
 1 Copyright © 2008 by ASME

Proceedings of DETC’08

ASME 2008 Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

New York City, New York, August 3 - 6 2008

DETC2008/CIE-49576

LAYERED DEPTH-NORMAL IMAGES FOR COMPLEX GEOMETRIES – PART TWO:

MANIFOLD-PRESERVED ADAPTIVE CONTOURING

Charlie C.L. Wang
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong, China
cwang@mae.cuhk.edu.hk

Yong Chen
University of Southern California

Los Angeles, CA 90089, United States
yongchen@usc.edu

ABSTRACT

We present an adaptive contouring approach to generate

contour surface from solid models represented by Layered

Depth-Normal Images (LDNI) sampled in three orthogonal

directions. Our contouring algorithm builds an octree structure

for mesh generation in a top-down manner: starting from the

bounding box of a LDNI solid model, the cells are recursively

subdivided into smaller sub-cells based on the topology and

geometry criteria of refinement until both of the requirements,

the topology in cell is simple and the geometry approximation

error is less than a user defined tolerance, are satisfied. The

subdivision also stops when the processed cells reach the finest

resolution of LDNI models. In order to overcome the topology

ambiguity inside a cell that leads to the occurrence of non-

manifold entities, we analyze the possible inside/outside

configurations of cell-nodes and exploit two strategies to

generate manifold-preserved mesh surfaces. Moreover, the most

time-consuming step of our contouring algorithm – the

construction of octree structure can be easily parallelized to run

under a computer framework with multiple-processors and

shared memory. Several examples have been tested in the paper

to demonstrate the success of our method.

KEYWORDS: adaptive contouring, two-manifold preserved,

parallel implementation, implicit representation, solid modeling.

1. INTRODUCTION
The manipulation of solid models is widely used in many

applications of design, manufacturing, visualization, analysis,

and entertainment. Benefited from the compact and intuitive

mathematical representation, the solid modelling operations

developed on implicit representation are usually robust and easy

to implement. However, it is in general time-consuming to

convert models between the boundary representation (B-rep)

and the implicit representations. The newly proposed Layered

Depth-Normal Images (LDNI) representation in [1] is a sparse

implicit representation that can be easily obtained from a B-rep

model with the help of graphics hardware accelerated sampling

(e.g., using the depth peeling process in [2]). Nevertheless, the

LDNI to mesh conversion technique presented in [1] works on

the uniform grids at the finest resolution of LDNI, so that it

generates too many polygons and is very time-consuming. As

the solid models still need to have the B-rep in many

downstream CAD/CAM applications (e.g., CNC tool path

generation, rapid prototyping, parting line generation of mold

design, etc.), the lack of an efficient contouring method blocks

the application of LDNI representation in CAD/CAM. This

motivates our work presented here – to develop an adaptive

contouring method for LDNI solid models.

Furthermore, many existing methods in literature may

generate nonmanifold surfaces (e.g., [3-5]). More specifically,

on the resultant mesh surface, some of the approaches will

generate edges shared by more than two polygons, or vertices

the neighbourhood of which is not topologically equivalent to a

disk. Although there have been several approaches that claim to

produce manifold contours (ref. [6-8]), nonmanifold edges and

vertices can still appear in the adaptive setting when working on

LDNI with a limited resolution. This is different from directly

constructing the adaptive hierarchical structure from B-rep or

analytical implicit surfaces, where the resolution of sampling

can be unlimited.

mailto:cwang@mae.cuhk.edu.hk
mailto:yongchen@usc.edu

 2 Copyright © 2008 by ASME

To solve the above problems, we propose a top-down

refinement algorithm to generate an octree for contouring a

solid model represented by Layered Depth-Normal Images

(LDNI). The refinement of cells is recursively given until the

topology in a cell is simple and the geometry approximation

error of the generated mesh to the LDNI solid is less than a user

defined tolerance. In order to generate manifold-preserved mesh

surface, we analyze the possible inside/outside configurations of

cell-nodes and exploit two strategies to construct meshes inside

a cell – one method prefers to generate gaps and the other tries

to create thin-shells in the smallest cells. Without changing the

method too much, the most time-consuming step of our adaptive

contouring algorithm – the octree construction is modified to a

parallel algorithm running under a computer framework with

multiple processors and shared memory.

1.1 Related Work

The work presented in this paper relates to several previous

researches in the areas of: volume-based representation of solid

modelling, contouring method for the volumetric representation,

dexel-representation and contouring, and the Layered Depth

Image (LDI).

To overcome the robustness problem in the solid modelling

approaches based on B-rep (see [9] and [10] for the surveys),

many approaches adopted volumetric data to approximate the

solid modelling operations (e.g., [4, 11, 12]). Voxel based solid

model [13] is the simplest volumetric representation, which is

soon replaced by the uniform and adaptive distance-fields [14].

