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ABSTRACT 

The layered depth-normal images (LDNIs) is an implicit 
representation of solid models that sparsely encodes the shape 
boundary in three orthogonal directions.  We present a LDNI-
based geometric modeling method for applications with high 
accuracy requirements.  In our method, we first construct 
LDNIs models from input polygonal models.  The accuracy of 
the generated LDNIs models can be controlled by setting pixel 
width during the construction process. Even for very complex 
geometries and high accuracy requirements, the construction 
process is fast with the aid of graphics hardware. Based on the 
LDNIs models, we then perform geometric modeling 
operations.  Two types of operations are presented including 
regularizing and Boolean operations.  The geometric modeling 
operations are straightforward and easy to be implemented 
robustly.  From the processed LDNIs model, an adaptive 
sampling method is presented to construct a cell representation 
that includes both uniform and octree cells.  Finally 2-
manifold polygonal mesh surfaces are constructed from the 
cell representation.  For high accuracy requirements that are 
typical in CAD/CAM applications, we present a volume tiling 
technique and a parallel implementation to accelerate the 
computation.  Our method achieves a good balance between 
the accuracy and computational resources. We report 
experimental results on a variety of CAD models.  The results 
demonstrate the effectiveness and efficiency of our approach 
especially for modeling complex geometries.   

KEYWORDS: geometric modeling, implicit representation, 
Boolean operation, adaptive sampling, cell contouring, 
parallel computation. 

1   Introduction  
The boundary representation (B-rep) is the most popular 

representation of 3-dimensional geometry for CAD/CAM 
applications. Commercial geometric kernels, such as ACIS and 

Parasolid, are widely used in CAD/CAM applications. Both 
of them are based on the B-rep.  The geometric operations 
based on the boundary representation have been extensively 
studied.  For example, Hoffmann [1] studied the Boolean 
operations based on calculating exact surface intersections and 
classifying geometric elements into Booleaned combinations.  
Rossignac and Requicha [2] presented the offsetting 
operations based on trimming offset geometric elements to 
construct offset solids.  While the approach based on 
intersection calculation and directly manipulating the 
boundary representations is accurate, it lacks in simplicity and 
is prone to robustness problems [3]. Especially for complex 
geometries that are the focus of the paper, the geometric 
operations based on the B-rep are even more challenging.  
With thousands or even millions of polygons in a model, it 
would be rather difficult to detect and control the degenerated 
cases during the geometric operations.   
In recent years, using the volumetric representation to 
approximate geometry has been widely studied in computer 
graphics [4-7].  Various volumetric representations have been 
proposed such as voxel [8], distance field [9], surfel [10], and 
ray-rep [11].  The geometric operations based on the 
volumetric representations are easy to implement and robust.  
However, geometric modeling based on the volumetric 
representations, such as voxels, is generally viewed as 
inaccurate approach.  Therefore it is not widely accepted in 
CAD/CAM applications.  The limited accuracy of the 
volumetric representations may not be a main issue for 
computer graphics applications whose main goal is to 
interactively display geometries.  However, it is a major 
concern for most engineering applications, whose accuracy 
requirement is much higher.  
In this paper, we try to achieve a balance between the required 
memory or computation time, and high accuracy or big model 
size. Our method makes significant improvements over our 
previous work [12, 13].  In [12], we presented a novel implicit 
representation named layered depth-normal images (LDNIs).  
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We also discussed the conversion between the LDNIs and B-
rep models. However, the conversion technique presented in 
[12] works on uniform grids. Hence for high accuracy 
requirements, it generates an excessively large number of 
polygons and is very time-consuming.  In [13], a sampling-
based method is proposed for accurately approximating 
geometries defined by various geometric operations.  The 
sampling points generated in the adaptive sampling process 
are dynamically calculated from the input B-rep models.  
Therefore, it can be quite time-consuming for complex 
geometries. 
We present a geometric modeling method based on the LDNIs 
representation for high accuracy applications.  The framework 
of our method is shown in Figure 1. By integrating the key 
ideas of [12] and [13], our method achieves a good balance 
between the accuracy and computational resources.  Therefore, 
it is especially suitable for CAD/CAM applications.  
The most important properties of our method are: 
(1) Accurate: We construct the LDNIs based on a minimum 

feature size. We then adaptively subdivide cells based on a 
given tolerance. Therefore the reconstructed model is 
topologically equivalent to the exact surface, and the 
approximation error is bounded by the resolution of the 
LDNIs models.  

(2) Efficient: Adaptive sampling enables us to use a higher 
resolution to refine only the cells that have complex 
geometry inside.  Therefore we can use a limited number 
of polygons to achieve a rather high resolution. 

(3) Fast: Several steps in our method can be easily 
parallelized.  Therefore the computing time can be 
significantly reduced by using graphics hardware and a PC 
cluster. 

(4) Scalable: We sub-divide an input model into multiple tiles.  
This allows us to process virtually an unlimited resolution 

since we can further sub-divide a model into more tiles and 
process them separately.  

(5) Simple: The geometric operations based on the LDNIs 
representation are straightforward and easy to implement. 

(6) Capturing sharp features: our contouring approach can 
capture sharp corners and edges in the geometry, which is 
important for engineering applications. 

