

 Copyright © 2008 by ASME

Proceedings of the ASME 2008 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference

August 3-6, 2008, Brooklyn, New York, USA

DETC2008/CIE-49432

LAYER DEPTH-NORMAL IMAGES FOR COMPLEX GEOMETRIES - PART ONE:
ACCURATE MODELING AND ADPATIVE SAMPLING

Yong Chen
University of Southern California

Los Angeles, CA 90089
yongchen@usc.edu

Charlie C. L. Wang
The Chinese University of Hong Kong

Shatin, N. T., Hong Kong, China
cwang@mae.cuhk.edu.hk

ABSTRACT

The layered depth-normal images (LDNIs) is an implicit
representation of solid models that sparsely encodes the shape
boundary in three orthogonal directions. We present a LDNI-
based geometric modeling method for applications with high
accuracy requirements. In our method, we first construct
LDNIs models from input polygonal models. The accuracy of
the generated LDNIs models can be controlled by setting pixel
width during the construction process. Even for very complex
geometries and high accuracy requirements, the construction
process is fast with the aid of graphics hardware. Based on the
LDNIs models, we then perform geometric modeling
operations. Two types of operations are presented including
regularizing and Boolean operations. The geometric modeling
operations are straightforward and easy to be implemented
robustly. From the processed LDNIs model, an adaptive
sampling method is presented to construct a cell representation
that includes both uniform and octree cells. Finally 2-
manifold polygonal mesh surfaces are constructed from the
cell representation. For high accuracy requirements that are
typical in CAD/CAM applications, we present a volume tiling
technique and a parallel implementation to accelerate the
computation. Our method achieves a good balance between
the accuracy and computational resources. We report
experimental results on a variety of CAD models. The results
demonstrate the effectiveness and efficiency of our approach
especially for modeling complex geometries.

KEYWORDS: geometric modeling, implicit representation,
Boolean operation, adaptive sampling, cell contouring,
parallel computation.

1 Introduction
The boundary representation (B-rep) is the most popular

representation of 3-dimensional geometry for CAD/CAM
applications. Commercial geometric kernels, such as ACIS and

Parasolid, are widely used in CAD/CAM applications. Both
of them are based on the B-rep. The geometric operations
based on the boundary representation have been extensively
studied. For example, Hoffmann [1] studied the Boolean
operations based on calculating exact surface intersections and
classifying geometric elements into Booleaned combinations.
Rossignac and Requicha [2] presented the offsetting
operations based on trimming offset geometric elements to
construct offset solids. While the approach based on
intersection calculation and directly manipulating the
boundary representations is accurate, it lacks in simplicity and
is prone to robustness problems [3]. Especially for complex
geometries that are the focus of the paper, the geometric
operations based on the B-rep are even more challenging.
With thousands or even millions of polygons in a model, it
would be rather difficult to detect and control the degenerated
cases during the geometric operations.
In recent years, using the volumetric representation to
approximate geometry has been widely studied in computer
graphics [4-7]. Various volumetric representations have been
proposed such as voxel [8], distance field [9], surfel [10], and
ray-rep [11]. The geometric operations based on the
volumetric representations are easy to implement and robust.
However, geometric modeling based on the volumetric
representations, such as voxels, is generally viewed as
inaccurate approach. Therefore it is not widely accepted in
CAD/CAM applications. The limited accuracy of the
volumetric representations may not be a main issue for
computer graphics applications whose main goal is to
interactively display geometries. However, it is a major
concern for most engineering applications, whose accuracy
requirement is much higher.
In this paper, we try to achieve a balance between the required
memory or computation time, and high accuracy or big model
size. Our method makes significant improvements over our
previous work [12, 13]. In [12], we presented a novel implicit
representation named layered depth-normal images (LDNIs).

 2/12

We also discussed the conversion between the LDNIs and B-
rep models. However, the conversion technique presented in
[12] works on uniform grids. Hence for high accuracy
requirements, it generates an excessively large number of
polygons and is very time-consuming. In [13], a sampling-
based method is proposed for accurately approximating
geometries defined by various geometric operations. The
sampling points generated in the adaptive sampling process
are dynamically calculated from the input B-rep models.
Therefore, it can be quite time-consuming for complex
geometries.
We present a geometric modeling method based on the LDNIs
representation for high accuracy applications. The framework
of our method is shown in Figure 1. By integrating the key
ideas of [12] and [13], our method achieves a good balance
between the accuracy and computational resources. Therefore,
it is especially suitable for CAD/CAM applications.
The most important properties of our method are:
(1) Accurate: We construct the LDNIs based on a minimum

feature size. We then adaptively subdivide cells based on a
given tolerance. Therefore the reconstructed model is
topologically equivalent to the exact surface, and the
approximation error is bounded by the resolution of the
LDNIs models.

(2) Efficient: Adaptive sampling enables us to use a higher
resolution to refine only the cells that have complex
geometry inside. Therefore we can use a limited number
of polygons to achieve a rather high resolution.

(3) Fast: Several steps in our method can be easily
parallelized. Therefore the computing time can be
significantly reduced by using graphics hardware and a PC
cluster.

(4) Scalable: We sub-divide an input model into multiple tiles.
This allows us to process virtually an unlimited resolution

since we can further sub-divide a model into more tiles and
process them separately.

(5) Simple: The geometric operations based on the LDNIs
representation are straightforward and easy to implement.

(6) Capturing sharp features: our contouring approach can
capture sharp corners and edges in the geometry, which is
important for engineering applications.