However, as mentioned by Kobbelt et al. in [15], even if an

over-sampling is applied, the aliasing error along sharp features

on a distance field cannot be absolutely eliminated since the

surface normals in the reconstructed model usually do not

converge to the normal field of the original model. Therefore,

recently developed volumetric approaches always encode both

the distance and the normal vectors which are called Hermite

data (e.g., [3, 6, 7, 8, 15]). The samples stored in LDNI are also

a sort of Hermite data (see [1]).

There are dozens of algorithms in literature trying to

generate two-manifold polygonal mesh surfaces from a

volumetrically represented solid model. The Marching Cubes

(MC) algorithm [16] is the first approach in the literature to

generate a polygonal mesh surface from an implicit surface. The

latter variations of MC algorithms (e.g., [17-20]) all devoted to

solve the topological inconsistent problems that may generate

gaps or nonmanifold entities on the resultant meshes. In order to

reconstruct sharp edges and corners on the resultant meshes, the

authors in [3-8] employed the dual contouring techniques to

generate an isosurface on Hermite data. Among them, the

methods in [6, 7] adopted the subdivision method to ensure that

the finest cell contains only simple topological structure.

However, this method cannot be applied here as the implicit

representation in LDNI has limited resolution, therefore the

cells cannot be split into sub-cells without limit. Also, different

from [8] the purpose of which is to cluster vertices as so to

simplify a given mesh surface, there is not an underlying mesh

surface to govern the preservation of manifold topology here.

Thus, some new criteria for manifold preservation need to be

investigated.

Another line of research related to our work is the so-called

ray-rep in the solid modelling literature [21-24]. Menon and

Voelcker sampled the solid models into parallel rays tagged

with h-tag (i.e., the information of half-space at the endpoints of

rays) in [22] so that the completeness of ray-rep can be

generated. The conversion algorithm between ray-rep and B-rep

or CSG is also given in [22]. As mentioned in [23], ray-rep can

make things easy in the applications involving offsets, sweeps,

and Minkowski operations. However, different from our LDNIs

that sample a solid model along three orthogonal directions

together with normal vectors, the ray-rep only stores depth

values without surface normals in one ray direction.

Furthermore, the algorithm presented in [22] to convert models

from ray-rep to B-rep does not take the advantage of

structurally stored information so it involves a lot of global

search and could be very time-consuming. The recently

developed method in [24] used a local searching algorithm to

reconstruct B-rep from the ray-rep (i.e., dexels). Again, they

worked on the finest resolution, thus surfaces with too many

polygons are generated. Furthermore, the preservation of two-

manifold has not been considered in [24].

The Layered Depth-Normal Images (LDNI) representation

is stimulated by the work presented in [2], where a fast collision

detection approach for solid models was developed based on

the decomposition of Layered Depth Images (LDI) [25]. Similar

to the LDI decomposition, the implementation of LDNI

sampling can be accelerated in graphics hardware using

OpenGL (ref. [1]).

1.2 Contributions

The techniques developed in this paper contribute in the

following three aspects:

 We present a new contouring algorithm that adaptively

generates mesh surfaces to approximate the boundary of

solid models represented by Layered Depth-Normal Images

(LDNI) with the help of octree structure.

 The construction of mesh surface inside a leaf cell of the

octree is well designed so that the two-manifold topology is

preserved on the resultant surface – two strategies (one

preferring gaps and the other for creating thin-shells) are

exploited.

 A parallel implementation for the octree construction from

LDNI, which is the most time-consuming step in the

contouring procedure, is also investigated.

These lead to the function that allows us to efficiently and

effectively reconstruct the boundary representation – mesh

surface from a LDNI solid model.

The remainder of the paper are organized as follows. To be

self-contained, the LDNI representation of solid models is

briefly explained in section 2. Section 3 describes our adaptive

 3 Copyright © 2008 by ASME

contouring algorithm which consists of two steps: 1) the octree

construction and 2) the mesh generation. The topology of mesh

surfaces generated inside a leaf cell is analyzed in section 4, and

two methods for constructing manifold-preserved mesh surfaces

are then presented where one prefers gaps and the other creates

thin-shell structures. Details for parallelizing the construction of

octree are presented in section 5. Lastly, some experimental

results are given in section 6.

2. LAYERED DEPTH-NORMAL IMAGES (LDNI)
A representation, named as Layered Depth-Normal Images

(LDNIs), that implicitly encode the shape of solid models has

been introduced in [1] based on the following definitions.

Definition 1 A single layered depth-normal image (e-LDNI)

with a specified viewing direction e is a two-dimensional image

with w×w pixels, where each pixel contains a sequence of four-

components-vectors (d, nx, ny, nz). At each sample, d specifies

the depth from the intersection (between a ray along the viewing

direction and the surface under sampling) to the viewing plane,

(nx, ny, nz) is the surface normal at the intersection point, and the

samples are sorted in ascending order by the value of d.

Note that the samples come in pairs for a solid model – one

enters the model while the other runs out of the model.

Definition 2 Letting x-, y- and z- specify the images sampled

perpendicular to x-, y- and z-axis respectively, a set of

structured layered depth-normal images (LDNI) consists of x-

LDNI, y-LDNI and z-LDNI with the same resolution w×w, and

the images are located to let the intersections of their rays

intersect at the w×w×w nodes of uniform grids in 3 .