2   Related Work  
Our work utilizes several types of implicit representations.  

The implicit representations become popular because of their 
simplicity and versatility in performing a wide variety of 
geometric operations.  Many operations such as Boolean, 
offsetting, blending, and warping can be expressed elegantly 
using the implicit representations [14-16].  Consequently, the 
modeling techniques based on the implicit representations 
have been used in a large number of applications [17, 18]. 
Several implicit representations have the similar structures as 
the LDNIs. Menon and Voelcker [11] presented a ray-rep 
representation by sampling the solid models into parallel rays 
tagged with h-tag (i.e., the information of half-space at the 
endpoints of rays). Ray-rep can be used in offsets, sweeps, and 
Minkowski operations [19].  The ray-rep stores depth values 
without surface normals in one ray direction.  Other similar 
representations are dexel [20] and Layered Depth Images (LDI) 
[21].  Heidelberger, et al [21] presented LDI in a fast collision 
detection approach for solid models. They also demonstrated 
the LDI decomposition can be accelerated in graphics 
hardware using OpenGL. 
Our work converts the processed implicit models to polygonal 
models.  This is because many applications, such as graphics 
displaying, rapid prototyping and CNC machining, require a 
parameterized patch representation of geometry. Extensive 
research has been done in this area.  The marching cubes 
algorithm, proposed by Lorense and Cline [4], is a standard 

 
Figure 1: The framework of our LDNIs based geometric modeling method. 
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approach to extract an isosurface from a volume raster of 
scalar values.  Many extensions to the original marching cubes 
algorithm have been proposed to resolve ambiguities of 
certain cell configurations and generate topologically 
consistent iso-surfaces [22].  The original marching cubes 
algorithm is unable to extract high quality triangle meshes 
with sharp features.  Several extensions have also been 
proposed to reconstruct sharp features and reduce aliasing 
artifacts in the reconstructed model [5, 6, 18].  To overcome 
an excessively large number of triangles required to represent 
the iso-surface, many methods have also been developed for 
performing iso-surface extracting adaptively using hierarchies 
such as octrees and k-D trees [6, 23, 24].  Most algorithms do 
not provide guarantees on the topology of the reconstructed 
surface.  Some recent work addresses topology-preserving 
reconstruction by an enhanced cell representation [25] or by 
additional tests [13, 24]. 
The remainder of the paper is organized as follows. The 
accurate sampling of a polygonal model for constructing a 
LDNIs model is presented in Section 3.  The geometric 
modeling operations based on the LDNIs representation are 
discussed in Section 4.  The adaptive sampling and contouring 
for constructing polygonal mesh surfaces are presented in 
Section 5.  A parallel computing framework for our geometric 
modeling method is presented in section 6. A brief discussion 
of the algorithm performance is also given in the section.  The 
results of four test cases are presented in Section 7.  Finally, 
conclusions and future work are given in Section 8. 

3   Accurate Sampling with LDNIs  

3.1   LDNIs: An Implicit Representation of Solids   
The Layered Depth-Normal Images (LDNIs) is an 

extension of the Layered Depth Images (LDIs) to sparsely 
encode the shape of solid models [12]. A structural set of 
Layered Depth-Normal Images (LDNIs) consists of x-LDNI, 
y-LDNI and z-LDNI along X, Y, and Z axis respectively 
(referred to as axis 1).  The three images are located to let the 
intersections of their rays form the ZYX www ××  nodes of 
uniform grids in ℜ3. A LDNI in axis 1 is a two-dimensional 
image with 32 axisaxis ww ×  pixels.  For each pixel (i, j), we 
shoot a ray from its center along axis 1 and calculate the 
intersections of the ray and the surfaces under sampling.  
Consequently for each pixel (i, j), we can build a sequence of 
four-components nodes ),,,( zyx nnnd , where d specifies the 
depth from an intersection point P to the viewing plane, and 
NP(nx, ny, nz) is the surface normal at P. 
The main difference of the LDNI from the LDI is the 
recording of surface normal NP(nx, ny, nz).  The surface normal 
is important not only for adaptive sampling and isosurface 
extraction (refer to Section 5), but also for the inside/outside 
judgment along the ray (refer to Section 4.1). 
The basic definitions of the LDNIs are given in [12].  Some 
additional definitions and propositions are given as follows. 

Definition 1  A normal index number INorm is an 
accumulated integer value along a ray such that: (1) INorm= 0 at 
the starting point if it is outside the model; (2) INorm= 1 at the 
starting point if it is inside the model; (3) from the starting 
point, for any intersection point P along the ray with unit 
normal Nray, increasing INorm by 1 if 0<⋅ rayp NN  and 

decreasing INorm by 1 if 0>⋅ rayp NN .   

For two-manifold solid models, we know: 
Proposition 1 For a Layered Depth-Normal Image 
sampled from a two-manifold solid model, a point P on a ray 
of a pixel is inside the model if INorm(P) > 0; otherwise, it is 
outside the model. 
Proposition 2 For a Layered Depth-Normal Image 
sampled from a two-manifold solid model, the number of 
nodes on a pixel should be even; in addition, INorm should be 0 
at both dmin and dmax of a ray (i.e. outside the model). 
The proofs of the above two propositions are straightforward. 
Therefore, an input solid model can be implicitly defined by a 
LDNIs model, which captures all the boundary information of 
the solid along pre-defined uniform grids.  In addition, for any 
point along the grids, we can quickly judge whether it is 
inside/outside the model. 