2 Related Work
Our work utilizes several types of implicit representations.

The implicit representations become popular because of their
simplicity and versatility in performing a wide variety of
geometric operations. Many operations such as Boolean,
offsetting, blending, and warping can be expressed elegantly
using the implicit representations [14-16]. Consequently, the
modeling techniques based on the implicit representations
have been used in a large number of applications [17, 18].
Several implicit representations have the similar structures as
the LDNIs. Menon and Voelcker [11] presented a ray-rep
representation by sampling the solid models into parallel rays
tagged with h-tag (i.e., the information of half-space at the
endpoints of rays). Ray-rep can be used in offsets, sweeps, and
Minkowski operations [19]. The ray-rep stores depth values
without surface normals in one ray direction. Other similar
representations are dexel [20] and Layered Depth Images (LDI)
[21]. Heidelberger, et al [21] presented LDI in a fast collision
detection approach for solid models. They also demonstrated
the LDI decomposition can be accelerated in graphics
hardware using OpenGL.
Our work converts the processed implicit models to polygonal
models. This is because many applications, such as graphics
displaying, rapid prototyping and CNC machining, require a
parameterized patch representation of geometry. Extensive
research has been done in this area. The marching cubes
algorithm, proposed by Lorense and Cline [4], is a standard

Figure 1: The framework of our LDNIs based geometric modeling method.

 3/12

approach to extract an isosurface from a volume raster of
scalar values. Many extensions to the original marching cubes
algorithm have been proposed to resolve ambiguities of
certain cell configurations and generate topologically
consistent iso-surfaces [22]. The original marching cubes
algorithm is unable to extract high quality triangle meshes
with sharp features. Several extensions have also been
proposed to reconstruct sharp features and reduce aliasing
artifacts in the reconstructed model [5, 6, 18]. To overcome
an excessively large number of triangles required to represent
the iso-surface, many methods have also been developed for
performing iso-surface extracting adaptively using hierarchies
such as octrees and k-D trees [6, 23, 24]. Most algorithms do
not provide guarantees on the topology of the reconstructed
surface. Some recent work addresses topology-preserving
reconstruction by an enhanced cell representation [25] or by
additional tests [13, 24].
The remainder of the paper is organized as follows. The
accurate sampling of a polygonal model for constructing a
LDNIs model is presented in Section 3. The geometric
modeling operations based on the LDNIs representation are
discussed in Section 4. The adaptive sampling and contouring
for constructing polygonal mesh surfaces are presented in
Section 5. A parallel computing framework for our geometric
modeling method is presented in section 6. A brief discussion
of the algorithm performance is also given in the section. The
results of four test cases are presented in Section 7. Finally,
conclusions and future work are given in Section 8.

3 Accurate Sampling with LDNIs

3.1 LDNIs: An Implicit Representation of Solids
The Layered Depth-Normal Images (LDNIs) is an

extension of the Layered Depth Images (LDIs) to sparsely
encode the shape of solid models [12]. A structural set of
Layered Depth-Normal Images (LDNIs) consists of x-LDNI,
y-LDNI and z-LDNI along X, Y, and Z axis respectively
(referred to as axis 1). The three images are located to let the
intersections of their rays form the ZYX www ×× nodes of
uniform grids in ℜ3. A LDNI in axis 1 is a two-dimensional
image with 32 axisaxis ww × pixels. For each pixel (i, j), we
shoot a ray from its center along axis 1 and calculate the
intersections of the ray and the surfaces under sampling.
Consequently for each pixel (i, j), we can build a sequence of
four-components nodes),,,(zyx nnnd , where d specifies the
depth from an intersection point P to the viewing plane, and
NP(nx, ny, nz) is the surface normal at P.
The main difference of the LDNI from the LDI is the
recording of surface normal NP(nx, ny, nz). The surface normal
is important not only for adaptive sampling and isosurface
extraction (refer to Section 5), but also for the inside/outside
judgment along the ray (refer to Section 4.1).
The basic definitions of the LDNIs are given in [12]. Some
additional definitions and propositions are given as follows.

Definition 1 A normal index number INorm is an
accumulated integer value along a ray such that: (1) INorm= 0 at
the starting point if it is outside the model; (2) INorm= 1 at the
starting point if it is inside the model; (3) from the starting
point, for any intersection point P along the ray with unit
normal Nray, increasing INorm by 1 if 0<⋅ rayp NN and

decreasing INorm by 1 if 0>⋅ rayp NN .

For two-manifold solid models, we know:
Proposition 1 For a Layered Depth-Normal Image
sampled from a two-manifold solid model, a point P on a ray
of a pixel is inside the model if INorm(P) > 0; otherwise, it is
outside the model.
Proposition 2 For a Layered Depth-Normal Image
sampled from a two-manifold solid model, the number of
nodes on a pixel should be even; in addition, INorm should be 0
at both dmin and dmax of a ray (i.e. outside the model).
The proofs of the above two propositions are straightforward.
Therefore, an input solid model can be implicitly defined by a
LDNIs model, which captures all the boundary information of
the solid along pre-defined uniform grids. In addition, for any
point along the grids, we can quickly judge whether it is
inside/outside the model.

3.2 Constructing LDNIs with Graphics Hardware
For any given polygonal model, a LDNIs model can be

constructed rather quickly by using graphics hardware [12].
The construction of a LDNI model is similar to the well-

Figure 2: An example of the constructed LDNIs model from a
polygonal model.

x-LDNI y-LDNI z-LDNI

LDNIs Input polygonal model

 4/12

known scan-conversion algorithm. The viewing parameters
are determined by the working envelope, which is slightly
larger than the bounding box of the model. An orthogonal
projection is conducted for rendering so that the intersection
points from parallel rays can be generated. In order to get an
accurate surface normal, we encode a unique ID of every
polygonal face into a RGB-color. After rendering all the faces
by the encoded colors, we can easily identify a face and
accordingly retrieve its surface normal from the input model.
Modern graphics hardware is very efficient at manipulating
and displaying polygonal models. Similar to the sampling of
the LDIs [21], the model under sampling has to be rendered
multiple times in order to generate a LDNI with the help of
graphics hardware. Based on highly parallel structures,
graphics hardware can construct a LDNI very quickly even for
a rather complex model. For example, by using NVIDIA
GeForce 8800 GT, we can construct a LDNIs model (256×256)
from a polygonal model as shown in Figure 2 (triangle number
= 723,708) within 3.7 seconds (x-LDNI: constructed in 1.3 sec
with 58,466 nodes generated; y-LDNI: constructed in 1.2 sec
with 49,835 nodes generated; z-LDNI: constructed in 1.2 sec
with 46,628 nodes generated).