Assumption 1 The sampling rate w×w of each LDNI

satisfies that w=2
n
+1 with n being an integer.

In the rest of this paper, we simply conduct LDNI to denote the

structured layered depth-normal images. Details about how to

sample a solid model from surfaces into LDNI can be found in

[1]. Figure 1 shows an example of LDNI sampled from a mesh

model. We have also developed the method of using LDNI to

model complex objects in [26].

3. ADAPTIVE CONTOURING
An adaptive contouring algorithm is developed in this

section to generate the contour mesh surface of a LDNI solid

model with the help of a hierarchical structure – octree. The

contouring algorithm consists of two major steps: 1) octree

construction and 2) mesh generation.

3.1. Octree Construction

Starting from the root cell (i.e., bounding box of the

model), the cells are recursively refined into eight sub-cells

based on the condition of 1) the topology simplicity and 2) the

geometry approximation error. By Assumption 1, we can let

twelve edges of each cell C overlap with a ray that samples the

model into LDNI. Therefore, the intersected Hermite data

points between the cell-edge and the solid model can be

efficiently and easily detected on the LDNI representation.

Definition 3 For a cell edge CE starting from the depth

value s and ending at the depth value t overlapped with a ray,

the sample (d, nx, ny, nz) on this ray is classified to intersect with

this cell edge E if),[tsd .

Note that d, s and t are converted into integer according to the

finest precision (as [4]) to robustly classify the samples of

LDNI. This definition avoids double counting of a sample in

different cells when the sample exactly overlaps the endpoint of

a cell edge. Similarly, the intersection between a cell face and a

LDNI solid model can be easily detected by the samples on the

ray perpendicular to the cell face. All above detections and the

detection of whether a Hermite data point is inside a cell can be

determined in a constant time complexity.

Definition 4 For all Hermite samples in a cell C, a point vc,

the position of which minimizes the quadric error function

(QEF) [3], is defined as the error-minimizing point of this cell.

Figure 1: A gear model sampled into LDNI representation with

129×129 resolution (top-right), the octree (bottom-left) for

contouring and the resultant mesh surface (bottom-right).

 4 Copyright © 2008 by ASME

The method for computing the position of vc can be found in

[27]. We initially place vc at the average position vavg of all

Hermite samples in C and then compute the optimal position

vopt by the singular value decomposition (SVD). If the distance

between vavg and vopt is greater than s , we truncate the

movement of vc from vavg to vopt by the length s . In our

implementation, we choose the value of s as twice of a

pixel‟s width in LDNI.

The refinement of cells is stopped based on two criteria.

Criterion 1 The surface of a LDNI solid included in a cell C

can be guaranteed to have a disk-like topology.

Criterion 2 The distance between vc and the planes defined

by all Hermite samples in a cell C is not greater than a user

defined tolerance g .

If either of the criteria is not satisfied, the cell C is refined into

eight sub-cells until it reaches the finest resolution of the given

LDNI. Criterion 2 ensures that the geometry error between the

contour surface and the LDNI solid model is controlled,

whereas Criterion 1 prevents the generation of nonmanifold

entities on the resultant meshes (details will be given in the next

section).

3.2. Mesh Generation

The mesh generation on an octree follows the strategy

given in [3]. On the minimal edges whose two endpoints are

with different inside/outside status, the polygonal faces are

constructed by connecting the minimal-error points in the cells

neighboring to the minimal edges. The orientation of a face

should let its normal pointing to the outside endpoint on the

minimal edge. Note that as the inside/outside status of a cell

node can be detected by x-, y- and z-LDNI independently, the

results may be not compatible because of the truncation error in

sampling. As in [1], we determine the status of a cell node by

the majority voting rule. Following [3], contouring octrees

requires three functions cellProc[c], faceProc[c1,c2] and

edgeProc[c1,c2,c3,c4]. The mesh generation can be completed by

calling the cellProc function with the root cell. The function

cellProc conducts eight calls to cellProc, twelve calls to

faceProc and six calls to edgeProc with the eight sub-cells of c.

The function faceProc gives four calls to faceProc and four

calls to edgeProc. Lastly, edgeProc calls edgeProc twice if it

has not reached a minimal edge. The recursive calls to

edgeProc function terminate when all of the input cells are leaf

cells.

4. MANIFOLD-PRESERVED MESH CONSTRUCTION
To ensure the manifold topology on resultant meshes, the

refinement criteria and the in-cell mesh generation strategies are

investigated in this section.

4.1. Refinement Criteria for Manifold Preservation

It is not difficult to find that our algorithm presented in

above section is a variation of the dual contouring in [3]. Such a

contouring algorithm will generate nonmanifold vertices and

edges for all of the ambiguous sign configurations in the

original MC algorithm [1]. This is because each cell only

contains one minimal-error point, therefore it will only generate

one vertex on the resultant mesh surface. Such configurations

can be detected by the face ambiguous configuration and the

voxel ambiguous configuration [7, 28].

