
Flattenable Mesh Surface Fitting on Boundary
Curves

Charlie C.L. Wang
Member of ASME

Department of Mechanical and Automation Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
Email: cwang@mae.cuhk.edu.hk

This paper addresses the problem of fitting flattenable mesh
surfaces in ℜ3 onto piecewise linear boundary curves, where
a flattenable mesh surface inherits the isometric mapping to
a planar region in ℜ2. The developable surface in differen-
tial geometry shows the nice property. However, it is difficult
to fit developable surfaces to a boundary with complex shape.
The technique presented in this paper can model a piecewise
linear flattenable surface that interpolates the given bound-
ary curve and approximates the cross-tangent normal vec-
tors on the boundary. At first, an optimal planar polygonal
region is computed from the given boundary curve B ∈ ℜ3,
triangulated into a planar mesh surface, and warped into a
mesh surface in ℜ3 satisfying the continuities defined on B.
Then, the fitted mesh surface is further optimized into a Flat-
tenable Laplacian (FL) mesh which preserves the positional
continuity and minimizes the variation of cross-tangential
normals. Assembled set of such FL mesh patches can be
employed to model complex products fabricated from sheets
without stretching.

1 Introduction
In many industries, the products with complex shapes

are made by a set of assembled patches where each is warped
from a planar sheet of material (e.g., the metal sheet in ship
industry, the textile pattern in apparel industry, the leather in
shoe industry and furniture industry). The sheet after warp-
ing is expected to have no stretch. This is because that em-
bedding stretch easily leads to material fatigue and failure.
At present, geometry design in these industries is conducted
in a trial-and-error manner. A designer will first figure 2D
pieces on an alternative material and then make a prototype
by the patterns to check whether the fitting is good. If the
result is not satisfied, the designer modifies the 2D pieces by
his own experiences and makes prototype once more. The
cycle of revising and prototyping will be repeated, which is
very inefficient. Besides, it is very difficult to find a 2D piece

that fits a given 3D boundary curve. This in fact leads to a
more serious problem that the product made from the pat-
terns generated in this way may give some unwanted shape
or give gaps along the boundaries. Therefore, a lot of de-
signers in these industries are waiting for a three-dimensional
modelling system, by which they can design some curves di-
rectly in 3D and fit patches onto the curves. The fitted patch
must be a surface that can be flattened into a planar piece
without stretching. The flattenable Laplacian mesh surface
defined in [1] is employed here to fit boundary curves. The
approach presented in this paper focuses on how to inter-
polate boundary curves while approximating cross-tangent
normals, which has not been covered by [1].

1.1 Problem definition
Without lose of generality, we assume that the boundary

of a surface patch to be fitted is defined as a piecewise linear
curve B = {ei} in ℜ3 coupled with a set of normal vectors
Π = {ni}, where ni is the normal vector of tangent plane
defined on the line-segment ei. The problem we are going to
solve is that: to find a piecewise linear mesh surface M ∈ℜ3

interpolating the given boundary B and approximating the
coupled normal vectors in Π, where M can be flattened into
a planar patch without stretching.

This is actually an ill-posed problem; i.e., we cannot al-
ways find a flattenable mesh surface M satisfying any arbi-
trary given B and Π. Therefore, we formulate the computa-
tion as an optimization problem in this paper. Being a pop-
ular representation of piecewise linear surfaces, we employ
triangular mesh patch to present M.

Property 1 For an inner triangular mesh vertex vp, if and
only if the summed inner angle, θ(vp) = ∑ j θ j, around it is
identically 2π, the triangles around it can be flattened into a
plane without distortion.

Figure 1 gives an illustration for this property. By which, we
have the following definitions.

Fig. 1. Illustration for vertex flattenability – the inner angles before
and after flattening the triangles around a vertex are identical.

Definition 1 An inner triangular mesh vertex vp is named
as flattenable vertex when θ(vp) = 2π.

Definition 2 The value of ϖ(vp) = |θ(vp)−2π| is defined
as the flattenability at vp.

Definition 3 A triangular flattenable mesh patch is defined
as a disk-like triangular mesh with all its interior vertices flat-
tenable.

ϖ(vp) is in fact similar to the discrete form of Gaussian
curvature defined in [2], which is the smaller the better for
our problem. The reason why we do not adopt the name de-
velopable (or discrete developable) as [3–5] is that: when
discussing developable property, it is usually derived from
differential geometry on regular surface points; for a sharp
(or singular) vertex as shown in Fig.1, which is not differen-
tiable, it is more appropriate to name it as flattenable (unflat-
tenable) rather than developable (undevelopable).

1.2 Related work
There are a lot of mesh parameterization approaches in

the computer graphics literature [6–11] and surface flattening
approaches in the computer-aided design literature [12–17]
which adopt various criteria to compute the planar shape
from a 3D surface patch by minimizing their differences.
However, few work tries to fit a stretch-free flattenable sur-
face onto a given 3D boundary.

In order to segment a given model into disk-like patches
with less stretch, Julius et al. developed an algorithm in [3]
to separate a given model into quasi-conical proxies. Based
on a similar idea, they deformed a given mesh surface in [18]
instead of segmenting it so that the deformed surface locally
approximates a conical surface. It is a sufficient (but not nec-
essary) condition that a conical mesh surface is flattenable.
A more general representation for flattenable surface (or dis-
crete developable surface) is needed. In [5], Wang and Tang
adopted the definition of Gaussian curvature in discrete dif-
ferential geometry [2] to define the measurement for the dis-
crete developablity on given polygonal mesh surfaces. They
conducted a constrained optimization approach to deform
mesh surfaces so that increase their discrete developability.
Although [5] is akin to the second phase of our algorithm in

this paper, its converging speed is much slower. Liu et al.
in [4] presented a novel PQ meshes – quadrilateral meshes
with planar faces, which is useful to the application of archi-
tecture design. The computation of PQ meshes is based on
the constrained optimization with the position of mesh ver-
tices as variables. The developable surface constructed by [4]
is still simple (i.e., with the shape similar to ruled surfaces).
Recently, in [1], we formulate the method to compute flat-
tenable meshes also by using the constrained optimization,
and can model the flattenable meshes with more complex
shape on boundaries with complex shape (e.g., the surfaces
in Fig.10). However, the cross-tangent constraints and the
method to compute initial fitting to given boundary curves
have not been addressed in [1], which will be the focus of
this paper.