3.3 Pixel Width and Accuracy of LDNIs
The accuracy of a LDNIs model depends on the pixel

width δ used in the rendering process. Suppose the bounding
box of an input model is given as Extmin and Extmax. If we use
the graphics hardware to construct the corresponding LDNIs

model, the minimum pixel width
1

minmax

−
−=

w
ExtExtδ ,

where w is the maximum image resolution available in the
rendering (e.g. w is 1024 for the graphics hardware with a
resolution of 1280×1024).
Remark 1 Using pixel width δ to sample a solid model, a
gap or thin-shell on the solid model whose thickness is less
than δ may be missed in the Layered Depth-Normal Image
that is perpendicular to the gap or the thin-shell.
Therefore, we need to have three orthogonal Layer Depth-
Normal Images to ensure the other two LDNIs can capture the
features.
Remark 2 Using pixel width δ to sample a solid model, a
feature whose overall size is less than δ may be missed in all
three orthogonal Layered Depth-Normal Images.
Therefore, for a given model, if the minimum feature size that
we are interested in is θ, we must set δ < θ to ensure the
LDNIs model can capture all the features that are bigger than
θ in the given model.
In CAD/CAM applications, the minimum feature size θ is
determined by the capability of a manufacturing process that
will be used to fabricate the CAD model. A manufacturing
process has a limited capability on the minimum feature size
due to various limitations. For example, the rapid prototyping
processes built physical models layer by layer. Therefore, the
smallest feature size in Z direction is limited by the layer

thickness. Consequently even infinitely small features can be
represented in a CAD model, these features are meaningless in
the physical world since they can not be fabricated. Therefore,
we can set δ based on the capability of a manufacturing
process.
Remark 3 For a manufacturing process whose minimum
feature size is θ, we can set pixel width δ < θ in constructing a
LDNIs model to ensure the accurate sampling of a CAD
model for the manufacturing process.

3.4 Volume Tiling of LDNIs

Suppose θ = 0.1 mm and the image resolution w = 1024.
The maximum model size that can be processed is

)1(minmax −×≤− wExtExt δ = 102mm. For a bigger size
model or a higher accuracy requirement, we can use a
technique called volume tiling. That is, we split the bounding
box of the model into smaller tiles. We then process each tile
independently (either sequentially or in parallel) and construct
their LDNIs models respectively.
The changes required in the LDNIs representation for volume
tiling include: (1) we record ExtLDNI_min and ExtLDNI_max in each
LDNIs model. They are different from the minimum and
maximum extent of a given model. (2) In each pixel (i, j) of a
LDNI, we record the normal index number INorm at the starting
point defined by ExtLDNI_min. For volume tiling, the same
approach as described in Section 3.2 can be used in
constructing the LDNIs model of each tile. The only
difference in the OpenGL display is that we zoom in the input
polygonal model to a target ExtLDNI_min and ExtLDNI_max. We
also save INorm at ExtLDNI_min for each pixel. Note the viewing
plane is still set by Extmin since we know INorm= 0 at Extmin.
We calculate all the sampling points from the rendering
process and only record the nodes that are inside the extent

Figure 3: A volume tiling example.

LDNIs (1, 1, 0)

LDNIs (1, 0, 1)

X
Y

Z

 5/12

(ExtLDNI_min, ExtLDNI_max] in the constructed LDNI.
An example of volume tiling is shown in Figure 3. The size of
the model is 7.3×5.8×4.2 and the pixel width δ is 0.005. For
such a case, the required pixel resolution is 1460×1160×840.
Suppose the graphics hardware has an image resolution of
800×800. We can divide the model into 2×2×2= 8 tiles. The
LDNIs of tile (1, 0, 1) and tile (1, 1, 0) are shown in Figure 3
(with 805,426 and 855,906 nodes generated respectively).
The volume tiling also solves the memory problem in
constructing LDNIs models, which is discussed as follows.
Proposition 3 The memory complexity of a LDNI is O(w2),
where w is the image resolution.
Therefore, the number of nodes in a LDNI increases by four
times if the accuracy requirement is doubled. Hence, the
required memory of a LDNIs model can quickly grow above
the memory limitation of a commodity PC. The volume tiling
can significantly reduce the amount of information that
requires being stored simultaneously.
In addition, as shown in Section 6, the generated tiles can be
processed separately and in parallel by using a cluster of PCs.

4 Accurate Modeling on LDNIs
The LDNIs is an implicit representation which has

intuitive mathematical definitions. Its data is structurally
defined on uniform grids. Therefore, the solid modeling
operations developed on the LDNIs representation are easy to
implement.

4.1 Eliminating Self-Intersections
Two-manifold polygonal models may have self-

intersections generated by some geometric operations. For
example, polygonal offsetting by simply offsetting vertices
may lead to self-intersections [2]. Three types of self-
intersections are common, which include: (1) external loop
overlapping; (2) internal loop overlapping; and (3) small loop
twisting (refer to A, B and C in Figure 4). The self-
intersections in a CAD model may bring problems to a
computer-aided manufacturing system. Various approaches
have been proposed for removing the self-intersections. For
example, an approach based on the B-rep needs to calculate
the intersections of all the geometric elements and then judge
the validity (inside/outside) of each element.
Based on the LDNIs representation, we can eliminate self-
intersections according to the calculated normal index number
INorm (refer to Definition 1). That is, for a LDNIs model, we
process its x-LDNI, y-LDNI and z-LDNI separately
(sequential or in parallel). For each LDNI, we go through
each pixel (i, j) and calculate the INorm along the ray. We then
use the INorm value of each node to delete all the nodes that
correspond to the self-intersections, and store only the nodes
that correspond to the real boundary.
Proposition 4 A node P along a ray is valid if and only if
the values of INorm before and after P are 0 and 1, or 1 and 0.