Definition 5 For the face of a cell, when the signs at nodes

alternate during anticlockwise (or clockwise) traversal, the

configuration of this cell is in the face ambiguous.

Definition 6 For a cell, when any pair of diagonally opposite

nodes has one sign while the other vertices have a different

sign, the configuration of this cell is in the voxel ambiguous.

Figure 2 illustrates the configurations for face ambiguous and

voxel ambiguous. Thus, the following criterion is employed to

check whether the topology inside a cell C is simple.

Criterion 1(a) The inside/outside configuration of nodes of a

given cell C leads to neither face nor voxel ambiguity.

Only checking the topology ambiguity of a cell by the

configuration of cell nodes is not enough to guarantee that the

topology inside a cell is disk-like. Therefore, the following

three supplementary criteria are used together with Criterion

1(a) to ensure the topology inside a cell simple.

Criterion 1(b) Each edge of a given cell C has either one or

none intersection with the LDNI solid.

Here, the number of intersections is evaluated according to

Definition 3.

Criterion 1(c) All empty (or solid) faces of a cell C have no

intersection with the LDNI solid.

Criterion 1(d) An empty (or solid) cell C contains no sample

from the LDNI solid.

In short, if a cell C satisfies all the criteria 1(a)-(d), C contains

simple topology surface so that does not need to be refined.

Otherwise, C is subdivided into eight sub-cells.

4.2. Manifold-Preserved Mesh Generation in Cell

The above refinement criteria will keep refining the cells in

order to let the topology of contour surface inside a cell be

simple. However, as the resolution of a solid model represented

Figure 2: Illustration for (a) the face ambiguous topology and

(b) the voxel ambiguous topology that leads to nonmanifold

edges and vertices.

 5 Copyright © 2008 by ASME

by LDNI is limited by the sampling rate, it is not surprising that

some cells have not satisfied the criteria 1(a)-(d) even when the

refinement reaches the finest resolution of LDNI. We process

such cells by the followings:

 For the edges with multiple intersection points, if both

of their endpoints are inside (or outside), the

intersection points are simply neglected.

 For the edges with multiple intersection points, if their

endpoints are with different inside/outside status, the

intersection samples whose normal vectors are

compatible to the direction of node configuration are

searched and the one nearest to the middle point of

edge is selected as the only intersection sample on this

edge.

 The samples that only intersect the face or volume of

the cell are neglected.

 Based on the node configurations, multiple vertices are

inserted into the cells and are associated with different

cell edges.

Among these processes, the most difficult one is how to insert

multiple vertices and associate them with different edges. The

following definitions and rules are exploited for this purpose.

Definition 7 For a cell edge, if one of its endpoints is inside

whereas the other is outside, the edge is named as intersect-

edge.

Definition 8 For a cell edge, if both of its nodes are inside,

the edge is named as solid-edge; whereas both of its nodes are

outside, the edge is named as empty-edge.

A color flooding algorithm is developed to cluster the nodes of

a cell based on their configurations. All outside nodes linked by

empty-edges are grouped into the same cluster, and all inside

nodes linked by solid-edges are also grouped together.

Definition 9 The set of inside node clusters is defined as

in , and the set of outside node clusters is denoted by out .

defines the number of clusters in a set .

Definition 10 If 2in , ind defines the minimal distance

between the clusters of inside nodes; outd is the minimal

distance between the clusters of outside nodes when 2out .

Here, the distance is measured along cell edges.

Two strategies are developed to process topology ambiguity in a

leaf cell: 1) gap preferred and 2) thin-shell preferred.

Table 1: Parameters for Different Configurations in the

Gap Preferred Mesh Construction

Configuration Value of Parameters

Case 1 in =0, out =1

Case 2,3,6,9,10,12,15,18,21,22 in =1, out =1

Case 4,5,7 in =2, out =1

Case 8 in =3, out =2, outd =2

Case 11,13 in =2, out =2, outd =2

Case 14 in =4, out =4

Case 16 in =2, out =3

Case 17,20 in =1, out =2, outd =2

Case 19 in =1, out =2, outd =3

Case 23 in =1, out =0

All possible configurations for constructing gap preferred

surfaces inside a cell are listed in Figure 3, and their

corresponding values of in , out and outd are listed in

Figure 3: All configurations for constructing gap preferred

mesh surfaces inside a cell.

 6 Copyright © 2008 by ASME

Table 1. The mesh surfaces are constructed by the following

rules.

Rule 1 Vertices are only constructed in the cells with neither

0in nor 0out .

Rule 2a For those cubes with 2out and 3outd , two

vertices are created in the cell and each of the vertices is

associated with the intersect-edge linking to a cluster of outside

nodes.

Rule 3a For those cubes either 2out or 3outd , in

vertices are created in the cell and each of the vertices is

associated with the intersect-edge linking to a cluster of inside

nodes.

Rule 4 Polygonal faces are created on every intersect-edge

by linking vertices in its neighboring cells associated with this

edge, and the orientation of faces is pointing to the outside node

on the edge.