The study of flattenable mesh surfaces relates to the de-
velopable surface in differential geometry [19], where the
definition of a developable surface is derived on ruled sur-
faces: for a ruled surface X(t,v) = α(t)+ vβ(t), it is devel-
opable if β, β̇ and α̇ are coplanar for all points on X . The
key concept in characterizing the developability is Gaussian
curvature — in general, a surface is developable if and only
if the Gaussian curvature of every point on it is zero. Every
surface enveloped by a one-parameter family of planes is a
developable surface. By this idea, some researches in litera-
ture focused on modelling [20–22] or approximating [23–25]
a model with developable ruled surfaces (or ruled surfaces
in other representations — e.g., B-spline or Bézier patches).
However, it is difficult to use these approaches to model
freeform surfaces (e.g., the surfaces in Fig.12). Another limi-
tation of these approaches is that they can only model surface
patches with 4-sided boundaries as the surfaces are usually
defined on a squared parametric domain. Although trimmed
surfaces were considered in [26], the modelling ability for
freeform objects by these approaches is still very limited.

1.3 Contributions

To model flattenable mesh surfaces by given bound-
ary curves, in this paper, we 1) introduce the cross-tangent
approximated Flattenable Laplacian (FL) mesh as a novel
freeform surface representation, and 2) develop a novel
length-preserved optimal boundary computation methods
for computing the initial shape of a surface under fitting.
These two technical contributions yield the new functional-
ity that we can fit stretch-free flattenable mesh surfaces onto
a freeform boundary. This function has not been provided by
existing approaches in literature.

The rest of this paper is organized as follows. We first
give the overview of our two-steps algorithm in section 2.
The first step of our method about how to construct the ini-
tial fitting surface will be addressed in section 3, and section
4 presents the second step about how to further process the
surface into a cross-tangent approximated flattenable mesh
surface. After giving results in section 5, our paper ends with
the conclusion section.

Fig. 2. Method overview: (a) the given boundary curve (blue knots
are endpoints of line segments) and the normal vectors (red arrows)
defined on segments, (b) the computed optimal planar boundary and
tessellated planar mesh patch, (c) the warped mesh surface from the
planar mesh as the initial fitting patch (where the yellow arrows repre-
sent the normal vectors on the boundary of the warped patch), (d) the
color map of flattenablity at vertices of the initial fitting patch, (e) the
final flattenable mesh computed from (c), and (f) the corresponding
flattenability map of (e).

2 Method Overview
For a piecewise linear boundary curve B ∈ ℜ3 coupled

with the normal constraints Π (e.g., in Fig.2(a), the blue
knots represent the endpoints of line segments on B and the
red arrows are the normal vectors), we develop an algorithm
with two-steps to model a flattenable mesh surface fitting this
boundary.

1. Initial Patch Fitting: Purpose of the algorithm in this
phase is to construct an initial mesh surface, which in-
terpolates the given boundary curve B and satisfies the
normal constraints Π defined on the boundary line seg-
ments. A warping based method is developed for this.
Firstly, a length-preserved optimal boundary Bp is com-
puted in ℜ2 by B and Π, where all the line segments on
Bp are with the same length as their corresponding seg-
ments on B and the shape differences between Bp and B
is minimized (see the boundary of the patch in Fig.2(a)
and (b)). The computation of Bp is formulated as a con-
strained optimization problem in the angle space. By
Bp ∈ ℜ2, we then tessellate the region bounded by Bp

into a planar triangular mesh patch Mp (as Fig.2(b)). Af-
ter that, Mp is warped into a shape M0 interpolating the
endpoints of segments on B and the normal vectors in Π
by radial-basis functions (RBF) (see Fig.2(c)).

2. Modelling of Cross-Tangents Approximated FL Meshes:

The initial fitting patch, M0, in general will have
quite a few vertices with large flattenability values (see
Fig.2(d)) – in other words, it is not flattenable. There-
fore, we need to further process the mesh M0 into a flat-
tenable mesh surface M. This modelling task is formu-
lated as a constrained optimization problem where the
objective function is defined by a Laplacian smoothness
term, a weak position term for trying to remain the shape
of M0, and a strong position term for approximating the
boundary normal vectors. The constraints of the opti-
mization problem are derived from the vertex flatten-
ability. To speed up the convergency of computation, a
multi-level optimization algorithm is introduced to gen-
erate the final flattenable mesh (e.g., Fig.2(e) and (f)).

The following sections will present details for these two
steps.

3 Initial Patch Fitting

3.1 Length-preserved planar boundary computation
The method for computing an optimal planar boundary

Bp by the given piecewise linear boundary B ∈ ℜ3 is pre-
sented in this section, where Bp is also a piecewise linear
curve but in ℜ2. The requirements on Bp are that

1. Bp and B have the same number of linear segments, and
each linear segment on Bp have the same length with its
corresponding segment on B.