An illustrative example of self-intersections is shown in
Figure 4 with the three types of self-intersections: (1) external
loop overlapping (refer to A); (2) internal loop overlapping
(refer to B); and (3) small loop twisting (refer to C). The
normals Nray and Np are also shown in the figure for a ray.
Based on Definition 1, we can calculate INorm along the ray.
The calculated INorm values along the ray are also shown in
Figure 4-top. The nodes whose two neighboring INorm values
are 0 and 1, or 1 and 0 define the boundary that separates the
inside and outside of the model (refer to Figure 4-bottom).
Therefore, we can construct a regularized LDNIs model with
only the valid nodes. From such as a LDNIs model, as shown
in Section 5, we can then construct a polygonal model that
contains no self-intersections. A more complicated test
example is given in Section 7 (Test 2).

4.2 Boolean Operations
The Boolean operations are the fundamental modeling

operations. They are widely used in various CAD/CAM
applications. A Boolean operation Π, such as union,
intersection or difference, is a well-defined set operation. The
Boolean operations based on the LDNIs representation are
straightforward and easy to implement [12].
Suppose the two input LDNIs models are LDNIs1 = {x-LDNI1,
y-LDNI1, z-LDNI1} and LDNIs2 = {x-LDNI2, y-LDNI2, z-
LDNI2}. LDNIs1 and LDNIs2 must have the same origin,
pixel width and bounding box size. Their Boolean operations
can be defined as:
LDNIs1 Π LDNIs2 = {x-LDNI1 Π x-LDNI2, y-LDNI1 Π y-
LDNI2, z-LDNI1 Π z-LDNI2}; and

x/y/z-LDNI1 Π x/y/z-LDNI2 = ∑ Π
ji

jirayjiray
,

21)),(),((.

Ray1 and ray2 correspond to the same pixel (i, j) and locate at
the same position. Along the ray, we can calculate INorm1(P)
and INorm2(P) for any given point P. Accordingly we can
determine if P∈(LDNIs1 Π LDNIs2). Hence the Boolean

Figure 4: An illustration of self-intersections and our approach
based on INorm to remove them in a LDNI.

INorm Analysis

 6/12

operations on the LDNIs are converted into the Boolean
operations on 1-Dimensional segments. Based on the
definition of Π, we can select appropriate nodes from ray1 or
ray2 to construct a Booleaned LDNIs model.
The Boolean operations on the LDNIs models can be
performed rather quickly since the judgment on each pixel is
quite simple. An intersection example of a bunny and a
dragon is shown in Figure 5, which is used in Test 1 (refer to
Figure 10). Both LDNIs models have the same resolution
(144×142×172). It takes less than 0.1 second to calculate the
Booleaned LDNIs model from them.

4.3 Accuracy of Generated LDNIs
The LDNIs representation is based on uniform grids. It

has well structured data representation. In the process of
eliminating self-intersections and Boolean operations, we
make no changes to its structures. So the generated LDNIs
model has the same structure as the input LDNIs models. In
the operations, we judge the properties of each node and
accordingly keep or remove it in the result. Therefore, we
know:
Proposition 5 The LDNIs model generated by the
aforementioned geometric operations has an approximation
error that is smaller than pixel width δ.

5 Adaptive Sampling for Boundary Representation
The LDNIs is an implicit representation that can

accurately capture a solid defined by solid modeling
operations. However, most computer-aided manufacturing
systems, such as rapid prototyping machines, require
polygonal meshes as the input. Furthermore, the input model
needs to be water-tight without mesh defects such as gaps,
holes, or self-intersections. So we need to convert a LDNIs
model into a polygonal model for the manufacturing purpose.
In [12], a contouring algorithm to construct two-manifold
surfaces directly from a LDNIs model was presented.
However, limited image resolutions were used since the
triangle number of a reconstructed polygonal model increases
in O(2w), where w is the image resolution of the input

LDNIs model. For a big w , the constructed polygonal model
has a large number of triangles, most of which are extremely
small. Therefore, it is generally not practical to directly
construct contours from a highly accurate LDNIs model.
In this section, we present an adaptive sampling method and
related contouring techniques for converting a highly accurate
LDNIs model into a water-tight polygonal model. The
constructed polygonal model is efficient by allocating more
triangles in the regions with higher curvatures.

5.1 An Adaptive Cell Representation
In this research, we first construct another type of implicit

representation, cell representation [26], from a LDNIs
representation. We then construct a water-tight polygonal
model from the cell representation. As shown in Section 3, we
use a very small sampling size δ in constructing a LDNIs
model. We determine δ by the smallest feature size of a solid
in order to capture all the features. However, most features
are much bigger than δ. Hence the sampling size δ used in the
LDNIs model is too small for them. In our method, we use an
adaptive cell representation, which includes two types of cells,
uniform cells and octree cells [26]. The uniform cells are used
for rough sampling; based on it, we then use octree cells to
refine the uniform cells which have complex geometry inside.

A detail description of the cell representation is presented
in [26]. Note the cells need to be aligned with the LDNIs
model. Suppose the pixel width of a LDNIs model is δ. We
set the uniform cell size γ = 2k×δ, where k is the maximum
subdivision number of an octree cell. Based on γ and the
extents ExtLDNI_min and ExtLDNI_max, the uniform cells can then
be calculated. A 2-dimensional illustration of a LDNIs model
and the two types of cells is shown in Figure 6. In the figure,
we set k = 3 so γ = 8⋅δ. Obviously, we reach the sampling
resolution of the LDNIs model when a uniform cell is
subdivided by k times. Further subdivision is meaningless

Figure 6: An illustration of the alignment between a LDNIs model
and the related uniform and octree cells. In the example, k=3.
Each uniform cell is 8 times of pixel width.