3.2   Constructing LDNIs with Graphics Hardware 
For any given polygonal model, a LDNIs model can be 

constructed rather quickly by using graphics hardware [12].  
The construction of a LDNI model is similar to the well-

 
 

 
 
Figure 2: An example of the constructed LDNIs model from a 
polygonal model.  
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known scan-conversion algorithm. The viewing parameters 
are determined by the working envelope, which is slightly 
larger than the bounding box of the model. An orthogonal 
projection is conducted for rendering so that the intersection 
points from parallel rays can be generated. In order to get an 
accurate surface normal, we encode a unique ID of every 
polygonal face into a RGB-color.  After rendering all the faces 
by the encoded colors, we can easily identify a face and 
accordingly retrieve its surface normal from the input model. 
Modern graphics hardware is very efficient at manipulating 
and displaying polygonal models.  Similar to the sampling of 
the LDIs [21], the model under sampling has to be rendered 
multiple times in order to generate a LDNI with the help of 
graphics hardware. Based on highly parallel structures, 
graphics hardware can construct a LDNI very quickly even for 
a rather complex model.  For example, by using NVIDIA 
GeForce 8800 GT, we can construct a LDNIs model (256×256) 
from a polygonal model as shown in Figure 2 (triangle number 
= 723,708) within 3.7 seconds (x-LDNI: constructed in 1.3 sec 
with 58,466 nodes generated; y-LDNI: constructed in 1.2 sec 
with 49,835 nodes generated; z-LDNI: constructed in 1.2 sec 
with 46,628 nodes generated). 

3.3   Pixel Width and Accuracy of LDNIs 
The accuracy of a LDNIs model depends on the pixel 

width δ used in the rendering process.  Suppose the bounding 
box of an input model is given as Extmin and Extmax. If we use 
the graphics hardware to construct the corresponding LDNIs 

model, the minimum pixel width 
1

minmax

−
−=

w
ExtExtδ , 

where w is the maximum image resolution available in the 
rendering (e.g. w  is 1024 for the graphics hardware with a 
resolution of 1280×1024).   
Remark 1   Using pixel width δ to sample a solid model, a 
gap or thin-shell on the solid model whose thickness is less 
than δ may be missed in the Layered Depth-Normal Image 
that is perpendicular to the gap or the thin-shell. 
Therefore, we need to have three orthogonal Layer Depth-
Normal Images to ensure the other two LDNIs can capture the 
features. 
Remark 2   Using pixel width δ to sample a solid model, a 
feature whose overall size is less than δ may be missed in all 
three orthogonal Layered Depth-Normal Images. 
Therefore, for a given model, if the minimum feature size that 
we are interested in is θ, we must set δ < θ to ensure the 
LDNIs model can capture all the features that are bigger than 
θ in the given model.   
In CAD/CAM applications, the minimum feature size θ is 
determined by the capability of a manufacturing process that 
will be used to fabricate the CAD model. A manufacturing 
process has a limited capability on the minimum feature size 
due to various limitations.  For example, the rapid prototyping 
processes built physical models layer by layer.  Therefore, the 
smallest feature size in Z direction is limited by the layer 

thickness.  Consequently even infinitely small features can be 
represented in a CAD model, these features are meaningless in 
the physical world since they can not be fabricated.  Therefore, 
we can set δ based on the capability of a manufacturing 
process. 
Remark 3   For a manufacturing process whose minimum 
feature size is θ, we can set pixel width δ < θ in constructing a 
LDNIs model to ensure the accurate sampling of a CAD 
model for the manufacturing process.   

3.4   Volume Tiling of LDNIs 

Suppose θ = 0.1 mm and the image resolution w  = 1024. 
The maximum model size that can be processed is 

)1(minmax −×≤− wExtExt δ  = 102mm.  For a bigger size 
model or a higher accuracy requirement, we can use a 
technique called volume tiling.  That is, we split the bounding 
box of the model into smaller tiles.  We then process each tile 
independently (either sequentially or in parallel) and construct 
their LDNIs models respectively.   
The changes required in the LDNIs representation for volume 
tiling include: (1) we record ExtLDNI_min and ExtLDNI_max in each 
LDNIs model.  They are different from the minimum and 
maximum extent of a given model.  (2) In each pixel (i, j) of a 
LDNI, we record the normal index number INorm at the starting 
point defined by ExtLDNI_min.  For volume tiling, the same 
approach as described in Section 3.2 can be used in 
constructing the LDNIs model of each tile.  The only 
difference in the OpenGL display is that we zoom in the input 
polygonal model to a target ExtLDNI_min and ExtLDNI_max.  We 
also save INorm at ExtLDNI_min for each pixel.  Note the viewing 
plane is still set by Extmin since we know INorm= 0 at Extmin.  
We calculate all the sampling points from the rendering 
process and only record the nodes that are inside the extent 

 
Figure 3: A volume tiling example. 
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(ExtLDNI_min, ExtLDNI_max] in the constructed LDNI.   
An example of volume tiling is shown in Figure 3.  The size of 
the model is 7.3×5.8×4.2 and the pixel width δ is 0.005.  For 
such a case, the required pixel resolution is 1460×1160×840. 
Suppose the graphics hardware has an image resolution of 
800×800.  We can divide the model into 2×2×2= 8 tiles.  The 
LDNIs of tile (1, 0, 1) and tile (1, 1, 0) are shown in Figure 3 
(with 805,426 and 855,906 nodes generated respectively). 
The volume tiling also solves the memory problem in 
constructing LDNIs models, which is discussed as follows. 
Proposition 3 The memory complexity of a LDNI is O(w2), 
where w is the image resolution. 
Therefore, the number of nodes in a LDNI increases by four 
times if the accuracy requirement is doubled.  Hence, the 
required memory of a LDNIs model can quickly grow above 
the memory limitation of a commodity PC.  The volume tiling 
can significantly reduce the amount of information that 
requires being stored simultaneously. 
In addition, as shown in Section 6, the generated tiles can be 
processed separately and in parallel by using a cluster of PCs.  