Note that the quadrilateral faces will be constructed when all

neighboring cells to an intersect-edge are in the same level in

octree, and triangular faces will be generated when they belong

to different levels. The gap preferred mesh construction inside a

cell by above rules has exactly the same result as what Nielson

proposed in [19].

All possible configurations for constructing thin-shell

preferred surfaces inside a cell are listed in Figure 4, and their

corresponding values of in , out and ind are listed in

Table 2. Then, the mesh surfaces are constructed by the same

rule 1 and 4 but different rules 2 and 3. Rule 2b and 3b here are

in fact an inversed version of rule 2a and 3a above.

Rule 2b For those cubes with 2in and 3ind , two

vertices are created in the cell and each of the vertices is

associated with the intersect-edge linking to a cluster of inside

nodes.

Rule 3b For those cubes either 2in or 3ind , out

vertices are created in the cell and each of the vertices is

associated with the intersect-edge linking to a cluster of outside

nodes.

Table 2: Parameters for Different Configurations in the

Thin-Shell Preferred Mesh Construction

Configuration Value of Parameters

Case 1 in =0, out =1

Case 2,3,6,9,10,12,15,18,21,22 in =1, out =1

Case 4,7 in =2, out =1, ind =2

Case 5 in =2, out =1, ind =3

Case 8 in =3, out =2

Case 11,13 in =2, out =2, ind =2

Case 14 in =4, out =4

Case 16 in =2, out =3, ind =2

Case 17,19,20 in =1, out =2

Case 23 in =1, out =0

The mesh surface produced by the thin-shell preferred

(interior connectivity optimizing) strategy has fewer gaps than

the result from the gap preferred method. An example has been

given in Figure 5 for comparing the resultant contour surfaces

from the gap preferred and the thin-shell preferred contouring

methods. The heuristic of choosing which strategy is left to

users.

4.3. Details of Manifold Preservation

Figure 4: All configurations for constructing thin-shell

preferred mesh surfaces inside a cell.

 7 Copyright © 2008 by ASME

Some implementation details and special cases of our

manifold-preserved mesh construction algorithm are discussed

in this section.

Gap-Free When constructing the mesh surface inside a cell

following the gap preferred configurations in Figure 3, the mesh

across the faces with ambiguous topology is consistent as the

one shown in Figure 6(a). When the mesh surface is generated

according to the thin-shell preferred configurations in Figure 4,

the constructed surface across topologically ambiguous faces

will always be the configuration as shown in Figure 6(b). For

those contoured surface across the topologically consistent

faces, no gap will be generated either as there is no ambiguity.

Because of such consistency, the final contour surface is gap-

free.

Non-manifold Edge Although Nielson claimed in [19] that

the configuration as in Figure 3 will not generate non-manifold

entities, we still found non-manifold edges by simply following

his method. The problem comes from the case 17 and 20 of the

gap preferred configurations. As shown in Figure 7, when two

neighboring cells are in case 17 or 20, a non-manifold edge

which is shared by four faces will be created. Similar scenario

occurs for thin-shell preferred configurations when neighboring

cells are in case 4 or 7. Such problem can be well solved by

some clever implementation. Our implementation adopts the

data structure in [29], where an edge shared by two faces is

assigned as positive direction in its left face and negative

direction in its right face. Also, every vertex contains a list of

adjacent edges. For the example as shown in Figure 7, four

faces around the non-manifold edge are constructed one by one.

When constructing an edge e pointing from vs to ve, we search

the adjacent edge lists of its two endpoints, vs and ve. If there is

an existing edge e* connecting vs and ve, we processing as

follows:

 If e* also pointing from vs to ve, e* is used as the edge

only when its left face is null; otherwise, a new edge e

is constructed.

 If e* inversely pointing from ve to vs, e* is used as the

edge only when its right face is null; otherwise, a new

edge e is constructed.

By this way, the faces around a non-manifold edge will

automatically be clustered into two pairs of normal compatible

faces (i.e., see the illustration in Figure 8(a)).

Non-manifold Vertex When the topology inside every cell

is really disk-like, the above algorithm will not generate any

non-manifold entities. However, as the checking of criteria 1(b)-

Figure 8: Correction of non-manifold entities: (a) singular non-

manifold edge, and (b) singular non-manifold vertex.

Figure 5: A contouring example from (a) the given model in

the LDNI representation with 65×65 resolution, (b) the mesh

generated by the gap preferred strategy, and (c) the mesh

generated by the thin-shell preferred rules.

Figure 6: The consistent configuration across the face with

ambiguous topology will ensure the gap-free contour surface:

(a) the configuration for the gap preferred strategy and (b) the

configuration for the thin-shell preferred strategy.

Figure 7: Example scenario that non-manifold edges could be

generated by the configurations in Figure 3.