Figure 5: An intersection example between two LDNIs models.

LDNIs1 ∩
LDNIs2

LDNIs1

LDNIs2

 7/12

since there will be no samples stored in the input LDNIs
model.

5.2 Adaptive Sampling Criteria
To construct a cell representation from a LDNIs

representation, we need an adaptive sampling approach. In
this research, we extend an accurate sampling-based method
[13] from a polygonal model to a LDNIs model.
A boundary cell Ck is a cell which has some boundary points
inside it. If a cell has no sampling points inside it, it is either
an inside or outside cell. There is no need to further subdivide
an inside/outside cell. Therefore we only need to consider a
boundary cell Ck. Suppose ε is a given approximation error
tolerance. Our approach to judge if Ck needs to be subdivided
is based on an adaptive sampling test given as follows.

Adaptive sampling test:

(1) Calculate an error-minimizing point vc based on the
quadric error function (QEF) of all the points vi (i =
1,…, k) in Ck. If no vc is found, return failed;

(2) Topological test of vc to ensure the iso-surface within
each cell is topologically equal to a simple disk:
a. If vc is outside Ck, return failed;
b. Check normals of vi (i = 1,…, k) and normal of vc,

if normal Nvc is invalid or there is a normal flip
(Nvi • Nvc < 0), return failed;

(3) Geometric tests of vc based on the geometric error
between an approximation and the exact surfaces:
Check the distance di from vc to a plane defined by
the position and normal of vi(i = 1,…, k), if di > ε,
return failed.

(4) Save vc as an error-minimizing point for Ck and
return succeeded.

If the adaptive sampling test fails, the cell has complex
geometry inside it. Since the current sampling resolution is
not sufficient to capture the geometry, we need to subdivide Ck
and apply the test recursively.
An adaptive subdivision algorithm based on the adaptive
sampling test is presented in [13]. In the algorithm, there are
two major cell queries, Corner_Sign_Query and
Get_Sampling_points. Corner_Sign_Query determines the
inside/outside sign of a cell corner. Get_Sampling_Points
returns a set of sampling points vi (both position and normal)
inside a cell. Both of them can be easily implemented on the
LDNIs representation. That is, since a cell corner must lie on
a ray (refer to Figure 6), we can easily calculate its INorm to
determine its inside/outside sign. Similarly we can identify
nodes that are inside a cell (including its boundary) and return
them as the sampling points.
Therefore, an adaptive cell representation can be constructed
from a given LDNIs model.

5.3 Mesh Tiling for Multiple LDNIs
After a cell representation is constructed, we use a

modified dual contouring method for reconstructing polygons

[26, 27]. Unlike the marching cube algorithm, the dual
contouring algorithm will not generate cracks for an adaptive
grid with different grid sizes. Further, two strategies to
generate manifold-preserved mesh surfaces are presented in
[27] for overcoming the topology ambiguity that may occur
inside the finest octree cells after the maximum subdivision.
As shown in Section 3.4, for big size models or high accuracy
requirements, we split the bounding box of a model into
smaller tiles and construct a LDNIs model for each tile (refer
to Figure 3). We then construct a cell representation from the
LDNIs model of each tile. Finally we use the contouring
method to construct a piece of polygonal meshes in the tile.
It is critical to ensure that the independently generated meshes
can be merged into a proper manifold model. We achieve this
by adding a buffer region in the right, back and bottom sides
of each tile. The width of the buffer region is one uniform cell
size. Therefore, two neighboring tiles will overlap over the
buffer region. A 2-dimensional illustration of a tile (i, j) and
its buffer region is shown in Figure 7. The two neighboring
tiles, (i+1, j) and (i, j+1), are also shown in the figure. They
overlap ((i, j) by one layer of uniform cells.

Figure 7: An illustration of the buffer region of a tile to ensure the

mesh boundaries of neighboring tiles will match.

Figure 8: A mesh tiling example for the LDNIs in Figure 3.

Mesh (1, 0, 1)

Mesh (1, 1, 0) Mesh (1, 0, 0)

 8/12

We also define the boundary of a tile as (ExtLDNI_min,
ExtLDNI_max]. So in the modified dual contouring method, we
test each active edge of a cell before constructing a quad for it.
If the edge is inside (ExtLDNI_min, ExtLDNI_max], it is a valid edge
and we generate a corresponding quad or triangle for it;
otherwise, it is an invalid edge and we simply do nothing.
Consequently we can ensure the polygonal meshes of two
neighboring tiles have no duplicate triangles.
After the polygonal meshes in all the tiles are generated, we
can simply merge them together. Since the buffer region
overlaps two neighboring tiles and the calculated error-
minimizing points in the buffer region are used in
reconstructing polygons of both tiles, the meshes in the two
tiles have a common boundary. Hence the merged polygonal
model is watertight. As an example, the constructed
polygonal meshes for the LDNIs given in Figure 3 are shown
in Figure 8. A magnified view of a portion of two neighboring
meshes is also given in the figure. The merged polygonal
model is valid with no holes or duplicate triangles.

5.4 Accuracy of Generated Meshes
In the adaptive sampling test, we calculate an error-

minimizing point of a cell from all the sampling points in the
cell from a LDNIs model. We also explicitly compare the
approximation error with a given tolerance ε. If the
approximation error is smaller than ε, we will use the
calculated error-minimizing point in the contouring process;
otherwise, we subdivide the cell until it reaches the finest level.
At the finest level, a cell size is the same as the pixel width δ.
Therefore, if we use the cell center to approximate all the
features inside the cell, the approximation error in the
contouring process will be less than δ. So if we set tolerance ε
<< δ, we know:
Proposition 6 The polygonal model generated by the
aforementioned adaptive sampling and contouring process has
an approximation error that is less than pixel width δ.