4   Accurate Modeling on LDNIs  
The LDNIs is an implicit representation which has 

intuitive mathematical definitions. Its data is structurally 
defined on uniform grids.  Therefore, the solid modeling 
operations developed on the LDNIs representation are easy to 
implement.   

4.1   Eliminating Self-Intersections 
Two-manifold polygonal models may have self-

intersections generated by some geometric operations.  For 
example, polygonal offsetting by simply offsetting vertices 
may lead to self-intersections [2].  Three types of self-
intersections are common, which include: (1) external loop 
overlapping; (2) internal loop overlapping; and (3) small loop 
twisting (refer to A, B and C in Figure 4).  The self-
intersections in a CAD model may bring problems to a 
computer-aided manufacturing system.  Various approaches 
have been proposed for removing the self-intersections.  For 
example, an approach based on the B-rep needs to calculate 
the intersections of all the geometric elements and then judge 
the validity (inside/outside) of each element.  
Based on the LDNIs representation, we can eliminate self-
intersections according to the calculated normal index number 
INorm (refer to Definition 1).  That is, for a LDNIs model, we 
process its x-LDNI, y-LDNI and z-LDNI separately 
(sequential or in parallel).  For each LDNI, we go through 
each pixel (i, j) and calculate the INorm along the ray. We then 
use the INorm value of each node to delete all the nodes that 
correspond to the self-intersections, and store only the nodes 
that correspond to the real boundary. 
Proposition 4 A node P along a ray is valid if and only if 
the values of INorm before and after P are 0 and 1, or 1 and 0. 

An illustrative example of self-intersections is shown in 
Figure 4 with the three types of self-intersections: (1) external 
loop overlapping (refer to A); (2) internal loop overlapping 
(refer to B); and (3) small loop twisting (refer to C).  The 
normals Nray and Np are also shown in the figure for a ray.  
Based on Definition 1, we can calculate INorm along the ray.  
The calculated INorm values along the ray are also shown in 
Figure 4-top.  The nodes whose two neighboring INorm values 
are 0 and 1, or 1 and 0 define the boundary that separates the 
inside and outside of the model (refer to Figure 4-bottom).  
Therefore, we can construct a regularized LDNIs model with 
only the valid nodes.  From such as a LDNIs model, as shown 
in Section 5, we can then construct a polygonal model that 
contains no self-intersections.  A more complicated test 
example is given in Section 7 (Test 2). 

4.2   Boolean Operations 
The Boolean operations are the fundamental modeling 

operations. They are widely used in various CAD/CAM 
applications.  A Boolean operation Π, such as union, 
intersection or difference, is a well-defined set operation.  The 
Boolean operations based on the LDNIs representation are 
straightforward and easy to implement [12].   
Suppose the two input LDNIs models are LDNIs1 = {x-LDNI1, 
y-LDNI1, z-LDNI1} and LDNIs2 = {x-LDNI2, y-LDNI2, z-
LDNI2}.  LDNIs1 and LDNIs2 must have the same origin, 
pixel width and bounding box size.  Their Boolean operations 
can be defined as: 
LDNIs1 Π LDNIs2 = {x-LDNI1 Π x-LDNI2, y-LDNI1 Π y-
LDNI2, z-LDNI1 Π z-LDNI2}; and  

x/y/z-LDNI1 Π x/y/z-LDNI2 = ∑ Π
ji

jirayjiray
,

21 )),(),(( . 

Ray1 and ray2 correspond to the same pixel (i, j) and locate at 
the same position.  Along the ray, we can calculate INorm1(P) 
and INorm2(P) for any given point P.  Accordingly we can 
determine if P∈(LDNIs1 Π LDNIs2).  Hence the Boolean 

Figure 4: An illustration of self-intersections and our approach 
based on INorm to remove them in a LDNI. 

INorm Analysis 
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operations on the LDNIs are converted into the Boolean 
operations on 1-Dimensional segments. Based on the 
definition of Π, we can select appropriate nodes from ray1 or 
ray2 to construct a Booleaned LDNIs model. 
The Boolean operations on the LDNIs models can be 
performed rather quickly since the judgment on each pixel is 
quite simple.  An intersection example of a bunny and a 
dragon is shown in Figure 5, which is used in Test 1 (refer to 
Figure 10). Both LDNIs models have the same resolution 
(144×142×172).  It takes less than 0.1 second to calculate the 
Booleaned LDNIs model from them. 

4.3   Accuracy of Generated LDNIs 
The LDNIs representation is based on uniform grids.  It 

has well structured data representation.  In the process of 
eliminating self-intersections and Boolean operations, we 
make no changes to its structures.  So the generated LDNIs 
model has the same structure as the input LDNIs models.  In 
the operations, we judge the properties of each node and 
accordingly keep or remove it in the result.  Therefore, we 
know: 
Proposition 5 The LDNIs model generated by the 
aforementioned geometric operations has an approximation 
error that is smaller than pixel width δ. 