 8 Copyright © 2008 by ASME

(d) is based on numerical computation, the truncation error may

lead to the misclassification of cells. Therefore, although it

seldom happens, non-manifold vertices as shown in Figure 8(b)

may be generated in some extreme cases. For these non-

manifold vertices, we add a post-processing step to correct the

topology around them. Firstly, the faces adjacent to every vertex

are clustered into groups where faces are linked by manifold

edges. If there are more than one group of faces around a vertex

v, v is a non-manifold vertex. To correct the topology around v

to be manifold, the faces in different groups are separated by

duplicating new vertices (as illustrated in Figure 8(b)). While

creating faces during mesh contouring, the Hermite sample

corresponding to every face is also stored together with the

constructed face. Lastly, the duplicated vertices are repositioned

by the Hermite samples in the faces adjacent to them.

By these steps, both the gap preferred and the thin-shell

preferred methods can generate manifold-preserved contour

surface for solid models in LDNI representation. However, as

the vertices in quadrilateral faces may not be coplanar, some

aliasing error or incorrect normal vector is generated along

sharp edges (e.g., the top row of Figure 9). The quadrilateral

faces must be split into triangular ones.

Splitting Quadrilateral Face There are two ways to split a

quadrilateral face fq into two triangular ones along the diagonal.

We choose the way which will let the new triangles‟ normal

more consistent to the normal vectors at faces adjacent to the

four edges of fq (i.e., the sum of normal variation is minimized).

If two ways of splitting have the same normal variation, fq is

split along the shorter diagonal. By this way, the aliasing along

sharp edges can be recovered. See the example shown in the

bottom row of Figure 9.

5. PARALLELIZATION OF OCTREE CONSTRUCTION
By performing a set of test operations, we found that the

most time-consuming step in the contouring algorithm is octree

construction, which takes about 70%-95% of the whole

computing time. Nowadays, more and more dual-core, quad-

core and even multiple processors are available on commercial

PCs. Therefore, we parallelize the program of octree

construction to speed up the computation. More specifically, we

simply subdivide the root cell into eight sub-cells, construct the

children cells of each sub-cell in different threads, and then put

together the sub-trees generated in different threads. As the

children cells‟ construction of each sub-cell is not dependent on

other sub-cells, we do not even need to consider the mutex

problem among threads in our parallelization. When running

such a program on a computer framework of multiple-

processors and shared memory, the computation in different

threads will be performed in parallel on different processors.

The program of mesh generation actually can also be

parallelized in a similar way. However, as it does not take too

much time compared to the octree construction step, running it

in parallel will spend some additional time on the coordination

between different threads which may even reduce the efficiency.

Our tests also prove this. Thus, we parallelize the octree

Figure 11: Contouring results of the gear model from LDNI

with different resolutions.

Figure 9: Splitting quadrilateral faces (top row) into triangles

(bottom row) to improve the visualization result.

Figure 10: Contouring result of the thin-shell model from a

LDNI solid model in 129×129 resolution.

 9 Copyright © 2008 by ASME

construction step only. In the current implementation, the

program for constructing octree from LDNI solid model is

paralleled with about 10 lines of C++ code using the POSIX

thread library [30]. Experimental results will be shown in the

next section.

6. RESULTS
We have implemented the proposed algorithm in a program

in C++ plus OpenGL. The tests on adaptive contouring are

conducted on various example models in LDNI representation

at different resolutions. The first test is given for the thin-shell

structure that has been shown in Figure 5. When increasing the

resolution of LDNI from 65×65 into 129×129, the thin-shell

structure can be successfully reconstructed (as in Figure 10).

The second test is given for the gear model as previously shown

in Figure 1 but in different resolutions at: 129×129, 257×257

and 513×513 (see Figure 11). The surface errors between

contouring results and the original model in terms of Emax and

Emean are evaluated by the publicly available Metro tool [31].

Similar tests have also been given on three other models, pulley,

vase-lion and filigree, which are with more complex geometries.

The results are shown in Figures 12-14, and the statistics are

listed in Table 3. It is not difficult to find that all models (even

the ones with very complex geometries) can be successfully

reconstructed by our contouring algorithm from the LDNI

representation.

Table 3: Computational Statistics

Model Res. Face # Emax (%) Emean (%)

Thin-shell 129×129 116,354 5.10×10
-3

 5.95×10
-5

Gear

129×129 32,988 0.259 4.76×10
-3

257×257 48.572 5.44×10
-2

 3.10×10
-3

513×513 58,868 8.21×10
-2

 2.51×10
-3

Pulley

129×129 92,250 0.722 9.57×10
-3

257×257 153,860 0.178 3.56×10
-3

513×513 192,814 0.174 2.58×10
-3

Vase-lion

129×129 71,570 0.971 2.22×10
-2

257×257 200,272 1.21 7.65×10
-3

513×513 357,966 0.577 4.11×10
-3

Filigree

129×129 38,080 17.8 1.63×10
-2

257×257 104,846 0.229 5.69×10
-3

513×513 178,404 0.268 3.58×10
-3

* Note that the surface errors are reported with reference to the

diagonal length of bounding box. We choose g as 1/2000 of

bounding box‟s width to be the approximation tolerance.

