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ABSTRACT 

We present an adaptive contouring approach to generate 

contour surface from solid models represented by Layered 

Depth-Normal Images (LDNI) sampled in three orthogonal 

directions. Our contouring algorithm builds an octree structure 

for mesh generation in a top-down manner: starting from the 

bounding box of a LDNI solid model, the cells are recursively 

subdivided into smaller sub-cells based on the topology and 

geometry criteria of refinement until both of the requirements, 

the topology in cell is simple and the geometry approximation 

error is less than a user defined tolerance, are satisfied. The 

subdivision also stops when the processed cells reach the finest 

resolution of LDNI models. In order to overcome the topology 

ambiguity inside a cell that leads to the occurrence of non-

manifold entities, we analyze the possible inside/outside 

configurations of cell-nodes and exploit two strategies to 

generate manifold-preserved mesh surfaces. Moreover, the most 

time-consuming step of our contouring algorithm – the 

construction of octree structure can be easily parallelized to run 

under a computer framework with multiple-processors and 

shared memory. Several examples have been tested in the paper 

to demonstrate the success of our method.  

 

KEYWORDS: adaptive contouring, two-manifold preserved, 

parallel implementation, implicit representation, solid modeling. 

 

1.  INTRODUCTION 
The manipulation of solid models is widely used in many 

applications of design, manufacturing, visualization, analysis, 

and entertainment. Benefited from the compact and intuitive 

mathematical representation, the solid modelling operations 

developed on implicit representation are usually robust and easy 

to implement. However, it is in general time-consuming to 

convert models between the boundary representation (B-rep) 

and the implicit representations. The newly proposed Layered 

Depth-Normal Images (LDNI) representation in [1] is a sparse 

implicit representation that can be easily obtained from a B-rep 

model with the help of graphics hardware accelerated sampling 

(e.g., using the depth peeling process in [2]). Nevertheless, the 

LDNI to mesh conversion technique presented in [1] works on 

the uniform grids at the finest resolution of LDNI, so that it 

generates too many polygons and is very time-consuming. As 

the solid models still need to have the B-rep in many 

downstream CAD/CAM applications (e.g., CNC tool path 

generation, rapid prototyping, parting line generation of mold 

design, etc.), the lack of an efficient contouring method blocks 

the application of LDNI representation in CAD/CAM. This 

motivates our work presented here – to develop an adaptive 

contouring method for LDNI solid models.  

Furthermore, many existing methods in literature may 

generate nonmanifold surfaces (e.g., [3-5]). More specifically, 

on the resultant mesh surface, some of the approaches will 

generate edges shared by more than two polygons, or vertices 

the neighbourhood of which is not topologically equivalent to a 

disk. Although there have been several approaches that claim to 

produce manifold contours (ref. [6-8]), nonmanifold edges and 

vertices can still appear in the adaptive setting when working on 

LDNI with a limited resolution. This is different from directly 

constructing the adaptive hierarchical structure from B-rep or 

analytical implicit surfaces, where the resolution of sampling 

can be unlimited. 
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To solve the above problems, we propose a top-down 

refinement algorithm to generate an octree for contouring a 

solid model represented by Layered Depth-Normal Images 

(LDNI). The refinement of cells is recursively given until the 

topology in a cell is simple and the geometry approximation 

error of the generated mesh to the LDNI solid is less than a user 

defined tolerance. In order to generate manifold-preserved mesh 

surface, we analyze the possible inside/outside configurations of 

cell-nodes and exploit two strategies to construct meshes inside 

a cell – one method prefers to generate gaps and the other tries 

to create thin-shells in the smallest cells. Without changing the 

method too much, the most time-consuming step of our adaptive 

contouring algorithm – the octree construction is modified to a 

parallel algorithm running under a computer framework with 

multiple processors and shared memory. 

1.1 Related Work 

The work presented in this paper relates to several previous 

researches in the areas of: volume-based representation of solid 

modelling, contouring method for the volumetric representation, 

dexel-representation and contouring, and the Layered Depth 

Image (LDI). 

To overcome the robustness problem in the solid modelling 

approaches based on B-rep (see [9] and [10] for the surveys), 

many approaches adopted volumetric data to approximate the 

solid modelling operations (e.g., [4, 11, 12]). Voxel based solid 

model [13] is the simplest volumetric representation, which is 

soon replaced by the uniform and adaptive distance-fields [14]. 