5   Adaptive Sampling for Boundary Representation   
The LDNIs is an implicit representation that can 

accurately capture a solid defined by solid modeling 
operations. However, most computer-aided manufacturing 
systems, such as rapid prototyping machines, require 
polygonal meshes as the input.  Furthermore, the input model 
needs to be water-tight without mesh defects such as gaps, 
holes, or self-intersections.  So we need to convert a LDNIs 
model into a polygonal model for the manufacturing purpose. 
In [12], a contouring algorithm to construct two-manifold 
surfaces directly from a LDNIs model was presented.  
However, limited image resolutions were used since the 
triangle number of a reconstructed polygonal model increases 
in O( 2w ), where w  is the image resolution of the input 

LDNIs model.  For a big w , the constructed polygonal model 
has a large number of triangles, most of which are extremely 
small.  Therefore, it is generally not practical to directly 
construct contours from a highly accurate LDNIs model.  
In this section, we present an adaptive sampling method and 
related contouring techniques for converting a highly accurate 
LDNIs model into a water-tight polygonal model.  The 
constructed polygonal model is efficient by allocating more 
triangles in the regions with higher curvatures.   

5.1   An Adaptive Cell Representation  
In this research, we first construct another type of implicit 

representation, cell representation [26], from a LDNIs 
representation.  We then construct a water-tight polygonal 
model from the cell representation.  As shown in Section 3, we 
use a very small sampling size δ in constructing a LDNIs 
model.  We determine δ by the smallest feature size of a solid 
in order to capture all the features.  However, most features 
are much bigger than δ.  Hence the sampling size δ used in the 
LDNIs model is too small for them.  In our method, we use an 
adaptive cell representation, which includes two types of cells, 
uniform cells and octree cells [26].  The uniform cells are used 
for rough sampling; based on it, we then use octree cells to 
refine the uniform cells which have complex geometry inside. 

A detail description of the cell representation is presented 
in [26].  Note the cells need to be aligned with the LDNIs 
model.  Suppose the pixel width of a LDNIs model is δ.  We 
set the uniform cell size γ = 2k×δ, where k is the maximum 
subdivision number of an octree cell.  Based on γ and the 
extents ExtLDNI_min and ExtLDNI_max, the uniform cells can then 
be calculated. A 2-dimensional illustration of a LDNIs model 
and the two types of cells is shown in Figure 6.  In the figure, 
we set k = 3 so γ = 8⋅δ.  Obviously, we reach the sampling 
resolution of the LDNIs model when a uniform cell is 
subdivided by k times.  Further subdivision is meaningless 

     
Figure 6: An illustration of the alignment between a LDNIs model 
and the related uniform and octree cells.  In the example, k=3.  
Each uniform cell is 8 times of pixel width. 

     
Figure 5: An intersection example between two LDNIs models. 

LDNIs1 ∩ 
LDNIs2 

LDNIs1 

LDNIs2 
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since there will be no samples stored in the input LDNIs 
model. 

5.2   Adaptive Sampling Criteria  
To construct a cell representation from a LDNIs 

representation, we need an adaptive sampling approach.  In 
this research, we extend an accurate sampling-based method 
[13] from a polygonal model to a LDNIs model.  
A boundary cell Ck is a cell which has some boundary points 
inside it. If a cell has no sampling points inside it, it is either 
an inside or outside cell. There is no need to further subdivide 
an inside/outside cell.  Therefore we only need to consider a 
boundary cell Ck. Suppose ε is a given approximation error 
tolerance.  Our approach to judge if Ck needs to be subdivided 
is based on an adaptive sampling test given as follows.  

Adaptive sampling test: 

(1) Calculate an error-minimizing point vc based on the 
quadric error function (QEF) of all the points vi (i = 
1,…, k) in Ck.  If no vc is found, return failed; 

(2) Topological test of vc to ensure the iso-surface within 
each cell is topologically equal to a simple disk:  
a. If vc is outside Ck, return failed; 
b. Check normals of vi (i = 1,…, k) and normal of vc, 

if normal Nvc is invalid or there is a normal flip 
(Nvi • Nvc < 0), return failed;  

(3) Geometric tests of vc based on the geometric error 
between an approximation and the exact surfaces:  
Check the distance di from vc to a plane defined by 
the position and normal of vi(i = 1,…, k), if di > ε, 
return failed. 

(4) Save vc as an error-minimizing point for Ck and 
return succeeded. 

If the adaptive sampling test fails, the cell has complex 
geometry inside it.  Since the current sampling resolution is 
not sufficient to capture the geometry, we need to subdivide Ck 
and apply the test recursively. 
An adaptive subdivision algorithm based on the adaptive 
sampling test is presented in [13].  In the algorithm, there are 
two major cell queries, Corner_Sign_Query and 
Get_Sampling_points. Corner_Sign_Query determines the 
inside/outside sign of a cell corner.  Get_Sampling_Points 
returns a set of sampling points vi (both position and normal) 
inside a cell.  Both of them can be easily implemented on the 
LDNIs representation.  That is, since a cell corner must lie on 
a ray (refer to Figure 6), we can easily calculate its INorm to 
determine its inside/outside sign.  Similarly we can identify 
nodes that are inside a cell (including its boundary) and return 
them as the sampling points. 
Therefore, an adaptive cell representation can be constructed 
from a given LDNIs model. 