Table 4: Computing Time in Second

Model

Single-core HyperThread CPU

Octree Construction Mesh

Generation

LDNI

Samples* Sequential Parallel

Gear 20.8 s 9.69 s 0.422 s 884 k

Pulley 16.2 s 8.48 s 1.09 s 1,027 k

Vase-lion 16.9 s 11.9 s 2.11 s 734 k

Filigree 6.52 s 4.79 s 1.08 s 437 k

Model

Quad-core CPU

Octree Construction Mesh

Generation

LDNI

Samples* Sequential Parallel

Gear 2.39 s 0.828 s 0.171 s 884 k

Pulley 2.97 s 1.13 s 0.469 s 1,027 k

Vase-lion 4.03 s 1.47 s 0.859 s 734 k

Filigree 2.17 s 0.735 s 0.453 s 437 k

Model

Two Quad-core CPUs

Octree Construction Mesh

Generation

LDNI

Samples* Sequential Parallel

Gear 2.08 s 0.500 s 0.156 s 884 k

Pulley 2.56 s 0.640 s 0.421 s 1,027 k

Vase-lion 3.37 s 0.671 s 0.811 s 734 k

Filigree 1.83 s 0.343 s 0.421 s 437 k

* Note that all the models are computed on LDNI in 513×513.

Figure 12: Contouring results of the pulley model from LDNI

with different resolutions – unwanted holes are generated in the

129×129 resolution.

 10 Copyright © 2008 by ASME

The speed of computation has also been evaluated on three

computers: the first one is with Intel Pentium IV 3.0GHz CPU

(with HyperThread technology) + 2GB RAM, the second PC is

with Intel Core2 Quad CPU Q6600 2.4GHz + 2GB RAM, and

the third one is with two Intel Xeon Quad CPU E5440 2.83GHz

+ 8GB RAM. Table 4 presents computing times with and

without parallelization of the octree construction. With the

parallel programming of octree construction, the computing

time has been shortened from 27% to 54% even on the single-

core CPU with Hyper-Thread technology.

7. CONCLUSION AND DISCUSSION
This paper focuses on developing a manifold-preserved

adaptive contouring algorithm to generate mesh surface for a

given solid model in Layered Depth-Normal Images (LDNI)

representation. The whole algorithm consists of two major

steps: the octree construction and the mesh generation. The

generated mesh surfaces are adaptive to shape error and

topology ambiguity, and the two-manifold topology is

preserved. Furthermore, the octree construction step can be

easily parallelized on a computer with multiple processors and

shared memory. Success of the proposed algorithm has been

demonstrated from experimental tests.

The major drawback of our algorithm is that the features

whose dimension is less than the size of a smallest cell cannot

always be recovered correctly or sometime they are even totally

neglected (e.g., the wanted holes in the second row of Figure

12). One of our future works is to develop a new mesh

generation strategy inside a cell. The method presented in [6]

will be considered and improved, thus can guarantee two-

manifold topology on the resultant mesh surface. Another

possible future work is to further extend this algorithm into one

that can run on the PC cluster with distributed memory, which is

very important for processing extremely large data set.

ACKNOWLEDGMENTS
The first author would like to acknowledge the support by

CUHK Direct Research Grant CUHK/2050400 and the

AIM@SHAPE Shape Repository for sharing some models used

in this paper. The second author would like to acknowledge the

support by the James H Zumberge Faculty Research and

Innovation Fund at the USC.

REFERENCES
[1] Wang C.C.L. and Chen Y., 2008, “Layered Depth-Normal

Images: a sparse implicit representation of solid models”,

Computer-Aided Design, submitted.

[2] Heidelberger B., Teschner M., and Gross M., 2003,

“Volumetric collision detection for deformable objects”,

Technical Report No.395, Computer Science Department,

ETH Zurich.

[3] Ju T., Losasso F., Schaefer S., and Warren J., 2002, “Dual

contouring of Hermite data”, ACM Transactions on

Graphics, vol.21, no.3, pp.339-346.

[4] Chen Y., 2007, “An accurate sampling-based method for

approximating geometry”, Computer-Aided Design,

vol.39, no.11, pp.975-986.

[5] Schaefer S. and Warren J., 2004, “Dual marching cubes:

primal contouring of dual grids”, In Proc. of Pacific

Graphics 2004, pp.70-76.

Figure 13: Contouring results of the vase-lion model from

LDNI with different resolutions: (a) original model, (b)

129×129, (c) 257×257, and (d) 513×513.

Figure 14: Contouring results of the filigree model from LDNI

with different resolutions: (a) original model, (b) 129×129, (c)

257×257, and (d) 513×513.

 11 Copyright © 2008 by ASME

[6] Varadhan G., Krishnan S., Kim Y.J., and Manocha D.,

2003, “Feature-sensitive subdivision and isosurface

reconstruction”, In Proc. of IEEE Visualization 2003,

pp.99-106.

[7] Varadhan G., Krishnan S., Sriram T.V.N., and Manocha

D., 2004, “Topology preserving surface extraction using

adaptive subdivision”, In Proc. of Eurographics

Symposium on Geometry Processing 2004, pp.235-244.