However, as mentioned by Kobbelt et al. in [15], even if an 

over-sampling is applied, the aliasing error along sharp features 

on a distance field cannot be absolutely eliminated since the 

surface normals in the reconstructed model usually do not 

converge to the normal field of the original model. Therefore, 

recently developed volumetric approaches always encode both 

the distance and the normal vectors which are called Hermite 

data (e.g., [3, 6, 7, 8, 15]). The samples stored in LDNI are also 

a sort of Hermite data (see [1]). 

There are dozens of algorithms in literature trying to 

generate two-manifold polygonal mesh surfaces from a 

volumetrically represented solid model. The Marching Cubes 

(MC) algorithm [16] is the first approach in the literature to 

generate a polygonal mesh surface from an implicit surface. The 

latter variations of MC algorithms (e.g., [17-20]) all devoted to 

solve the topological inconsistent problems that may generate 

gaps or nonmanifold entities on the resultant meshes. In order to 

reconstruct sharp edges and corners on the resultant meshes, the 

authors in [3-8] employed the dual contouring techniques to 

generate an isosurface on Hermite data. Among them, the 

methods in [6, 7] adopted the subdivision method to ensure that 

the finest cell contains only simple topological structure. 

However, this method cannot be applied here as the implicit 

representation in LDNI has limited resolution, therefore the 

cells cannot be split into sub-cells without limit. Also, different 

from [8] the purpose of which is to cluster vertices as so to 

simplify a given mesh surface, there is not an underlying mesh 

surface to govern the preservation of manifold topology here. 

Thus, some new criteria for manifold preservation need to be 

investigated. 

Another line of research related to our work is the so-called 

ray-rep in the solid modelling literature [21-24]. Menon and 

Voelcker sampled the solid models into parallel rays tagged 

with h-tag (i.e., the information of half-space at the endpoints of 

rays) in [22] so that the completeness of ray-rep can be 

generated. The conversion algorithm between ray-rep and B-rep 

or CSG is also given in [22]. As mentioned in [23], ray-rep can 

make things easy in the applications involving offsets, sweeps, 

and Minkowski operations. However, different from our LDNIs 

that sample a solid model along three orthogonal directions 

together with normal vectors, the ray-rep only stores depth 

values without surface normals in one ray direction. 

Furthermore, the algorithm presented in [22] to convert models 

from ray-rep to B-rep does not take the advantage of 

structurally stored information so it involves a lot of global 

search and could be very time-consuming. The recently 

developed method in [24] used a local searching algorithm to 

reconstruct B-rep from the ray-rep (i.e., dexels). Again, they 

worked on the finest resolution, thus surfaces with too many 

polygons are generated. Furthermore, the preservation of two-

manifold has not been considered in [24]. 

The Layered Depth-Normal Images (LDNI) representation 

is stimulated by the work presented in [2], where a fast collision 

detection approach for solid models was developed based on 

the decomposition of Layered Depth Images (LDI) [25]. Similar 

to the LDI decomposition, the implementation of LDNI 

sampling can be accelerated in graphics hardware using 

OpenGL (ref. [1]).  

1.2 Contributions 

The techniques developed in this paper contribute in the 

following three aspects: 

 We present a new contouring algorithm that adaptively 

generates mesh surfaces to approximate the boundary of 

solid models represented by Layered Depth-Normal Images 

(LDNI) with the help of octree structure. 

 The construction of mesh surface inside a leaf cell of the 

octree is well designed so that the two-manifold topology is 

preserved on the resultant surface – two strategies (one 

preferring gaps and the other for creating thin-shells) are 

exploited. 

 A parallel implementation for the octree construction from 

LDNI, which is the most time-consuming step in the 

contouring procedure, is also investigated. 

These lead to the function that allows us to efficiently and 

effectively reconstruct the boundary representation – mesh 

surface from a LDNI solid model. 

The remainder of the paper are organized as follows. To be 

self-contained, the LDNI representation of solid models is 

briefly explained in section 2. Section 3 describes our adaptive 
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contouring algorithm which consists of two steps: 1) the octree 

construction and 2) the mesh generation. The topology of mesh 

surfaces generated inside a leaf cell is analyzed in section 4, and 

two methods for constructing manifold-preserved mesh surfaces 

are then presented where one prefers gaps and the other creates 

thin-shell structures. Details for parallelizing the construction of 

octree are presented in section 5. Lastly, some experimental 

results are given in section 6. 