5.3   Mesh Tiling for Multiple LDNIs 
After a cell representation is constructed, we use a 

modified dual contouring method for reconstructing polygons 

[26, 27].  Unlike the marching cube algorithm, the dual 
contouring algorithm will not generate cracks for an adaptive 
grid with different grid sizes.  Further, two strategies to 
generate manifold-preserved mesh surfaces are presented in 
[27] for overcoming the topology ambiguity that may occur 
inside the finest octree cells after the maximum subdivision. 
As shown in Section 3.4, for big size models or high accuracy 
requirements, we split the bounding box of a model into 
smaller tiles and construct a LDNIs model for each tile (refer 
to Figure 3).  We then construct a cell representation from the 
LDNIs model of each tile.  Finally we use the contouring 
method to construct a piece of polygonal meshes in the tile.   
It is critical to ensure that the independently generated meshes 
can be merged into a proper manifold model. We achieve this 
by adding a buffer region in the right, back and bottom sides 
of each tile.  The width of the buffer region is one uniform cell 
size.  Therefore, two neighboring tiles will overlap over the 
buffer region.  A 2-dimensional illustration of a tile (i, j) and 
its buffer region is shown in Figure 7.  The two neighboring 
tiles, (i+1, j) and (i, j+1), are also shown in the figure.  They 
overlap ((i, j) by one layer of uniform cells.   

 
Figure 7: An illustration of the buffer region of a tile to ensure the 

mesh boundaries of neighboring tiles will match.   

Figure 8: A mesh tiling example for the LDNIs in Figure 3. 

Mesh (1, 0, 1) 

Mesh (1, 1, 0) Mesh (1, 0, 0) 
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We also define the boundary of a tile as (ExtLDNI_min, 
ExtLDNI_max]. So in the modified dual contouring method, we 
test each active edge of a cell before constructing a quad for it.  
If the edge is inside (ExtLDNI_min, ExtLDNI_max], it is a valid edge 
and we generate a corresponding quad or triangle for it; 
otherwise, it is an invalid edge and we simply do nothing.  
Consequently we can ensure the polygonal meshes of two 
neighboring tiles have no duplicate triangles. 
After the polygonal meshes in all the tiles are generated, we 
can simply merge them together.  Since the buffer region 
overlaps two neighboring tiles and the calculated error-
minimizing points in the buffer region are used in 
reconstructing polygons of both tiles, the meshes in the two 
tiles have a common boundary.  Hence the merged polygonal 
model is watertight.  As an example, the constructed 
polygonal meshes for the LDNIs given in Figure 3 are shown 
in Figure 8.  A magnified view of a portion of two neighboring 
meshes is also given in the figure.  The merged polygonal 
model is valid with no holes or duplicate triangles. 

5.4   Accuracy of Generated Meshes 
In the adaptive sampling test, we calculate an error-

minimizing point of a cell from all the sampling points in the 
cell from a LDNIs model.  We also explicitly compare the 
approximation error with a given tolerance ε.  If the 
approximation error is smaller than ε, we will use the 
calculated error-minimizing point in the contouring process; 
otherwise, we subdivide the cell until it reaches the finest level.  
At the finest level, a cell size is the same as the pixel width δ.  
Therefore, if we use the cell center to approximate all the 
features inside the cell, the approximation error in the 
contouring process will be less than δ.  So if we set tolerance ε 
<< δ, we know: 
Proposition 6 The polygonal model generated by the 
aforementioned adaptive sampling and contouring process has 
an approximation error that is less than pixel width δ. 

6   Parallel Computing Framework and Performance  
A significant advantage of our method is the simplicity of 

parallelizing it.  We develop a parallel computing framework 
for modeling complex geometries based on the LDNIs 
representation (refer to Figure 9).  We discuss the computation 
in each step as follows.  In addition, we briefly analyze their 
theoretical performance.   
(1) In order to construct a LDNIs model from a polygonal 
model, the uniform sampling process goes through each 
polygon and use scan conversion algorithm to generate 
intersection points in three axes.  Therefore the time 
complexity of this step is O(NTri) where NTri is the number of 
polygons.  We use the graphics hardware in constructing 
LDNIs models. Based on highly parallel structure, the 
graphics hardware can construct a LDNIs model very quickly.  
In our current implementation, we use a PC with high-end 
graphics hardware (NVIDIA GeForce 8800 GT) to generate 
LDNIs models for input polygonal models.  All the generated 
LDNIs models are saved in a network-connected hard disk, 