[8] Schaefer S., Ju T., and Warren J., 2007, “Manifold dual

contouring”, IEEE Transactions on Visualization and

Computer Graphics, vol.13, no.3.

[9] Rossignac J.R. and Requicha A.A.G., 1999, “Solid

modeling”, Encyclopedia of Electrical and Electronics

Engineering, John Wiley and Sons.

[10] Hoffmann C.M., 2001, “Robustness in geometric

computations”, ASME Journal of Computing and

Information Science in Engineering, vol.1, pp.143-156.

[11] Kim Y.J., Varadhan G., Lin M.C., and Manocha D., 2003,

“Fast swept volume approximation of complex polyhedral

models”, Proceedings of the 8th ACM Symposium on

Solid Modeling and Applications, pp.11-22.

[12] Chen Y., Wang H., Rosen D., and Rossignac J.R., 2007,

“A point-based offsetting method of polygonal meshes”,

ASME Journal of Computing and Information Science in

Engineering, submitted.

[13] Tiede U., Shiemann T., and Hoehne K., 1998, “High

quality rendering of attributed volume data”, In Proc. of

IEEE Visualization‟98, pp.255-262.

[14] Jones M.W., Baerentzen J.A. and Sramek M., 2006, “3D

distance fields: a survey of techniques and applications”,

IEEE Transactions on Visualization and Computer

Graphics, vol.12, no.4, pp.581-599.

[15] Kobbelt L.P., Botsch M., Schwanecke U., and Seidel H.-

P., 2001, “Feature sensitive surface extraction from

volume data”, In Proc. of SIGGRAPH 2001, pp.57-66.

[16] Lorensen W. and Cline H., 1987, “Marching cubes: a high

resolution 3D surface construction algorithm”, Computer

Graphics, vol.21, pp.163-169.

[17] Nielson G.M. and Hamann B., 1991, “The asymptotic

decider: resolving the ambiguity in marching cubes”,

Proceedings of IEEE Visualization‟91, pp.83-91.

[18] Lewiner T., Lopes H., Vieira A.W., and Tavares G., 2003,

“Efficient implementation of marching cubes‟ cases with

topological guarantees”, Journal of Graphics Tools, vol.8,

pp.1-15.

[19] Nielson G.M., 2004, “Dual marching cubes”, In Proc. of

IEEE Visualization 2004, pp.489-496.

[20] Andujar C., Brunet P., Chica A., Navazo I., Rossignac J.,

and Vinacua A., 2004, “Optimizing the topological and

combinatorial complexity of isosurfaces,” Computer-

Aided Design, vol.37, no.8, pp.847-857.

[21] Ellis J.L., Kedem G., Lyerly T.C., Thielman D.G., Marisa

R.J., Menon J.P., and Voelcker H.B., 1991, “The ray

casting engine and ray representatives”, In Proc. of ACM

Symposium on Solid Modeling and Applications 1991,

pp.255-267.

[22] Menon J.P. and Voelcker H.B., 1995, “On the

completeness and conversion of ray representations of

arbitrary solids”, In Proc. of ACM Symposium on Solid

Modeling and Applications 1995, pp.175-286.

[23] Hartquist E.E., Menon J.P., Suresh K., Voelcker H.B.,

Zagajac J., 1999, “A computing strategy for applications

involving offsets, sweeps, and Minkowski operations”,

Computer-Aided Design, vol.31, no.3, pp.175-183.

[24] Zhang W., Peng X., Leu M.C., and Zhang W., 2007, “A

novel contour generation algorithm for surface

reconstruction from dexel data”, ASME Journal of

Computing and Information Science in Engineering, vol.7,

no.3, pp.203-210.

[25] Shade J., Gortler S., He L.-W., and Szeliski R., 1998,

“Layered depth images”, In Proc. of SIGGRAPH 98,

pp.231-242.

[26] Chen Y. and Wang C.C.L., “Layered Depth-Normal

Images for complex geometries – part one: accurate

sampling and adaptive modeling”, In Proc. of ASME

IDETC/CIE 2008 Conference, 28th Computers and

Information in Engineering Conference, New York City,

New York, August 3-6, 2008.

[27] Schaefer S. and Warren J., 2002, “Dual contouring: „the

secrete sauce‟”, Technical Report.

[28] Wilhelms J. and van Gelder A., 1990, “Topological

considerations in isosurface generation extended

abstract”, In Proc. of the 1990 Workshop on Volume

Visualization, pp.79-86.

[29] Wang C.C.L., Wang Y., and Yuen M.M.F., “Feature-based

3D non-manifold freeform object construction”,

Engineering with Computers, vol.19, no.2-3, pp.174-190,

2003.

[30] POSIX Threads for Win32 (Open Source),

http://sourceware.org/pthreads-win32/.

[31] Cignoni P., Rocchini C., and Scopigno R., 1998, “Metro:

measuring error on simplified surfaces”, Computer

Graphics Forum, vol.17, no.2, pp.167-74.

http://sourceware.org/pthreads-win32/