6 Parallel Computing Framework and Performance
A significant advantage of our method is the simplicity of

parallelizing it. We develop a parallel computing framework
for modeling complex geometries based on the LDNIs
representation (refer to Figure 9). We discuss the computation
in each step as follows. In addition, we briefly analyze their
theoretical performance.
(1) In order to construct a LDNIs model from a polygonal
model, the uniform sampling process goes through each
polygon and use scan conversion algorithm to generate
intersection points in three axes. Therefore the time
complexity of this step is O(NTri) where NTri is the number of
polygons. We use the graphics hardware in constructing
LDNIs models. Based on highly parallel structure, the
graphics hardware can construct a LDNIs model very quickly.
In our current implementation, we use a PC with high-end
graphics hardware (NVIDIA GeForce 8800 GT) to generate
LDNIs models for input polygonal models. All the generated
LDNIs models are saved in a network-connected hard disk,

which can be accessed from a cluster of PCs. The
performance of constructing the LDNIs models is very
satisfactory, usually within seconds.
(2) The LDNIs model of each tile can be processed separately
without other tiles’ information. Therefore we can use a PC
cluster to process all the tiles in parallel. The total running
time is then determined by that of the most complex tile if a
PC cluster has a sufficient number of machines. In our current
implementation, we use command line to specify a tile number
and the parameter values. This can be easily extended to a
server-client based architecture.
(3) The geometric operations on the LDNIs representation go
through each pixel of a LDNI to determine keeping or
discarding the nodes. Hence the time complexity of this step
is O(w2) where w is the pixel resolution. The contouring
algorithm spends O(1) time on each cell of the grid. Therefore,
the time complexity of the contouring is O(NCell) where NCell is
the number of cells (including both uniform and octree cells).
Both the geometric operations and the contouring from the cell
representation are rather fast (usually within a second on a PC
with Pentinum 4 CPU 3.2 GHz).
(4) The time complexity of constructing a cell representation
from a LDNIs representation is O(NNode • k) where NNode is the
number of nodes in a LDNIs model and k is the maximum
subdivision number. It is the most time-consuming step in our
method and usually takes more than 60% of the total running
time. Since the adaptive sampling test in constructing octree
cells only requires the information related to the cell in the test,
we can use a PC cluster to parallelize the program of cell
generation. In addition, for each tile we can use multiple
threads to process the octree cells stored in a stack. Therefore,
the step can be performed much faster in a PC with multi-core
processors. In our experience based on a PC with an Intel

Tile1 Tilem Tilen

`

Graphics
hardware

Polygonal
Models

PC
Cluster

Multi-core
Processors

LDNIs1 LDNIsm LDNIsn

- Volume tiling
- Constructing LDNIs

Meshes1 Meshesm Meshesn

- Geometric operation
- Cell generation
- Contouring

... ...

- Merging meshes

......

required

Figure 9: A parallel computing framework for modeling complex
geometries using our LDNIs based method.

 9/12

Core2 Quad CPU Q6600 2.4GHz, the multi-thread
implementation is general 2~3 times faster than a single thread
implementation.
(5) The polygonal meshes generated separately for each tile
can be merged into a polygonal model rather quickly (usually
within a second). The time complexity of this step is O(NTri)
where NTri is the triangle number of all the meshes.
We present some examples in Section 7 with our experimental
results on the computing time.

7 Results and Discussions
We used C++ programming language with Microsoft

Visual Studio 2005 to implement the proposed method. We
have also tested our algorithms using polygonal models with
various complexities. Four of the tests are shown in Figure
10-13. Except test 1, all the tests are based on a commodity
PC with an Intel Core2 Quad CPU Q660 2.4GHz and 4GB
DRAM running Windows Vista.
The first test is a test case on Boolean operations that was first
presented in [13] (refer to Figure 10). The Boolean results on
three models (a bunny [28], a dragon [28], and a Beethoven
statue) are shown in Figure 10-top. We use the same
computer used in [13] (a commodity PC with a 3.2 GHz
Pentium IV processor and 2GB DRAM running Windows XP)
to do the test. The computing time of the three major steps as
discussed in Section 3-5 is given in Table 1. Compared with
the results given in [13], the LDNIs based method is
significantly faster (15~25 times faster, refer to Table 2). Note
the test results are all based on a single thread running in a
sequential mode.
The second test is a test case that we take from [29] to test the
operation of removing self-intersections (refer to Figure 11).
We first design an internal structure based on a microstructure
and a given model (a Beethoven statue). Based on the
structure configurations, we construct a sphere model at each
joint and a cylinder model at each strut. We then merge all the
sphere and cylinder models without proper Boolean operations.

Figure 10: Results of test 1. The three input models and their relative
positions are shown in the top; screen captures of the generated results
are shown in the bottom.

Figure 11: Results of Test 2. The input model is shown in the
left; screen capture of the generated model is shown in the right.

Table 3: Running Results of Test 2.

Tile
Construct &

Verify
LDNIs (sec)

Adaptive
Sampling

(sec)

Contouring
(sec)

Merge
meshes (sec)

(0, 0, 0) 7.3 10.3 3.3
(1, 0, 0) 8.4 13.7 4.8

1.2

Note: Pixel width = 0.005; maximum subdivision number = 3.

Table 1: Running Results of Test 1.

Model Input
Tri #

Construct
LDNIs
(sec)

Geometric
Operation

(sec)

Adaptive
Sampling &
Contouring

(sec)

Output
Tri #

Bunny 69,664 5.3
Dragon 723,708 8.6 0.2 (∪) 7.7 143,696

Union 143,696 5.4
Beethoven 5050 3.8 0.3 (−) 8.6 136,978

Union 143,696 5.4
Beethoven 5050 3.7 0.3 (∩) 4.6 61,176

Note: Pixel width = 0.0032; maximum subdivision number = 4.