2.  LAYERED DEPTH-NORMAL IMAGES (LDNI) 
A representation, named as Layered Depth-Normal Images 

(LDNIs), that implicitly encode the shape of solid models has 

been introduced in [1] based on the following definitions.  

Definition 1 A single layered depth-normal image (e-LDNI) 

with a specified viewing direction e is a two-dimensional image 

with w×w pixels, where each pixel contains a sequence of four-

components-vectors (d, nx, ny, nz). At each sample, d specifies 

the depth from the intersection (between a ray along the viewing 

direction and the surface under sampling) to the viewing plane, 

(nx, ny, nz) is the surface normal at the intersection point, and the 

samples are sorted in ascending order by the value of d. 

Note that the samples come in pairs for a solid model – one 

enters the model while the other runs out of the model. 

Definition 2 Letting x-, y- and z- specify the images sampled 

perpendicular to x-, y- and z-axis respectively, a set of 

structured layered depth-normal images (LDNI) consists of x-

LDNI, y-LDNI and z-LDNI with the same resolution w×w, and 

the images are located to let the intersections of their rays 

intersect at the w×w×w nodes of uniform grids in 3 . 

Assumption 1 The sampling rate w×w of each LDNI 

satisfies that w=2
n
+1 with n being an integer. 

In the rest of this paper, we simply conduct LDNI to denote the 

structured layered depth-normal images. Details about how to 

sample a solid model from surfaces into LDNI can be found in 

[1]. Figure 1 shows an example of LDNI sampled from a mesh 

model. We have also developed the method of using LDNI to 

model complex objects in [26]. 

3.  ADAPTIVE CONTOURING 
An adaptive contouring algorithm is developed in this 

section to generate the contour mesh surface of a LDNI solid 

model with the help of a hierarchical structure – octree. The 

contouring algorithm consists of two major steps: 1) octree 

construction and 2) mesh generation. 

3.1. Octree Construction  

Starting from the root cell (i.e., bounding box of the 

model), the cells are recursively refined into eight sub-cells 

based on the condition of 1) the topology simplicity and 2) the 

geometry approximation error. By Assumption 1, we can let 

twelve edges of each cell C overlap with a ray that samples the 

model into LDNI. Therefore, the intersected Hermite data 

points between the cell-edge and the solid model can be 

efficiently and easily detected on the LDNI representation. 

Definition 3 For a cell edge CE   starting from the depth 

value s and ending at the depth value t overlapped with a ray, 

the sample (d, nx, ny, nz) on this ray is classified to intersect with 

this cell edge E if ),[ tsd  . 

Note that d, s and t are converted into integer according to the 

finest precision (as [4]) to robustly classify the samples of 

LDNI. This definition avoids double counting of a sample in 

different cells when the sample exactly overlaps the endpoint of 

a cell edge. Similarly, the intersection between a cell face and a 

LDNI solid model can be easily detected by the samples on the 

ray perpendicular to the cell face. All above detections and the 

detection of whether a Hermite data point is inside a cell can be 

determined in a constant time complexity.  

Definition 4 For all Hermite samples in a cell C, a point vc, 

the position of which minimizes the quadric error function 

(QEF) [3], is defined as the error-minimizing point of this cell. 

 

Figure 1: A gear model sampled into LDNI representation with 

129×129 resolution (top-right), the octree (bottom-left) for 

contouring and the resultant mesh surface (bottom-right). 
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The method for computing the position of vc can be found in 

[27]. We initially place vc at the average position vavg of all 

Hermite samples in C and then compute the optimal position 

vopt by the singular value decomposition (SVD). If the distance 

between vavg and vopt is greater than s , we truncate the 

movement of vc from vavg to vopt by the length s . In our 

implementation, we choose the value of s  as twice of a 

pixel‟s width in LDNI. 

The refinement of cells is stopped based on two criteria.  

Criterion 1 The surface of a LDNI solid included in a cell C 

can be guaranteed to have a disk-like topology. 