2. The shape of Bp is similar to B, and is not self-
intersected.

The first requirement is easy to understand — since the fitted
mesh should be able to be flattened into a two-dimensional
piece without stretching, no length variation is allowed on
the boundaries in ℜ3 and ℜ2. However, only constraining the
edge length is not enough, we also need some morphological
term to control the similarity between Bp and B.

We employ angles to measure the morphological differ-
ence between Bp and B. For a vertex vb ∈ B, suppose that
its surface inner angle on the constructed surface M is α(vb)
and its inner turning angle on Bp is θ(vb) (see the illustra-
tion in Fig.2(a) and Fig.2(b)), the shape similarity between
Bp and B can be evaluated by the following boundary angle
error once the edge length consistency is preserved between
Bp and B.

εθ =
1
n ∑

vb∈B
(α(vb)−θ(vb))2 (1)

In εθ, n is the number of vertices on B which is actually the
same as the number of line segments (i.e., edges) on B and
Bp. The value of α(vb) has not been stated. As illustrated
in Fig.3(a), considering about a boundary vertex vb ∈ B and
its previous and next vertices vb− and vb+ on B, without loss
of generality, we can assume that the normal vectors ne+ and
ne− defined on the edges e− and e+ are with small difference.
Then, the value of angle α(vb) can be predicted as α(vb) =

Fig. 3. Angles on a boundary vertex vb: (a) the value of α(vb) can
be predicted by the projected angle on the plane defined by vb and
the normal vector 1

2 (ne+ + ne−), and (b) the value of an optimal

θ(vb) ∈ℜ2 has a lower bound as been addressed in Lemma 1.

Fig. 4. The closed-path constraint and the position coincident con-
straint on the planar boundary.

6 ∏(vb−)∏(vb)∏(vb+) where ∏(...) defines a projection of
points onto the plane passing vb and with the normal vector
1
2 (ne+ + ne−). Note that the vertices on B are ordered anti-
clockwise. The following lemma gives the lower bound of
an optimal θ(vb).

Lemma 1 For a boundary vertex vb ∈ B, the optimal angle
θ(vb) ∈ℜ2 should satisfy that θ(vb)≥ 6 vb−vbvb+.

Proof If there is only one triangle at vb on the final con-
structed patch M, we have θ(vb) = 6 vb−vbvb+ as the triangle
4vb−vbvb+ should be flattened without distortion.

If there are m triangles adjacent to the vertex vb on
the final patch M — 4v1vbv2, 4v2vbv3, ..., 4vi−1vbvi,
..., 4vmvbvm+1 (see Fig.3(b)), as the optimal boundary
Bp should let all these triangles to be flattenable without
stretching, we thus have θ(vb) = ∑m

i=1
6 vivbvi+1. Repeat-

edly, 6 v1vbv2 + 6 v2vbv3 ≥ 6 v1vbv3, 6 v1vbv3 + 6 v3vbv4 ≥
6 v1vbv4, ..., 6 v1vbvm + 6 vmvbvm+1 ≥ 6 v1vbvm+1, we there-
fore have θ(vb) = ∑m

i=1
6 vivbvi+1 ≥ 6 v1vbvm+1.

Q.E.D.

Lemma 1 can be expressed as the constraints defined for
the optimal planar boundary Bp as that

θi ≥ 6 vi−1vivi+1,

with θi be the planar inner turning angle of a boundary vertex
vi ∈ Bp. From the closed-path theorem (ref. [27]), we know
that: for a simple non-self-intersected planar closed path, if
its path is anti-clockwise, the total turning is 2π. As shown in
Fig.4, the total turning by accumulating vertex turning angles
can be computed by ∑n

i=1(π− θi), which leads to another
constraint for Bp that

nπ−∑n
i=1 θi ≡ 2π.

Besides these two constraints, the position coincident con-
straints should also be added on Bp. By giving the inner
turning angles θis and placing v1 at the origin, the planar
coordinate (xi,yi) of a boundary vertex vi becomes xi =
∑i−1

k=1 lk cosφk and yi = ∑i−1
k=1 lk sinφk. As been illustrated in

Fig.4, we have θi = 2π− (φi − β) at the vertex vi and β =
φi−1−π at the vertex vi−1, which yields φi = π−θi + φi−1.
Together with φ1 = π−θ1, the general formula for φi can be
derived in terms of θb as φi = iπ−∑i

b=1 θb. In order to ensure
the planar boundary Bp be closed, we must let (xn+1,yn+1)
be coincident with the origin, which leads to

∑n
i=1 li cosφi ≡ 0, ∑n

i=1 li sinφi ≡ 0.

According to the morphological error term in Eq.1 and
above three constraints, the computation of Bp from B and
Π can be formulated as a constrained optimization problem
defined in the angle space

argminθi{∑i
1
2 (θi−αi)2}

s.t. nπ−∑i θi ≡ 2π,

∑i li cosφi ≡ 0, ∑i li sinφi ≡ 0,
θi ≥ 6 vi−1vivi+1.

(2)

To efficiently compute the optimal angles θis, the constrained
optimization problem is firstly converted into an augmented
objective function Jθ by using the Lagrange multipliers,
where the inequality constraints are partitioned into an active
set and an inactive set in each iteration — only the constraints
in the active set are added into Jθ . We employ the sequential
linear constrained programming (ref. [28]) to minimize Jθ.
The computation converges in few iterations. Fig.5(b) gives
an optimal boundary Bp ∈ℜ2 computed from B and Π given
in Fig.5(a).

The convergency of computation in Eq.(2) depends on
the given boundary curves and coupled normal vectors.
Firstly, if ne+ +ne− = 0 for normal vectors on two neighbor-
ing line segments, the predicted angle α(vb) cannot be deter-
mined by planar projection. Then we let α(vb)≥ 6 vb−vbvb+.
A more serious situation lead to the failure of optimizing Bp

is described below.

