, which is a nonlinear feature-

preserved image filter proposed separately by Smith and Brady 

[52] and Tomasi and Manduchi [53]. Recent research [54, 55] 

shows that this filter has close connections with the robust 

estimation and anisotropic diffusion. For a mesh face f with the 

unit surface normal nf and centered at cf, the filtered normal fn  

at the face f is computed by 

∑
∈

−=
)(

)),(()(),(
)(

1

fNq

qsqfcpf nqfIWccWqfW
fk

n ,  (10) 

where  

∑
∈

−=
)(

)),(()(),()(

fNq

sqfcp qfIWccWqfWfk , 

N(f) is the neighbor of f and defined to be the set of triangles  

}2:{)( cfq ccqfN σ<−= .            (11) 

22
2/

)( ct
c etW

σ−= ,                  (12) 

is the standard Gaussian filter with parameter cσ , and 
22

2/
)( st

s etW
σ−= ,                  (13) 

is a similarity weight function for feature-preserving with 

parameter sσ  that penalizes large variation in face normals. 

),( qfI  defines the projection of the normal difference on the 

face normal nf as 

)(),( qff nnnqfI −⋅= .              (14) 

Our filter is different from the bilateral filters in [36, 56-58] for 

3D models. It has one more step function ),( qfW p  with 

parameter pσ  to reduce the blurred effect near sharp features   





≥⋅

<⋅
=

)(1

)(0
),(

)()(

)()(

pgf

pgf

p nn

nn
qfW

σ

σ

hh

hh
,         (15) 

where )( fh  returns the proxy that the face f belongs to, and 

)( fnh  is the proxy normal vector computed by Eq.(8) but not 

the face normal. Note that this step function seldom produces 

unwanted sharp-edges on smooth regions since many small 

pieces are segmented on curved smooth regions. As the 

segmented regions are small, the variation between the proxy 

normals should be always smaller than pσ .  

The normal processing is repeatedly applied to all triangles 

for several runs (about five in our implementation). Then, the 

vertices are repositioned to follow the processed face normal 

 

Figure 7: Results of L
2,1

 planar segmentation (a) with 68 

patches and the followed boundary refinements (b) with 14 

patches and (c) with 12 patches on the two-cubes example. 
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vectors by minimizing the following least square error (LSE) 

defined on the faces 

( )∑ ∑
∈ ∈

−⋅=
)(

2
)()(

istarj Ff

jifi

ij

vvnvE ,         (16) 

where )(istar  denotes the 1-ring neighboring vertices of vi, and 

ijF  represents the two faces that are adjacent to the edge jivv . 

)( ivE  can be iteratively minimized by the update given in [59] 

∑ ∑
∈ ∈

−+←′

)(

)(

istarj Ff

ij
T
ffii

ij

vvnnvv τ .        (17) 

In implementation, we choose the parameters: Lc 2=σ  

and 25.0== ps σσ  to process normal vectors. To speed up 

the search of N(f), we only search triangles locally starting from 

f by using the connectivity on the given mesh surface. Once all 

the newly added triangles are with the distance to cf greater than 

cσ2 , the search stops. The positions of vertices in the potential 

sharp region and the rest of surface (smooth regions) are 

updated separately. The positions of vertices in smooth regions 

are updated by Eq.(17) in 30 runs with each run using 1.0=τ  

as the damping factor of update. The sharp region vertices are 

re-positioned also in 30 runs with 1.0=τ . This separation 

prevents the shrink effect which is in general shown on 

diffusion procedures. When processing the smooth region, the 

sharp regions act as a keel to prevent surface shrinkage. During 

the sharpening, smooth regions act as keels to prevent 

shrinkage. As shown in Figure 8, if all vertices are updated 

together (see the circled region in Figure 8(c)), the surface is 

slightly blurred – so that the cylinder is sloped. By separating 

the two steps, the sloping effect is reduced (see Figure 8(d)).  