Table 2: Computing Time Comparison.
Model Method presented

in [13] (sec)
LDNIs-based
method (sec)

Bunny∪Dragon 572 22

(Bunny∪Dragon) −Beethoven 287 18
(Bunny∪Dragon) ∩Beethoven 184 14

bunny

dragon

bunny∪dragon

Beethoven

(bunny∪dragon)−Beethoven (bunny∪dragon)∩Beethoven

Sphere Cylinder

Invalid
polygonal
model

Regularized
polygonal
model

 10/12

The constructed polygonal model is obviously invalid since it
has lots of self-intersections (refer to Figure 11.left). We use
the geometric operation as discussed in Section 4.1 to
eliminate all the self-intersections. The generated model is

now valid with all spheres and cylinders are properly
Booleaned (refer to Figure 11.right). The size of the input
model is 5.0×4.0×2.8. The model has 228,640 triangles. Our
algorithm subdivides the model into 2×1×1=2 tiles and run
each tile in parallel. The running time of each tile is given in
Table 3. Since the tile (1, 0, 0) takes longer, the total running
time will depend on it, which takes about 27 seconds. The
merged polygonal model has 838,976 triangles.
In the third test, we take a spring model M2 generated from a
given model M1 based on an approaches presented in [30]
(refer to Figure 12). Their relative positions are also shown in
the figure. We calculate the subtraction of the two models
(M1- M2). The size of the input models is 3.2×3.2×3.2 with
328,777 triangles. Our algorithm subdivides the model into
2×2×2=8 tiles and run each tile in parallel. The running time
of each tile is given in Table 4. The constructed polygonal
model has 617,692 triangles.
In the fourth test, we select 12 test models, many of which are
publicly available. We randomly scale, rotate, and position
them at each strut of a structure generated from a cube (M1).
We merge the 12 test models into one model (M2). We then
calculate the union result of the structure and the merged
model (M1 ∪M2). The size of the input models is 4.8×4.6×4.5.
The two input models have 445,053 triangles. Our algorithm
subdivides the model into 3×3×3=27 tiles and run each tile in
parallel. The computing time of the 10 tiles that take the
longest time is given in Table 5. The merged polygonal model
has 1,375,773 triangles.
As shown in the results, the generated triangle meshes are
denser around sharp corners and small features due to the
adaptive subdivision process. This is highly desirable since
these features have higher curvatures. Therefore we can use
reasonable amount of triangles to construct an accurate model.
The running time of our method is satisfactory. Even for
rather complex geometries as shown in Test 4, we can
generate Boolean results within 20 seconds if a sufficient
number of PCs are available such that each tile can be
processed in parallel. The memory requirements are also
satisfactory based on subdividing a model into multiple tiles.

8 Conclusion and Future Work
We have presented a novel LDNIs-based geometric

modeling method for accurately modeling complex geometries.
Our approach is volumetric and hierarchical, and can achieve
the accuracy required in most CAD/CAM applications. We
use volume tiling which significantly reduces the memory
requirement for processing the model. Hence we can use
commodity PCs to handle very large models. Our method can
easily be implemented to run in parallel. The computing time
can be significantly reduced by using computing devices such
as PC cluster, graphics hardware, and multi-core processor.
The polygonal model generated by our approach is
topologically equivalent to the exact surface and has a two-
side Hausdorff error bounded by an error tolerance. Our
contouring algorithm can capture all the sharp features in the

Figure 12: Results of Test 3. The input models are shown in the
top; screen capture of the subtraction result is shown in the bottom.

Table 4: Running Results of Test 3.

Tile Construct
LDNIs (sec)

Subtraction
(sec)

Adaptive
Sampling &
Contouring

(sec)

Merge
meshes (sec)

(0, 0, 0) 3.5 0.2 3.8
(1, 0, 0) 3.4 0.2 3.7
(0, 1, 0) 3.3 0.2 3.9
(1, 1, 0) 3.4 0.2 3.7
(0, 0, 1) 3.5 0.2 3.9
(1, 0, 1) 3.4 0.2 3.7
(0, 1, 1) 3.4 0.2 3.8
(1, 1, 1) 3.4 0.2 3.8

1.0

Note: Pixel width = 0.0038; maximum subdivision number = 4.

Table 5: Running results of Test 4 (10 tiles with longest time).

Tile Construct
LDNIs (sec)

Subtraction
(sec)

Adaptive
Sampling &
Contouring

(sec)

Total
(sec)

(1, 0, 2) 6.5 0.3 12.0 18.8
(1, 0, 0) 4.7 0.4 9.5 14.6
(0, 0, 1) 4.6 0.3 6.5 11.4
(2, 1, 0) 4.4 0.3 6.6 11.3
(2, 0, 2) 6.0 0.2 4.1 10.3
(2, 0, 1) 4.4 0.3 5.3 10.0
(2, 1, 2) 4.2 0.3 5.4 9.9
(0, 0, 2) 5.9 0.2 2.8 8.9
(0, 2, 1) 4.3 0.3 4.2 8.8
(1, 2, 2) 4.1 0.3 3.9 8.3

Note: Pixel width = 0.0025; maximum subdivision number = 4.

M2

M1−M2

M1

 11/12

constructed model. In addition, our approach is simple and
easy to implement. The experimental results on a variety of
CAD models have also verified the effectiveness and
efficiency of our method.
Our future work includes: (1) we are investigating the
approaches of using graphics processing unit (GPU) to
implement some steps of our method to further improve its
speed; (2) we are doing robustness tests and exploring
theoretically provable method to handle even degenerate data;
(3) We also plan to utilize the method presented in this paper
in other geometric operations such as offsetting and local
geometry modifications.

ACKNOWLEDGEMENTS
The first author would like to acknowledge the support by

the James H Zumberge Faculty Research and Innovation Fund
at the USC. The second author would like to acknowledge the
support by CUHK Direct Research Grant CUHK/2050400.

REFERENCES
[1] Hoffmann, C. 1989. Geometric and solid modeling. Morgan

Kaufmann, San Mateo, California.
[2] Rossignac, J. and Requicha, A. 1986. Offsetting operations in

solid modelling. Computer Aided Geometric Design, 129-148.
[3] Hoffmann C. 2001. Robustness in geometric computations.