Lemma 2 For a given boundary curve if the sum of its
polygonal angles in ℜ3 satisfies ∑n

i=1
6 vi−1vivi+1 > (n−2)π,

the constrained optimization problem defined in Eq.(2) has
no solution.

Proof The proof is very straight forward. If we have
∑n

i=1
6 vi−1vivi+1 > (n−2)π, the constraints nπ−∑i θi ≡ 2π

can never be satisfied when preserving another constraint
θi ≥ 6 vi−1vivi+1.

Q.E.D.

3.2 Tessellation
After determining the length-preserved optimal planar

boundary Bp, we need to tessellate the region surrounded by
it into a planar triangular mesh Mp. The tessellation consists
of four steps:

Fig. 5. The steps for computing an initial patch fitting to the given
boundary: (a) the given boundary and normal vectors for cross-
tangent planes, (b) the computed optimal planar boundary, (c) the
inner region is filled with regular triangles, (d) the boundary re-
gion is tessellated by the Constrained Delaunay Triangulation (CDT)
[29] and the inner vertices are re-positioned through an area-based
smoothing, (e) the planar mesh is warped to interpolate the given
boundary and cross-tangent planes, and (f) the color map of flatten-
ability at vertices of the warped patch.

1. Sampling – Firstly, sampling points are uniformly in-
serted into the region surrounded by Bp. The sampling
points will become the interior vertices of the resultant
planar mesh Mp. In order to let the resultant triangles
close to regular shape, we shift the position of sampling
points in the odd rows by half of the target triangular
edge length L according to the points in even rows. The
points in the same row are sampled with the distance L,
and the distance between two neighboring rows is

√
3

2 L.
2. Regular triangulation – Since the sampling points are

added rows by rows, we can fast construct the interior
triangles by these sampling points using the layout in-
formation of points (e.g., the result shown in Fig.5(c)).

3. Constrained Delaunay Triangulation (CDT) – the re-
gion between the interior triangles and Bp is then tes-
sellated into triangles by the Constrained Delaunay Tri-
angulation (CDT) [29].

4. Smoothing – Lastly, the interior vertices are re-
positioned through an area-based smoothing algorithm,
where every interior vertex is iteratively moved to the
area-weighted centric of its one-ring neighbors for sev-
eral steps (around 10 in our implementation). In order
to achieve a stable smooth, the vertices are moved with
a damping factor 0.25.

One example of the tessellated planar patch Mp is shown in
Fig.5(d).

3.3 Warping for patch fitting
As each vertex on Bp has a corresponding vertex on B,

the problem for warping Mp into a shape M0 that interpolates
B and Π can be defined as: given a set of point V p defined on
Bp and a corresponding point set V on B, how to find a sur-

Fig. 6. Different constraints on the boundary yield different surfaces
by the RBF-based warping: (a) only the positions and the normal
vectors are constrained, and (b) all the positions, the normal vectors,
and the cross-tangents are constrained.

face M0 which is transformed from Mp and the deformation
from Mp to M0 is equivalent to the deformation from V p to
V .

Solving this problem is actually to find a deformation
function Ψ(...) letting V = Ψ(V p) so that M0 = Ψ(Mp) can
be determined. The radial basis function (RBF) is the most
suitable candidate for this deformation function [30, 31]. A
RBF is represented in the piecewise form as

Ψ(x) = p(x)+
n

∑
i

λiφ(‖x− τi‖) (3)

where p(x) is a linear polynomial that accounts for the rigid
transformation, the coefficients λi are real numbers to be de-
termined and ‖ · ‖ is the Euclidean norm on ℜ3. To achieve
a global deformation, the basis function φ(t) is chosen as
φ(t) = t3 (the triharmonic spline as [32]). The coefficients
λi and the coefficients of p(x) can be easily determined by
letting Ψ(τp

i)≡ τi for all pairs of τp
i ∈V p and τi ∈V plus the

compatibility conditions ∑n
i λi = ∑n

i λiτp
i = 0. The formu-

lated linear equation system has been proven to be positive
definite unless all the points in V p or V are coplanar.

If only the boundary vertices in Bp are added into V p,
they are co-planar — the RBF cannot be successfully com-
puted. Therefore, as suggested in [32], some more points
are added into as normal constraints. V p contains all ver-
tices on Bp. For each edge in Bp, a point located at the
middle of the edge but with the depth-coordinate as 0.5τ
is also inserted into V p. Correspondingly, V holds all the
vertices on B and the points {ci + 0.5τni} where ci is the
middle point of the edge ei, ni is the unit normal vector of
cross-tangent plane defined on ei, and τ is the average edge
length of Mp. A warping result by this setup is as shown in
Fig.6(a). However, from the zoom-view of the result, it is
easy to find that the normal vectors on the warped surface
(in yellow color) do not fit the given normals (in red) quite
well. Therefore, more points are added into the point-sets to
constrain the normal vectors on the warped surface. More
specifically, we add points Tout = {ci +0.5τ(t(ei)×ni)} and
Tin = {ci +0.5τ(ni× t(ei))} into V for the edges on B (where
t(ei) shows the unit vector of an edge ei). These two sets
of points in fact constrain the cross-tangents of the warped
surface, as t(ei)× ni and ni × t(ei) are the cross-tangents

pointing outwards and inwards the surface boundary ei re-
spectively. The new surface warping result is as Fig.6(b),
where the boundary normal vectors on Mp follows the given
normals in Π.

The reason that we care about the normal constraints on
M0 so much is because that the FL mesh modelling presented
in the following section can hardly correct the cross-tangent
normal constraints once it is broken. This also reflects the
property of numerical optimization technique that the com-
puting result does rely on the initial values very much.