which can be accessed from a cluster of PCs.  The 
performance of constructing the LDNIs models is very 
satisfactory, usually within seconds.  
(2) The LDNIs model of each tile can be processed separately 
without other tiles’ information.  Therefore we can use a PC 
cluster to process all the tiles in parallel.  The total running 
time is then determined by that of the most complex tile if a 
PC cluster has a sufficient number of machines.  In our current 
implementation, we use command line to specify a tile number 
and the parameter values.  This can be easily extended to a 
server-client based architecture. 
(3) The geometric operations on the LDNIs representation go 
through each pixel of a LDNI to determine keeping or 
discarding the nodes.  Hence the time complexity of this step 
is O(w2) where w is the pixel resolution.  The contouring 
algorithm spends O(1) time on each cell of the grid.  Therefore, 
the time complexity of the contouring is O(NCell) where NCell is 
the number of cells (including both uniform and octree cells).  
Both the geometric operations and the contouring from the cell 
representation are rather fast (usually within a second on a PC 
with Pentinum 4 CPU 3.2 GHz).   
(4) The time complexity of constructing a cell representation 
from a LDNIs representation is O(NNode • k) where NNode  is the 
number of nodes in a LDNIs model and k is the maximum 
subdivision number.  It is the most time-consuming step in our 
method and usually takes more than 60% of the total running 
time.  Since the adaptive sampling test in constructing octree 
cells only requires the information related to the cell in the test, 
we can use a PC cluster to parallelize the program of cell 
generation.  In addition, for each tile we can use multiple 
threads to process the octree cells stored in a stack.  Therefore, 
the step can be performed much faster in a PC with multi-core 
processors.  In our experience based on a PC with an Intel 

Tile1 Tilem Tilen

`

Graphics 
hardware

Polygonal 
Models

PC 
Cluster

Multi-core 
Processors

LDNIs1 LDNIsm LDNIsn

- Volume tiling
- Constructing LDNIs

Meshes1 Meshesm Meshesn

- Geometric operation 
- Cell generation
- Contouring

... ...

- Merging meshes

......

required

Figure 9: A parallel computing framework for modeling complex 
geometries using our LDNIs based method. 
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Core2 Quad CPU Q6600 2.4GHz, the multi-thread 
implementation is general 2~3 times faster than a single thread 
implementation.   
(5) The polygonal meshes generated separately for each tile 
can be merged into a polygonal model rather quickly (usually 
within a second).  The time complexity of this step is O(NTri) 
where NTri is the triangle number of all the meshes.  
We present some examples in Section 7 with our experimental 
results on the computing time. 

7   Results and Discussions  
We used C++ programming language with Microsoft 

Visual Studio 2005 to implement the proposed method.  We 
have also tested our algorithms using polygonal models with 
various complexities.  Four of the tests are shown in Figure 
10-13.  Except test 1, all the tests are based on a commodity 
PC with an Intel Core2 Quad CPU Q660 2.4GHz and 4GB 
DRAM running Windows Vista.   
The first test is a test case on Boolean operations that was first 
presented in [13] (refer to Figure 10).  The Boolean results on 
three models (a bunny [28], a dragon [28], and a Beethoven 
statue) are shown in Figure 10-top.  We use the same 
computer used in [13] (a commodity PC with a 3.2 GHz 
Pentium IV processor and 2GB DRAM running Windows XP) 
to do the test.  The computing time of the three major steps as 
discussed in Section 3-5 is given in Table 1.  Compared with 
the results given in [13], the LDNIs based method is 
significantly faster (15~25 times faster, refer to Table 2). Note 
the test results are all based on a single thread running in a 
sequential mode. 
The second test is a test case that we take from [29] to test the 
operation of removing self-intersections (refer to Figure 11).  
We first design an internal structure based on a microstructure 
and a given model (a Beethoven statue).  Based on the 
structure configurations, we construct a sphere model at each 
joint and a cylinder model at each strut.  We then merge all the 
sphere and cylinder models without proper Boolean operations. 

 
 

Figure 10: Results of test 1.  The three input models and their relative 
positions are shown in the top; screen captures of the generated results 
are shown in the bottom.  

  

    
Figure 11: Results of Test 2. The input model is shown in the 
left; screen capture of the generated model is shown in the right. 

Table 3: Running Results of Test 2. 

Tile 
Construct & 

Verify 
LDNIs (sec) 

Adaptive 
Sampling 

(sec) 

Contouring 
(sec) 

Merge 
meshes (sec) 

(0, 0, 0) 7.3 10.3 3.3 
(1, 0, 0) 8.4 13.7 4.8 

1.2 

Note: Pixel width = 0.005; maximum subdivision number = 3. 

Table 1: Running Results of Test 1. 

Model Input 
Tri # 

Construct 
LDNIs 
(sec) 

Geometric 
Operation 

(sec) 

Adaptive 
Sampling & 
Contouring 

(sec) 

Output 
Tri # 

Bunny 69,664 5.3 
Dragon 723,708 8.6 0.2 (∪) 7.7 143,696 

Union 143,696 5.4 
Beethoven 5050 3.8 0.3 (−) 8.6 136,978 

Union 143,696 5.4 
Beethoven 5050 3.7 0.3 (∩) 4.6 61,176 

Note: Pixel width = 0.0032; maximum subdivision number = 4. 