Criterion 2 The distance between vc and the planes defined 

by all Hermite samples in a cell C is not greater than a user 

defined tolerance g . 

If either of the criteria is not satisfied, the cell C is refined into 

eight sub-cells until it reaches the finest resolution of the given 

LDNI. Criterion 2 ensures that the geometry error between the 

contour surface and the LDNI solid model is controlled, 

whereas Criterion 1 prevents the generation of nonmanifold 

entities on the resultant meshes (details will be given in the next 

section). 

3.2. Mesh Generation 

The mesh generation on an octree follows the strategy 

given in [3]. On the minimal edges whose two endpoints are 

with different inside/outside status, the polygonal faces are 

constructed by connecting the minimal-error points in the cells 

neighboring to the minimal edges. The orientation of a face 

should let its normal pointing to the outside endpoint on the 

minimal edge. Note that as the inside/outside status of a cell 

node can be detected by x-, y- and z-LDNI independently, the 

results may be not compatible because of the truncation error in 

sampling. As in [1], we determine the status of a cell node by 

the majority voting rule. Following [3], contouring octrees 

requires three functions cellProc[c], faceProc[c1,c2] and 

edgeProc[c1,c2,c3,c4]. The mesh generation can be completed by 

calling the cellProc function with the root cell. The function 

cellProc conducts eight calls to cellProc, twelve calls to 

faceProc and six calls to edgeProc with the eight sub-cells of c. 

The function faceProc gives four calls to faceProc and four 

calls to edgeProc. Lastly, edgeProc calls edgeProc twice if it 

has not reached a minimal edge. The recursive calls to 

edgeProc function terminate when all of the input cells are leaf 

cells. 

4.  MANIFOLD-PRESERVED MESH CONSTRUCTION 
To ensure the manifold topology on resultant meshes, the 

refinement criteria and the in-cell mesh generation strategies are 

investigated in this section. 

4.1. Refinement Criteria for Manifold Preservation 

It is not difficult to find that our algorithm presented in 

above section is a variation of the dual contouring in [3]. Such a 

contouring algorithm will generate nonmanifold vertices and 

edges for all of the ambiguous sign configurations in the 

original MC algorithm [1]. This is because each cell only 

contains one minimal-error point, therefore it will only generate 

one vertex on the resultant mesh surface. Such configurations 

can be detected by the face ambiguous configuration and the 

voxel ambiguous configuration [7, 28]. 

Definition 5 For the face of a cell, when the signs at nodes 

alternate during anticlockwise (or clockwise) traversal, the 

configuration of this cell is in the face ambiguous. 

Definition 6 For a cell, when any pair of diagonally opposite 

nodes has one sign while the other vertices have a different 

sign, the configuration of this cell is in the voxel ambiguous. 

Figure 2 illustrates the configurations for face ambiguous and 

voxel ambiguous. Thus, the following criterion is employed to 

check whether the topology inside a cell C is simple. 

Criterion 1(a) The inside/outside configuration of nodes of a 

given cell C leads to neither face nor voxel ambiguity. 

Only checking the topology ambiguity of a cell by the 

configuration of cell nodes is not enough to guarantee that the 

topology inside a cell is disk-like. Therefore, the following 

three supplementary criteria are used together with Criterion 

1(a) to ensure the topology inside a cell simple. 

Criterion 1(b) Each edge of a given cell C has either one or 

none intersection with the LDNI solid. 

Here, the number of intersections is evaluated according to 

Definition 3. 

Criterion 1(c) All empty (or solid) faces of a cell C have no 

intersection with the LDNI solid. 

Criterion 1(d) An empty (or solid) cell C contains no sample 

from the LDNI solid. 

In short, if a cell C satisfies all the criteria 1(a)-(d), C contains 

simple topology surface so that does not need to be refined. 

Otherwise, C is subdivided into eight sub-cells. 

4.2. Manifold-Preserved Mesh Generation in Cell 

The above refinement criteria will keep refining the cells in 

order to let the topology of contour surface inside a cell be 

simple. However, as the resolution of a solid model represented 

 

Figure 2: Illustration for (a) the face ambiguous topology and 

(b) the voxel ambiguous topology that leads to nonmanifold 

edges and vertices.  
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by LDNI is limited by the sampling rate, it is not surprising that 

some cells have not satisfied the criteria 1(a)-(d) even when the 

refinement reaches the finest resolution of LDNI. We process 

such cells by the followings: 

 For the edges with multiple intersection points, if both 

of their endpoints are inside (or outside), the 

intersection points are simply neglected.  