4 Modelling of Cross-Tangents Constrained FL Meshes
The warping defined by RBF is not an isometric map-

ping (ref. [19]) so that the flattenablity is not preserved on
the warped surface. It is not difficult to find from the color
map of flattenability (e.g., Fig.2(d) and Fig.5(f)) that many
vertices on the warped patch are not flattenable. The second-
phase of our approach presented in this section will further
process the initial fitting surface M0 into a final flattenable
mesh surface M.

4.1 Formulation
By Definition 3, we have clearly stated the condition

for a flattenable mesh patch. However, the geometry, more
specifically, the smoothness of a flattenable mesh has not
been controlled. Derived from the famous Laplacian oper-
ator, authors in [33–37] define the smoothness condition for
a mesh vertex vi ∈ℜ3 as

vi− 1
|N(vi)| ∑

j∈N(vi)
v j = 0 (4)

where N(vi) is the set of 1-ring neighboring vertices of vi,
and |...| denotes the number of elements in a set. All inte-
rior vertices of a Laplacian smooth mesh surface Ms satisfy
Eq.(4), which leads to a linear equation system Lv = 0 with
L known as the Laplacian operator

Li, j =





1 (i = j)
− 1
|N(vi)| (j ∈ N(vi))

0 (otherwise)
.

Definition 4 A Flattenable Laplacian (FL) mesh is a mesh
surface patch which can be flattenable into two-dimensional
pieces without stretching, and at the meanwhile minimizes
the fairness energy function defined by Laplacian operators.

The following part of this section will focus on the math-
ematical tool to process the initial fitting patch M0 into a final
FL mesh M. In short, the final mesh M should:

1. be a Flattenable Laplacian mesh (by Definition 4);
2. approximate the shape of M0;
3. interpolate the given boundary curve B and approximate

the normal vectors Π defined on B.

Note that, different from [1], the normal vectors Π on B are
constrained. Above three requirements can be formulated
into a constrained optimization problem

arg min
p∈Vact

w1J f air +w2Jpos +w3Jtan s.t. θp ≡ 2π, (5)

where Vact is the set of interior vertices on the mesh patch.
The smoothness term J f air is defined on the integral of Lapla-
cian operator all over the surface M

J f air =
1
2 ∑

p∈Vact

ψ(vp), (6)

with ψ(vp) = ‖Lvp‖2 being a piecewise function only de-
fined on the Voronoi area of vp. The smoothness term is
with a weight w1 = 1.0. The gradient of a discretized J f air to
a vertex vp ∈Vact is

∂J f air

∂vp
= vp− 1

|N(vp)| ∑
k∈N(vp)

vk. (7)

The position functional Jpos is defined to minimize the dif-
ference between the new surface M and the given surface M0

Jpos =
1
2 ∑

p∈Vact

‖vp−v0
p‖2 (8)

with v0
p being the original position of vp on M0. Jpos is

weakly weighted with w2 = 0.1. The last term in the con-
strained optimization problem defined in Eq.(5) is for con-
straining the normal vectors of cross-tangent planes on the
processed surface as

Jtan =
1
2 ∑

p∈Vtan

‖vp−vp
p‖2. (9)

Letting Vbnd be the set of vertices in the triangles that are
adjacent to the edges in B, the set Vtan in Jtan is then defined
as Vtan = {vt |vt ∈Vbnd

T
(M0 \B)} (i.e., the vertices that are

on the triangles adjacent to B but not on B). The tracking
position vp

p defined in Jtan is given in the way that:

Suppose that vp is on a triangle4vi+1vpvi where vivi+1
is the edge ei ∈ B associated with the normal vector ni,
vp

p is the projection of v0
p on the plane passing the point

1
2 (vi +vi+1) with the normal ni.

Why we only add the normal constraints softly in the objec-
tive function but not hardly in the constraints set? This is
because that if we define cross-tangent normals as hard con-
straints in the constraint set, the feasible region in the solu-
tion space defined by the flattenability (i.e., θp ≡ 2π for vp ∈

Vact) and the feasible region defined by the cross-tangent nor-
mals interpolation may have no intersection. Therefore, there
will be no solution for Eq.(5). We hence add the constraints
softly (i.e., adding them in the objective function) but with
a strong weight w3 = 100.0. Once the functional Jtan ≡ 0 is
satisfied, the normal constraints {ni} are preserved.

4.2 Numerical scheme and a multiple-loop algorithm
For the constrained optimization problem defined in

Eq.5, we can still conduct the Lagrange-Multiplier method
to form an augmented objective function

JFL(X) = w1J f air +w2Jpos +w3Jtan +∑p∈Vact λp(θp−2π)

with X as the collection of positions of all vertices in Vact .
When using the sequential linear constrained programming
(ref. [28]) to minimize JFL by neglecting the terms coming
from the second derivatives of the constraints in the Hes-
sian matrix ∇2JFL(X), the equation ∇2JFL(X)δ =−∇JFL(X)
solved at each step is simplified into

(
H ΛT

Λ 0

)(
δ
λ

)
=

(
Bp
Bλ

)
, (10)

where

H = {hi, j}=





w1 +w2 +w3 (i = j, i ∈Vtan)
w1 +w2 (i = j, i ∈Vact \Vtan)
− w1
|N(vi)| (v j ∈ N(vi))

0 (otherwise)

,

Λ = { ∂2

∂λi∂v j
∑p∈Vact λp(θp−2π)}= { ∂θ(vi)

∂v j
}.