6.  RESULTS AND DISCUSSION 
We applied the approach presented in this paper to several 

models, and successfully generated two-manifold mesh surface 

with sharp edges (Figure 9). The input binary volume models 

are also listed in Figure 9. We implemented the approach 

presented in this paper on a PC with PIV 3.0GHz CPU and 

1GB RAM. The processing of all examples shown in this paper 

can be finished in tens to a few hundred seconds. Computing 

time of the topology-extraction step is comparable to the MC 

algorithms – can be completed very fast. The smooth shape 

reconstruction step usually takes about few seconds. The most 

time-consuming step is the L
2,1

 planar segmentation, which 

takes about 60%-70% of the processing time.  

An interesting test is illustrated in Figure 10, where the 

meshes are extracted for the same model but with different 

resolution of binary volume inputs. It can be found that our 

surface reconstruction algorithm converges while increasing the 

sampling rate (i.e., generates more and more accurate surfaces 

with increasing the resolution of input). When the sampling rate 

is increased, the results after smooth reconstruction move closer 

to the results after sharp edges recovery. 

The last test is conducted to illustrate the functionality of 

our novel bilateral filtering method for sharp edges extraction. 

As Eq.(10), with 1),( ≡qfWp , our filter degenerates to the 

bilateral filter in [58]. Figure 11 compares the results from our 

segmentation-enhanced bilateral filter, the normal-based 

bilateral filter in [58], and the position-based bilateral filter of 

[57] on the mesh generated from the 929292 ××  binary 

volume model. Our filter gives the best result, the normal-based 

bilateral filter damages the original shape, and the position-

based bilateral filter accumulates edges around the sharp 

features so that the element shape becomes worse. Figure 12 

gives similar results on the anchor plate model. However, the 

proposed sharpening filter does not work very well on the 

freeform models like the flower model in Figure 13. It is 

because that the VSA algorithm cannot give clear boundary on 

highly-curved freeform objects, which is the major drawback of 

our segmentation-enhanced bilateral filter.  

7.  CONCLUSION 

 

Figure 8: Comparison of position update all together (c) vs. 

separately for smooth region and shape region (d), where 

unwanted slopes are generated in (c). (a) the segmentation 

result, and (b) all patch boundary edges. 

 
Figure 9: Results of our approach on various models. 
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A three-step algorithm has been presented in this paper to 

automatically reconstruct a two-manifold mesh surface with 

sharp edges from a binary volume model. Smooth regions and 

sharp edges can be automatically recovered from raw binary 

volume models without scalar field or Hermite data. Comparing 

to other related surface recovering methods on binary volume 

input, our algorithm needs less heuristic coefficients – only 4 

coefficients: ε , cσ , sσ , and pσ  are needed. In short, our 

technical contributions are  

• an algorithm to construct the connectivity of isosurface 

with consistent topology to H; 

• using duplex distance-fields to give error bound on 

reconstructed smooth surfaces;  

• a segmentation-enhanced sharpening filter for recovering 

sharp edges.  

Our future research will focus on how to construct faces 

with less memory in the topology construction step and how to 

extract more semantic design features from the mesh surface 

generated by this approach. 
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Figure 11: Results of sharpened mechanical part from (a) our 

segmentation-enhanced bilateral filter, (b) the normal-based 

bilateral filter [58], and (c) the position-based bilateral filter 

[57] with the same cσ  and sσ . 

 

Figure 12: Results of the sharpened anchor plate from (a) our 

filter, (b) the normal-based bilateral filter [58], and (c) the 

position-based bilateral filter [57] with the same cσ  and sσ . 

 

Figure 13: Results of the sharpened flower model from (a) our 

filter, (b) the normal-based bilateral filter [58], and (c) the 

position-based bilateral filter [57] with the same cσ  and sσ . 

 

Figure 10: The output of our approach gives more and more 

accurate result while increasing the sampling rate on input 

binary models with (a) 929292 ×× , (b) 128128128 ×× , (c) 

160160160 ××  and (d) 192192192 ××  voxels. The left 

column shows the results from smooth surface reconstruction 

(step 2) and the right column gives the result after recovering 

sharp edges (step 3). 
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