 For the edges with multiple intersection points, if their 

endpoints are with different inside/outside status, the 

intersection samples whose normal vectors are 

compatible to the direction of node configuration are 

searched and the one nearest to the middle point of 

edge is selected as the only intersection sample on this 

edge. 

 The samples that only intersect the face or volume of 

the cell are neglected. 

 Based on the node configurations, multiple vertices are 

inserted into the cells and are associated with different 

cell edges. 

Among these processes, the most difficult one is how to insert 

multiple vertices and associate them with different edges. The 

following definitions and rules are exploited for this purpose.  

Definition 7 For a cell edge, if one of its endpoints is inside 

whereas the other is outside, the edge is named as intersect-

edge. 

Definition 8 For a cell edge, if both of its nodes are inside, 

the edge is named as solid-edge; whereas both of its nodes are 

outside, the edge is named as empty-edge. 

A color flooding algorithm is developed to cluster the nodes of 

a cell based on their configurations. All outside nodes linked by 

empty-edges are grouped into the same cluster, and all inside 

nodes linked by solid-edges are also grouped together.  

Definition 9 The set of inside node clusters is defined as 

in , and the set of outside node clusters is denoted by out .   

defines the number of clusters in a set  . 

Definition 10 If 2in , ind  defines the minimal distance 

between the clusters of inside nodes; outd is the minimal 

distance between the clusters of outside nodes when 2out . 

Here, the distance is measured along cell edges. 

Two strategies are developed to process topology ambiguity in a 

leaf cell: 1) gap preferred and 2) thin-shell preferred.  

Table 1:  Parameters for Different Configurations in the 

Gap Preferred Mesh Construction 

Configuration Value of Parameters 

Case 1 in =0, out =1 

Case 2,3,6,9,10,12,15,18,21,22 in =1, out =1 

Case 4,5,7 in =2, out =1 

Case 8 in =3, out =2, outd =2 

Case 11,13 in =2, out =2, outd =2 

Case 14 in =4, out =4 

Case 16 in =2, out =3 

Case 17,20 in =1, out =2, outd =2 

Case 19 in =1, out =2, outd =3 

Case 23 in =1, out =0 

 

All possible configurations for constructing gap preferred 

surfaces inside a cell are listed in Figure 3, and their 

corresponding values of in , out  and outd  are listed in 

 

Figure 3: All configurations for constructing gap preferred 

mesh surfaces inside a cell.  
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Table 1. The mesh surfaces are constructed by the following 

rules. 

Rule 1 Vertices are only constructed in the cells with neither 

0in  nor 0out . 

Rule 2a For those cubes with 2out  and 3outd , two 

vertices are created in the cell and each of the vertices is 

associated with the intersect-edge linking to a cluster of outside 

nodes. 

Rule 3a For those cubes either 2out  or 3outd , in  

vertices are created in the cell and each of the vertices is 

associated with the intersect-edge linking to a cluster of inside 

nodes. 

Rule 4 Polygonal faces are created on every intersect-edge 

by linking vertices in its neighboring cells associated with this 

edge, and the orientation of faces is pointing to the outside node 

on the edge. 

Note that the quadrilateral faces will be constructed when all 

neighboring cells to an intersect-edge are in the same level in 

octree, and triangular faces will be generated when they belong 

to different levels. The gap preferred mesh construction inside a 

cell by above rules has exactly the same result as what Nielson 

proposed in [19].  

All possible configurations for constructing thin-shell 

preferred surfaces inside a cell are listed in Figure 4, and their 

corresponding values of in , out  and ind  are listed in 

Table 2. Then, the mesh surfaces are constructed by the same 

rule 1 and 4 but different rules 2 and 3. Rule 2b and 3b here are 

in fact an inversed version of rule 2a and 3a above. 

Rule 2b For those cubes with 2in  and 3ind , two 

vertices are created in the cell and each of the vertices is 

associated with the intersect-edge linking to a cluster of inside 

nodes. 