It is easy to find that the matrix H is invertible and the vec-
tors in Λ are linear independent. Therefore, the linear equa-
tion system defined in Eq.(10) can always be solved. In the
sequential linear constrained programming, the system vari-
ables are updated by the vector δ determined from Eq.(10) in
a Newton’s routine (ref. [38]), where we can use a soft-linear
search strategy [28] to determine the actual update step size
αδ with 0 < α ≤ 1 to ensure stable convergence and suffi-
cient descent.

However, directly solving the constrained optimization
problem in Eq.(5) by the sequential linear constrained pro-
gramming plus the soft-linear search strategy does not con-
verge fast enough. We find that if the position constraint
functional Jpos and the normal vector constraint functional
Jtan are released in some sense, the convergency will be
speeded up. Therefore, a multiple-loop optimization algo-
rithm is developed. In this multiple-loop algorithm, the two
statements after finishing the inner loop are employed to re-
lease the position constraint Jpos and the cross-tangent con-
straint Jtan respectively. Note that for a vertex in Vtan as-
sociated with more than one cross-tangent planes, the aver-
age plane is used in the projection. Fig.7 gives a compari-
son for computing a FL mesh by the direct Newton’s routine
plus soft-linear search vs. the proposed multi-loop algorithm
here. It is easy to find that the multiple-loop algorithm con-
verges much faster.

Algorithm 1 Multiple-loop Optimization
repeat

i← 1;
repeat

Solve Eq.(10);
Soft-linear search for find an optimal α;
X ← X +αδ;
i← i+1;

until ‖δ‖< 10−5 OR i > 5
Update the tracking position v0

p for every vertex vp ∈
Vact by its current position;
Update the tracking position vp

b for every vertex vb ∈
Vtan by projecting its current position onto the associ-
ated cross-tangent plane;

until the maximal flattenability on the mesh is less than ε

Fig. 7. The comparison of (a) the direct Newton’s routine vs. (b)
our multiple-loop algorithm for computing a FL mesh surface from an
input of Fig.5(f), where the results after 200, 400 and 800 iterations
of the direct Newton’s routine are shown in (a) and the results after
5, 10 and 20 outer loop iterations (i.e., accumulated 25, 50 and 100
steps) are shown in (b).

5 Results and Discussion
We have implemented the proposed method using C++

plus OpenGL in a prototype system. Several examples have
been tested in our prototype system on a PC with Intel Pen-
tium M PIV 1.86GHz CPU + 1GB RAM. The numerical
solver for the linear system used in the algorithm Multiple-
Loop Optimization is the public available SuperLU library
from [39].

Our first example is to fit a flattenable mesh surface onto
a given boundary curve with double-curved wrinkles. Fig.8
shows the result. The flattenable mesh surface surface with
complex double curved wrinkles are constructed, which can-
not be modelled by exiting approaches for modelling devel-
opable surfaces.

The second example is to fill a hole on a given model.
As shown in Fig.9(a), on the back of the moai model, there
is a big hole which needs to be filled by a metal sheet. The
boundary of the hole is used as the input curve of our al-
gorithm. We use the normal of triangles on the remaining
surface adjacent to the boundary as the input normal vectors
of cross-tangent planes. Fig.9(b) gives the two-dimensional

Fig. 8. The wrinkle patch example: (a) the given boundary curve
and the cross-tangent normals defined on it, (b) the initial warped
patch M0 and its color map for flattenability, and (c) the result FL
mesh surface patch its the color map.

mesh patch before warping, Fig.9(c) shows the final recon-
structed FL mesh surface, and the color map in Fig.9(d) il-
lustrates the flattenability on the reconstructed FL patch.

The third example is from the apparel industry, where
the modelling in three-dimensional becomes the major trend.
By a given virtual human body generated from the 3D laser
scanners, the curve-network of a garment (with the cross-
tangent normals) can be generated automatically from the
mannequin. The most critical work is how to generate the
patches fitting this curve-network. Here the patches are re-
quired to be flattenable since garments are fabricated from
2D patterns and allows almost no extension. As shown
in Fig.10, flattenable mesh patches are constructed by our
method piece by piece.

The last example is from the shoe industry. The curve-
network associated with normal vectors is generated from
the shoe last of a human body. Fig.11(a) shows the curve-
network and the normal vectors on it. After determining the
initial fitting surface by the RBF-based surface warping (see
Fig.11(b)), FL mesh surface patches can be constructed to
fit the given curve-network as shown in Fig.11(c). How-
ever, unexpected wrinkles are generated at the region near
arch (which easily leads to a material failure on the product
made by these patches). Therefore, a refined design is given
in Fig.12 where the unexpected wrinkles have been success-
fully removed by adding one more cut near arch. A 2D lay-
out of the pieces that can be used to make this shoe has been
given in Fig.13, where the pieces are generated by the flat-
tening method in [16] from the 3D patched in Fig.12(c).

Table 1 gives the computational statistics of the four ex-
amples, where T2D is the time needed for the construction of
2D patch, Twarp is the time for RBF-based surface warping,
TFL represents the time for FL-mesh processing, and Vnum
and Fnum give the number of vertices and triangles on the re-
sult surfaces. All the tests can be finished in less than 20
seconds on a PC with standard configuration, which is an
acceptable speed by interactive modelling applications.