Table 2: Computing Time Comparison. 
Model Method presented 

in [13] (sec) 
LDNIs-based 
method (sec) 

Bunny∪Dragon 572 22 

(Bunny∪Dragon) −Beethoven 287 18 
(Bunny∪Dragon) ∩Beethoven 184 14 

bunny  

dragon 

bunny∪dragon 

Beethoven 

(bunny∪dragon)−Beethoven (bunny∪dragon)∩Beethoven 

Sphere Cylinder 

Invalid 
polygonal 
model  

Regularized 
polygonal 
model  
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The constructed polygonal model is obviously invalid since it 
has lots of self-intersections (refer to Figure 11.left).  We use 
the geometric operation as discussed in Section 4.1 to 
eliminate all the self-intersections.  The generated model is 

now valid with all spheres and cylinders are properly 
Booleaned (refer to Figure 11.right).  The size of the input 
model is 5.0×4.0×2.8.  The model has 228,640 triangles.  Our 
algorithm subdivides the model into 2×1×1=2 tiles and run 
each tile in parallel.  The running time of each tile is given in 
Table 3.  Since the tile (1, 0, 0) takes longer, the total running 
time will depend on it, which takes about 27 seconds.  The 
merged polygonal model has 838,976 triangles.   
In the third test, we take a spring model M2 generated from a 
given model M1 based on an approaches presented in [30] 
(refer to Figure 12).  Their relative positions are also shown in 
the figure.  We calculate the subtraction of the two models 
(M1- M2).  The size of the input models is 3.2×3.2×3.2 with 
328,777 triangles. Our algorithm subdivides the model into 
2×2×2=8 tiles and run each tile in parallel.  The running time 
of each tile is given in Table 4.  The constructed polygonal 
model has 617,692 triangles.   
In the fourth test, we select 12 test models, many of which are 
publicly available. We randomly scale, rotate, and position 
them at each strut of a structure generated from a cube (M1).  
We merge the 12 test models into one model (M2).  We then 
calculate the union result of the structure and the merged 
model (M1 ∪M2). The size of the input models is 4.8×4.6×4.5.  
The two input models have 445,053 triangles.  Our algorithm 
subdivides the model into 3×3×3=27 tiles and run each tile in 
parallel.  The computing time of the 10 tiles that take the 
longest time is given in Table 5.  The merged polygonal model 
has 1,375,773 triangles.   
As shown in the results, the generated triangle meshes are 
denser around sharp corners and small features due to the 
adaptive subdivision process.  This is highly desirable since 
these features have higher curvatures. Therefore we can use 
reasonable amount of triangles to construct an accurate model. 
The running time of our method is satisfactory.  Even for 
rather complex geometries as shown in Test 4, we can 
generate Boolean results within 20 seconds if a sufficient 
number of PCs are available such that each tile can be 
processed in parallel.  The memory requirements are also 
satisfactory based on subdividing a model into multiple tiles.   

8   Conclusion and Future Work 
We have presented a novel LDNIs-based geometric 

modeling method for accurately modeling complex geometries.  
Our approach is volumetric and hierarchical, and can achieve 
the accuracy required in most CAD/CAM applications.  We 
use volume tiling which significantly reduces the memory 
requirement for processing the model.  Hence we can use 
commodity PCs to handle very large models. Our method can 
easily be implemented to run in parallel. The computing time 
can be significantly reduced by using computing devices such 
as PC cluster, graphics hardware, and multi-core processor.  
The polygonal model generated by our approach is 
topologically equivalent to the exact surface and has a two-
side Hausdorff error bounded by an error tolerance. Our 
contouring algorithm can capture all the sharp features in the 

  

      
Figure 12: Results of Test 3. The input models are shown in the 
top; screen capture of the subtraction result is shown in the bottom.

Table 4: Running Results of Test 3. 

Tile Construct 
LDNIs (sec) 

Subtraction 
(sec) 

Adaptive 
Sampling & 
Contouring 

(sec) 

Merge 
meshes (sec) 

(0, 0, 0) 3.5 0.2 3.8 
(1, 0, 0) 3.4 0.2 3.7 
(0, 1, 0) 3.3 0.2 3.9 
(1, 1, 0) 3.4 0.2 3.7 
(0, 0, 1) 3.5 0.2 3.9 
(1, 0, 1) 3.4 0.2 3.7 
(0, 1, 1) 3.4 0.2 3.8 
(1, 1, 1) 3.4 0.2 3.8 

1.0 

Note: Pixel width = 0.0038; maximum subdivision number = 4. 

Table 5: Running results of Test 4 (10 tiles with longest time). 

Tile Construct 
LDNIs (sec) 

Subtraction 
(sec) 

Adaptive 
Sampling & 
Contouring 

(sec) 

Total 
(sec) 

(1, 0, 2) 6.5 0.3 12.0 18.8 
(1, 0, 0) 4.7 0.4 9.5 14.6 
(0, 0, 1) 4.6 0.3 6.5 11.4 
(2, 1, 0) 4.4 0.3 6.6 11.3 
(2, 0, 2) 6.0 0.2 4.1 10.3 
(2, 0, 1) 4.4 0.3 5.3 10.0 
(2, 1, 2) 4.2 0.3 5.4 9.9 
(0, 0, 2) 5.9 0.2 2.8 8.9 
(0, 2, 1) 4.3 0.3 4.2 8.8 
(1, 2, 2) 4.1 0.3 3.9 8.3 

Note: Pixel width = 0.0025; maximum subdivision number = 4. 

M2 

M1−M2 

M1 
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constructed model.  In addition, our approach is simple and 
easy to implement.  The experimental results on a variety of 
CAD models have also verified the effectiveness and 
efficiency of our method. 
Our future work includes: (1) we are investigating the 
approaches of using graphics processing unit (GPU) to 
implement some steps of our method to further improve its 
speed; (2) we are doing robustness tests and exploring 
theoretically provable method to handle even degenerate data; 
(3) We also plan to utilize the method presented in this paper 
in other geometric operations such as offsetting and local 
geometry modifications. 
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