Rule 3b For those cubes either 2in  or 3ind , out  

vertices are created in the cell and each of the vertices is 

associated with the intersect-edge linking to a cluster of outside 

nodes. 

Table 2:  Parameters for Different Configurations in the 

Thin-Shell Preferred Mesh Construction 

Configuration Value of Parameters 

Case 1 in =0, out =1 

Case 2,3,6,9,10,12,15,18,21,22 in =1, out =1 

Case 4,7 in =2, out =1, ind =2 

Case 5 in =2, out =1, ind =3 

Case 8 in =3, out =2 

Case 11,13 in =2, out =2, ind =2 

Case 14 in =4, out =4 

Case 16 in =2, out =3, ind =2 

Case 17,19,20 in =1, out =2 

Case 23 in =1, out =0 

 

The mesh surface produced by the thin-shell preferred 

(interior connectivity optimizing) strategy has fewer gaps than 

the result from the gap preferred method. An example has been 

given in Figure 5 for comparing the resultant contour surfaces 

from the gap preferred and the thin-shell preferred contouring 

methods. The heuristic of choosing which strategy is left to 

users.  

4.3. Details of Manifold Preservation 

 

Figure 4: All configurations for constructing thin-shell 

preferred mesh surfaces inside a cell.  
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Some implementation details and special cases of our 

manifold-preserved mesh construction algorithm are discussed 

in this section. 

Gap-Free When constructing the mesh surface inside a cell 

following the gap preferred configurations in Figure 3, the mesh 

across the faces with ambiguous topology is consistent as the 

one shown in Figure 6(a). When the mesh surface is generated 

according to the thin-shell preferred configurations in Figure 4, 

the constructed surface across topologically ambiguous faces 

will always be the configuration as shown in Figure 6(b). For 

those contoured surface across the topologically consistent 

faces, no gap will be generated either as there is no ambiguity. 

Because of such consistency, the final contour surface is gap-

free.  

Non-manifold Edge Although Nielson claimed in [19] that 

the configuration as in Figure 3 will not generate non-manifold 

entities, we still found non-manifold edges by simply following 

his method. The problem comes from the case 17 and 20 of the 

gap preferred configurations. As shown in Figure 7, when two 

neighboring cells are in case 17 or 20, a non-manifold edge 

which is shared by four faces will be created. Similar scenario 

occurs for thin-shell preferred configurations when neighboring 

cells are in case 4 or 7. Such problem can be well solved by 

some clever implementation. Our implementation adopts the 

data structure in [29], where an edge shared by two faces is 

assigned as positive direction in its left face and negative 

direction in its right face. Also, every vertex contains a list of 

adjacent edges. For the example as shown in Figure 7, four 

faces around the non-manifold edge are constructed one by one. 

When constructing an edge e pointing from vs to ve, we search 

the adjacent edge lists of its two endpoints, vs and ve. If there is 

an existing edge e* connecting vs and ve, we processing as 

follows: 

 If e* also pointing from vs to ve, e* is used as the edge 

only when its left face is null; otherwise, a new edge e 

is constructed. 

 If e* inversely pointing from ve to vs, e* is used as the 

edge only when its right face is null; otherwise, a new 

edge e is constructed. 

By this way, the faces around a non-manifold edge will 

automatically be clustered into two pairs of normal compatible 

faces (i.e., see the illustration in Figure 8(a)). 

Non-manifold Vertex When the topology inside every cell 

is really disk-like, the above algorithm will not generate any 

non-manifold entities. However, as the checking of criteria 1(b)-

 

Figure 8: Correction of non-manifold entities: (a) singular non-

manifold edge, and (b) singular non-manifold vertex.  

Figure 5: A contouring example from (a) the given model in 

the LDNI representation with 65×65 resolution, (b) the mesh 

generated by the gap preferred strategy, and (c) the mesh 

generated by the thin-shell preferred rules. 

 

Figure 6: The consistent configuration across the face with 

ambiguous topology will ensure the gap-free contour surface: 

(a) the configuration for the gap preferred strategy and (b) the 

configuration for the thin-shell preferred strategy.  