5.1 Limitations
The first limitation of the presented FL mesh fitting al-

gorithm is that there are some cases that the computed op-
timal boundary Bp has global self-intersection as shown in
Fig.14(a) although the constraint derived from the closed-
path theorem [27] prevents the local self-intersections. If

Table 1. Computational Statistic

Example T2D Twarp TFL Vnum Fnum

Wrinkle-Patch 0.4s 0.3s 15.9s 654 1,226

Moai 0.9s 2.5s 13.9s 1,335 2,514

Pants 1.7s 2.3s 4.2s 5,010 8,572

Shoe-I 0.7s 1.5s 2.2s 1,459 2,302

Shoe-II 0.7s 1.4s 1.7s 1,460 2,276

Fig. 9. The hole filling example: (a) the given moai model with a
large hole at the back of the model, (b) the 2D mesh patch computed
from the hole boundary, (c) the result FL mesh surface patch for fill-
ing, and (d) the color map for flattenability on the result FL mesh.

Bp is self-intersected, the region bounded by it cannot be
tessellated correctly. Besides, the computation of Bp fails
at the cases mentioned in Lemma 2. When meeting these
problems, we use a simple but practical method to solve this
– a message will be given to users to ask them change the
boundary curves B. Subdividing the failed piece into several
smaller pieces can always solve the problem.

The second limitation of the FL mesh fitting algorithm
proposed in this paper is that the FL mesh representation is
not a connectivity invariant representation. Therefore, the
computation of FL meshes can be stuck by some topological
obstructions although it seldom happens in practice. During
the optimization of FL meshes, if high value of ϖ(vp) keeps
showing on a vertex vp, we locally refine the triangles around
vp by the strategy similar to the

√
3−subdivision [40] to add

more degree-of-freedom on the mesh under processing.
The last limitation of the presented FL mesh fitting tech-

nique is that the G1 continuity is only approximated but not
fully preserved on the given boundary curve B. The situation
becomes significant near the region with high curvatures. For
example, the surface fitting result of the shoe example shown
in Fig.14(b), only G0 is preserved on the boundary at heel
(i.e., the normal vectors on the left patch and the right patch
are not consistent). However, for the boundaries falling in the
low curvature regions, the normal vectors of the left and right
patches are the same (see other boundaries in Fig.14(b)). Al-
though this is a limitation somewhat, it in fact follows the
reality when we use flattenable materials with strong tensile
stiffness (e.g., leather) to fit a high-curved wire-frame.

Fig. 10. An example for the flattenable surface modelling in apparel industry: (a) the curve network for fitting flattenable mesh surfaces
— the normals of cross-tangent surfaces are defined on the curves (see the yellow arrows), (b) the mesh surface after initial fitting and its
flattenability map, and (c) the final FL mesh surface patches fitting the given curve network.

Fig. 11. An example for modelling a shoe: (a) the input curve network with normal vectors, (b) the surface after initial fitting and the color
map for illustrating vertex flattenability, and (c) the final FL mesh surface patches (unexpected wrinkles are generated at the region near arch).

Fig. 12. A refined design for the shoe cover: (a) the input curve networks with normal vectors, (b) the surface after RBF warping (i.e., the
initial fitting result), and (c) the final FL mesh patches that are automatically constructed by our approach.

6 Conclusion
In this paper, based on the Flattenable Laplacian (FL)

mesh representation [1], we have presented a novel method
for fitting a FL mesh surface onto a given boundary piece-
wise linear curve coupled with normal vectors for cross-
tangent planes. The constructed FL mesh patch interpolates
the given boundary curve and approximates the cross-tangent
normal vectors. Every FL mesh surface can be flattened into
a 2D piece without stretching. With this new technique, we
can fit stretch-free flattenable mesh surfaces onto a boundary
with complex shape. To the best of our knowledge, this is a
modelling task that cannot be finished by existing approaches
in literature.

References
[1] Wang, C. “Towards flattenable mesh surfaces”.

Computer-Aided Design. accepted.

[2] Meyer, M., Desbrun, M., Schroder, P., and Barr, A.,
2002. “Discrete differential-geometry operators for tri-
angulated 2-manifolds”. In Proceeding of Visualization
and Mathematics.

[3] Julius, D., Kraevoy, V., and Sheffer, A., 2005. “D-
charts: quasi-developable mesh segmentation”. Com-
puter Graphics Forum, 24, pp. 581–590.

[4] Liu, Y., Pottmann, H., Wallner, J., Yang, Y.-L., and
Wang, W., 2006. “Geometric modeling with conical
meshes and developable surfaces”. ACM Transactions
on Graphics, 25(3), pp. 681–689.

[5] Wang, C., and Tang, K., 2004. “Achieving developa-
bility of a polygonal surface by minimum deformation:
a study of global and local optimization approaches”.
The Visual Computer, 20, pp. 521–539.

[6] Desbrun, M., Meyer, M., and Alliez, P., 2002. “Intrin-
sic parameterizations of surface meshes”. Computer

Fig. 13. The 2D layout of leather patterns for making the shoe
shown in the left, where the patterns are generated by [16] from the
patches shown in Fig.12(c).

Fig. 14. Discussion: (a) the computed optimal planar boundary may
globally self-intersected (top) although the local self-intersection (bot-
tom) has been prevented, and (b) tangential continuity cannot always
be preserved on the resultant patches (comparing normal vectors on
the boundary curves at heel and other regions).

Graphics Forum, 21(3), pp. 209–218.
[7] Karni, Z., Gotsman, C., and Gortler, S., 2005. “Free-

boundary linear parameterization of 3d meshes in the
presence of constraints”. In Proceedings of Shape Mod-
eling International, pp. 266–275.

[8] Lee, Y., Kim, H.-S., and Lee, S., 2002. “Mesh pa-
rameterization with a virtual boundary”. Computers &
Graphics, 26, pp. 677–686.

[9] Lévy, B., Petitjean, S., Ray, N., and Maillot, J., 2002.
“Least squares conformal maps for automatic texture
atlas generation”. ACM Transactions on Graphics,
21(3), pp. 362–371.