ASME Journal of computing and information science in
engineering, 1, 143-156.

[4] Lorensen, W. E. and Cline, H. E. 1987. Marching cubes: A high
resolution 3D surface construction algorithm. In Proceedings of
ACM SIGGRAPH 1987, Computer Graphics Proceedings,
Annual Conference Series, 163-169.

[5] Kobbelt, L., Botsch, M., Schwanecke, U., and Seidel, H. P. 2001.
Feature-sensitive surface extraction from volume data. In
Proceedings of ACM SIGGRAPH 2001, Computer Graphics
Proceedings, Annual Conference Series, 57-66

[6] Ju, T., Losasso, F., Schaefer, S. and Warren, J. 2002. Dual
contouring of hermite data. In Proceedings of ACM SIGGRAPH
2002, Computer Graphics Proceedings, Annual Conference
Series, 339-346.

Figure 13: Results of Test 4. The input models are shown in the top; screen captures of the union result are shown in the bottom.

M2

M1∪M2

M1

 12/12

[7] Kim, Y., Varadhan, G., Lin, M. and Manocha, D. 2003. Fast
swept volume approximation of complex polyhedral models.
Proceedings of the eighth ACM symposium on solid modeling
and application, 11-22.

[8] Kaufman, A., D. Cohen, and R. Yagel. 1993. Volume graphics.
Computer, 26(7): 51-64.

[9] Jones M.W., Baerentzen J.A. and Sramek M., 2006, “3D
distance fields: a survey of techniques and applications”, IEEE
Transactions on Visualization and Computer Graphics, vol.12,
no.4, pp.581-599.

[10] Pauly, M., R. Keiser, L. P. Kobbelt, M. Gross. 2003. Shape
modeling with point-sampled geometry. In Proceedings of ACM
SIGGRAPH 2003, Computer Graphics Proceedings, Annual
Conference Series, 641-650.

[11] Menon J.P. and Voelcker H.B. 1995, On the completeness and
conversion of ray representations of arbitrary solids, In Proc. of
ACM Symposium on Solid Modeling and Applications 1995,
pp.175-286.

[12] Wang C.C.L. and Y. Chen. 2008, Layered Depth-Normal
Images: a sparse implicit representation of solid models.
Computer-Aided Design, submitted.

[13] Chen Y. 2007. An accurate sampling-based method for
approximating geometry. Computer-Aided Design, vol.39, no.11,
pp.975-986.

[14] Blinn, J. F. 1982. A generalization of algebraic surface drawing.
ACM Transactions on Graphics, 1(3), 235-256.

[15] Bloomenthal, J. 1997. Introduction to implicit surfaces. Morgan
Kaufmann, San Mateo, California.

[16] Pasko, A., Adzhiev, V., Sourin, A. and Savchenko, V. 1995.
Function representation in geometric modeling: concepts,
implementation and applications. The Visual Computer, 11(8),
429-446.

[17] Perry, R. and Frisken, S. 2001. Kizamu: A system for sculpting
digital characters. In Proceedings of ACM SIGGRAPH 2001,
Computer Graphics Proceedings, Annual Conference Series, 47-
56.

[18] Ohtake, Y., Belyaev, A. G., and Pasko, A. 2001. Dynamic
meshes for accurate polygonization of implicit surfaces with
sharp features. Proceedings of the International Conferences on
Shape Modeling & Applications, 74-158.

[19] Hartquist E.E., Menon J.P., Suresh K., Voelcker H.B., Zagajac J.
1999. A computing strategy for applications involving offsets,

sweeps, and Minkowski operations. Computer-Aided Design,
vol.31, no.3, pp.175-183.

[20] Huang, Y., J. H. Oliver. 1995. Integrated simulation, error
assessment, and tool path correction for five-axis NC milling.
Journal of Manufacturing Systems, 14(5), 331-344.

[21] Heidelberger B., M. Teschner, and M. Gross. 2003, Volumetric
collision detection for deformable objects, Technical Report
No.395, Computer Science Department, ETH Zurich.

[22] Cignoni P., Ganovelli F., Montani C., Scopigno R. 2000.
Reconstruction of topologically correct and adaptive trilinear
isosurfaces. Computers & Graphics, 24, 3(2000), 399-418.

[23] Frisken, S. F., Perry, R. N., Rockwood, A. P., and Jones, T. R.
2000. Adaptively sampled distance fields: A general
representation of shape for computer graphics. In Proceedings
of ACM SIGGRAPH 2000, Computer Graphics Proceedings,
Annual Conference Series, 249-254.

[24] Varadhan, G., Krishnan, S., Sriram, T. and Manocha, D. 2004.
Topology preserving surface extraction using adaptive
subdivision. Proceedings of Eurographics/ACM SIGGRAPH
symposium on geometry processing, 235-244.

[25] Zhang, N., Hong, W. and Kaufman, A. 2004. Dual contouring
with topology-preserving simplification using enhanced cell
representation. Proceedings of IEEE Visualization, 505-512.

[26] Chen, Y. 2007. Robust and accurate Boolean operations on
polygonal models. ASME International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conferences, Las Vegas, Nevada, September 4-7,
2007, DETC2007-35731.

[27] Wang, C. C. and Chen, Y. 2008. Layered Depth-Normal Images
for Complex Geometries – Part Two: Manifold-Preserved
Adaptive Contouring. ASME International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conferences, New York City, New York, August 3-
6, 2008, DETC2008-49576.

[28] Stanford 3D scanning repository (http://www-
graphics.stanford.edu/data/3Dscanrep/).

[29] Chen, Y. 2007. 3D texture mapping: a microstructure design
method for rapid manufacturing. Computer-aided Design and
Application, vol. 4, No. 6, pp.761-771.

[30] Chen, Y, S. Wang. 2008. Computer-aided product design with
performance-tailored mesostructures. International CAD
Conference and Exhibition, Orlando, Florida, submitted.