 

Figure 7: Example scenario that non-manifold edges could be 

generated by the configurations in Figure 3.  
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(d) is based on numerical computation, the truncation error may 

lead to the misclassification of cells. Therefore, although it 

seldom happens, non-manifold vertices as shown in Figure 8(b) 

may be generated in some extreme cases. For these non-

manifold vertices, we add a post-processing step to correct the 

topology around them. Firstly, the faces adjacent to every vertex 

are clustered into groups where faces are linked by manifold 

edges. If there are more than one group of faces around a vertex 

v, v is a non-manifold vertex. To correct the topology around v 

to be manifold, the faces in different groups are separated by 

duplicating new vertices (as illustrated in Figure 8(b)). While 

creating faces during mesh contouring, the Hermite sample 

corresponding to every face is also stored together with the 

constructed face. Lastly, the duplicated vertices are repositioned 

by the Hermite samples in the faces adjacent to them.  

By these steps, both the gap preferred and the thin-shell 

preferred methods can generate manifold-preserved contour 

surface for solid models in LDNI representation. However, as 

the vertices in quadrilateral faces may not be coplanar, some 

aliasing error or incorrect normal vector is generated along 

sharp edges (e.g., the top row of Figure 9). The quadrilateral 

faces must be split into triangular ones. 

Splitting Quadrilateral Face There are two ways to split a 

quadrilateral face fq into two triangular ones along the diagonal. 

We choose the way which will let the new triangles‟ normal 

more consistent to the normal vectors at faces adjacent to the 

four edges of fq (i.e., the sum of normal variation is minimized). 

If two ways of splitting have the same normal variation, fq is 

split along the shorter diagonal. By this way, the aliasing along 

sharp edges can be recovered. See the example shown in the 

bottom row of Figure 9. 

5.  PARALLELIZATION OF OCTREE CONSTRUCTION 
By performing a set of test operations, we found that the 

most time-consuming step in the contouring algorithm is octree 

construction, which takes about 70%-95% of the whole 

computing time. Nowadays, more and more dual-core, quad-

core and even multiple processors are available on commercial 

PCs. Therefore, we parallelize the program of octree 

construction to speed up the computation. More specifically, we 

simply subdivide the root cell into eight sub-cells, construct the 

children cells of each sub-cell in different threads, and then put 

together the sub-trees generated in different threads. As the 

children cells‟ construction of each sub-cell is not dependent on 

other sub-cells, we do not even need to consider the mutex 

problem among threads in our parallelization. When running 

such a program on a computer framework of multiple-

processors and shared memory, the computation in different 

threads will be performed in parallel on different processors. 

The program of mesh generation actually can also be 

parallelized in a similar way. However, as it does not take too 

much time compared to the octree construction step, running it 

in parallel will spend some additional time on the coordination 

between different threads which may even reduce the efficiency. 

Our tests also prove this. Thus, we parallelize the octree 

 

Figure 11: Contouring results of the gear model from LDNI 

with different resolutions.  

 

Figure 9: Splitting quadrilateral faces (top row) into triangles 

(bottom row) to improve the visualization result. 

 

Figure 10: Contouring result of the thin-shell model from a   

LDNI solid model in 129×129 resolution. 
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construction step only. In the current implementation, the 

program for constructing octree from LDNI solid model is 

paralleled with about 10 lines of C++ code using the POSIX 

thread library [30]. Experimental results will be shown in the 

next section. 

6.  RESULTS 
We have implemented the proposed algorithm in a program 

in C++ plus OpenGL. The tests on adaptive contouring are 

conducted on various example models in LDNI representation 

at different resolutions. The first test is given for the thin-shell 

structure that has been shown in Figure 5. When increasing the 

resolution of LDNI from 65×65 into 129×129, the thin-shell 

structure can be successfully reconstructed (as in Figure 10). 

The second test is given for the gear model as previously shown 

in Figure 1 but in different resolutions at: 129×129, 257×257 

and 513×513 (see Figure 11). The surface errors between 

contouring results and the original model in terms of Emax and 

Emean are evaluated by the publicly available Metro tool [31]. 

Similar tests have also been given on three other models, pulley, 

vase-lion and filigree, which are with more complex geometries. 

The results are shown in Figures 12-14, and the statistics are 

listed in Table 3. It is not difficult to find that all models (even 

the ones with very complex geometries) can be successfully 

reconstructed by our contouring algorithm from the LDNI 

representation. 