[10] Sheffer, A., Lévy, B., Mogilnitsky, M., and Bogom-
jakov, A., 2005. “Abf++: fast and robust angle based
flattening”. ACM Transactions on Graphics, 24(2),
pp. 311–330.

[11] Sheffer, A., and de Sturler, E., 2001. “Parameterization
of faceted surfaces for meshing using angle based flat-
tening”. Engineering with Computers, 17(3), pp. 326–
337.

[12] Azariadis, P., and Aspragathos, N., 1997. “De-
sign of plane development of doubly curved surface”.
Computer-Aided Design, 29, pp. 675–685.

[13] Aono, M., Breen, D., and Wozny, M., 2001. “Model-
ing methods for the design of 3d broadcloth composite
parts”. Computer-Aided Design, 33, pp. 989–1007.

[14] Aono, M., Breen, D., and Wozny, M., 1994. “Fitting a
woven-cloth model to a curved surface: mapping algo-
rithms”. Computer-Aided Design, 26, pp. 278–292.

[15] McCartney, J., Hinds, B., and Seow, B., 1999. “The
flattening of triangulated surfaces incorporating darts
and gussets”. Computer-Aided Design, 31, pp. 249–
260.

[16] Wang, C., Smith, S., and Yuen, M., 2002. “Surface
flattening based on energy model”. Computer-Aided
Design, 34(11), pp. 823–833.

[17] Wang, C., Tang, K., and Yeung, B., 2005. “Freeform
surface flattening by fitting a woven mesh model”.
Computer-Aided Design, 37, pp. 799–814.

[18] Decaudin, P., Julius, D., Wither, J., Boissieux, L., Shef-
fer, A., and Cani, M.-P., 2005. “Virtual garments: a
fully geometric approach for clothing design”. Com-
puter Graphics Forum, 25(3), pp. 625–634.

[19] do Carmo, M., 1976. Differential Geometry of Curves
and Surfaces. Prentice-Hall, Englewood Cliffs, NJ.

[20] Leopoldseder, S., and Pottmann, H., 1998. “Approx-
imation of developable surfaces with cone spline sur-
faces”. Computer-Aided Design, 30, pp. 571–582.

[21] Pottmann, H., and Wallner, J., 1999. “Approximation
algorithms for developable surfaces”. Computer Aided
Geometric Design, 16, pp. 539–5562.

[22] Chu, C., and Séquin, C., 2002. “Developable bézier
patches: properties and design”. Computer-Aided De-
sign, 34(7), pp. 511–527.

[23] Chen, H.-Y., Lee, I.-K., Leopoldseder, S., Pottmann,
H., Randrup, T., and Wallner, J., 1999. “On surface
approximation using developable surfaces”. Graphical
Models and Image Processing, 61, pp. 110–124.

[24] Peternell, M., 2004. “Recognition and reconstruction
of developable surfaces from point clouds”. In Pro-
ceedings of Geometric Modeling and Processing 2004,
pp. 301–310.

[25] Peternell, M., and Steiner, T., 2004. “Reconstruc-
tion of piecewise planar objects from point clouds”.
Computer-Aided Design, 36, pp. 333–342.

[26] Wang, C., Wang, Y., and Yuen, M., 2004. “On increas-
ing the developability of a trimmed nurbs surface”. En-
gineering with Computers, 20(1), pp. 54–64.

[27] Mortenson, M., 1997. Geometric Modeling (2nd Edi-
tion). Wiley, New York.

[28] Madsen, K., Nielsen, H., and Tingleff, O., 2004. Opti-
mization with constraints. Lecture Notes.

[29] Chew, L., 1987. “Constrained delaunay triangulations”.
In Proceedings of the third annual symposium on Com-
putational geometry table of contents, pp. 215–222.

[30] Botsch, M., and Kobbelt, L., 2005. “Real-time shape
editing using radial basis functions”. Computer Graph-
ics Forum, 24(3), pp. 611–621.

[31] Turk, G., and O’Brien, J., 2002. “Modelling with im-
plicit surfaces that interpolate”. ACM Transactions on
Graphics, 21(4), pp. 855–873.

[32] Yngve, G., and Turk, G., 2002. “Robust creation of im-
plicit surfaces from polygonal meshes”. IEEE Trans-
actions on Visualization and Computer Graphics, 8(4),
pp. 346–359.

[33] Sorkine, O., 2006. “Differential representations for
mesh processing”. Computer Graphics Forum, 25(4).

[34] Chen, D., Cohen-Or, D., Sorkine, O., and Toledo, S.,
2005. “Algebraic analysis of high-pass quantization”.
ACM Transactions on Graphics, 24(4), pp. 1259–1282.

[35] Sorkine, O., Cohen-Or, D., Irony, D., and Toledo, S.,
2005. “Geometry-aware bases for shape approxima-
tion”. IEEE Transactions on Visualization and Com-
puter Graphics, 11(2), pp. 171–180.

[36] Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M.,
Rossl, C., and Seidel, H.-P., 2004. “Laplacian surface
editing”. In Eurographics/ACM SIGGRAPH Sympo-
sium on Geometry Processing 2004, pp. 179–188.

[37] Sorkine, O., and Cohen-Or, D., 2004. “Least-squares
meshes”. In Proceedings of Shape Modeling Interna-
tional 2004, pp. 191–199.

[38] Nocedal, J., and Wright, S., 1999. Numerical Optimiza-
tion. Springer-Verlag.

[39] Li, S., Demmel, J., and Gilbert, J., 2006. SuperLU.
http://crd.lbl.gov/ xiaoye/SuperLU/, February.

[40] Kobbelt, L., 2000. “
√

3-subdivision”. In Proceedings
of SIGGRAPH 2000, pp. 103–112.