Table 3:  Computational Statistics 

Model Res. Face # Emax (%) Emean (%) 

Thin-shell 129×129 116,354 5.10×10
-3

 5.95×10
-5

 

Gear 

129×129 32,988 0.259 4.76×10
-3

 

257×257 48.572 5.44×10
-2

 3.10×10
-3

 

513×513 58,868 8.21×10
-2

 2.51×10
-3

 

Pulley 

129×129 92,250 0.722 9.57×10
-3

 

257×257 153,860 0.178 3.56×10
-3

 

513×513 192,814 0.174 2.58×10
-3

 

Vase-lion 

129×129 71,570 0.971 2.22×10
-2

 

257×257 200,272 1.21 7.65×10
-3

 

513×513 357,966 0.577 4.11×10
-3

 

Filigree 

129×129 38,080 17.8 1.63×10
-2

 

257×257 104,846 0.229 5.69×10
-3

 

513×513 178,404 0.268 3.58×10
-3

 

* Note that the surface errors are reported with reference to the 

diagonal length of bounding box. We choose g  as 1/2000 of 

bounding box‟s width to be the approximation tolerance. 

Table 4:  Computing Time in Second 

Model 

Single-core HyperThread CPU 

Octree Construction Mesh 

Generation 

LDNI 

Samples* Sequential Parallel 

Gear 20.8 s 9.69 s 0.422 s 884 k 

Pulley 16.2 s 8.48 s 1.09 s 1,027 k 

Vase-lion 16.9 s 11.9 s 2.11 s 734 k 

Filigree 6.52 s 4.79 s 1.08 s 437 k 

Model 

Quad-core CPU 

Octree Construction Mesh 

Generation 

LDNI 

Samples* Sequential Parallel 

Gear 2.39 s 0.828 s 0.171 s 884 k 

Pulley 2.97 s 1.13 s 0.469 s 1,027 k 

Vase-lion 4.03 s 1.47 s 0.859 s 734 k 

Filigree 2.17 s 0.735 s 0.453 s 437 k 

Model 

Two Quad-core CPUs 

Octree Construction Mesh 

Generation 

LDNI 

Samples* Sequential Parallel 

Gear 2.08 s 0.500 s 0.156 s 884 k 

Pulley 2.56 s 0.640 s 0.421 s 1,027 k 

Vase-lion 3.37 s 0.671 s 0.811 s 734 k 

Filigree 1.83 s 0.343 s 0.421 s 437 k 

* Note that all the models are computed on LDNI in 513×513.  

 

Figure 12: Contouring results of the pulley model from LDNI 

with different resolutions – unwanted holes are generated in the 

129×129 resolution.  
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The speed of computation has also been evaluated on three 

computers: the first one is with Intel Pentium IV 3.0GHz CPU 

(with HyperThread technology) + 2GB RAM, the second PC is 

with Intel Core2 Quad CPU Q6600 2.4GHz + 2GB RAM, and 

the third one is with two Intel Xeon Quad CPU E5440 2.83GHz 

+ 8GB RAM. Table 4 presents computing times with and 

without parallelization of the octree construction. With the 

parallel programming of octree construction, the computing 

time has been shortened from 27% to 54% even on the single-

core CPU with Hyper-Thread technology. 

7.  CONCLUSION AND DISCUSSION 
This paper focuses on developing a manifold-preserved 

adaptive contouring algorithm to generate mesh surface for a 

given solid model in Layered Depth-Normal Images (LDNI) 

representation. The whole algorithm consists of two major 

steps: the octree construction and the mesh generation. The 

generated mesh surfaces are adaptive to shape error and 

topology ambiguity, and the two-manifold topology is 

preserved. Furthermore, the octree construction step can be 

easily parallelized on a computer with multiple processors and 

shared memory. Success of the proposed algorithm has been 

demonstrated from experimental tests. 

The major drawback of our algorithm is that the features 

whose dimension is less than the size of a smallest cell cannot 

always be recovered correctly or sometime they are even totally 

neglected (e.g., the wanted holes in the second row of Figure 

12). One of our future works is to develop a new mesh 

generation strategy inside a cell. The method presented in [6] 

will be considered and improved, thus can guarantee two-

manifold topology on the resultant mesh surface. Another 

possible future work is to further extend this algorithm into one 

that can run on the PC cluster with distributed memory, which is 

very important for processing extremely large data set. 
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