
Ellipsoidal-Blob Approximation of 3D Models

and Its Applications

Shengjun Liu a,b, Xiaogang Jin a,∗, Charlie C. L. Wang b

Kin-chuen Hui b

aState Key Lab of CAD&CG,
Zhejiang University, Hangzhou, 310027, P.R.China

bDepartment of Mechanical and Automation Engineering,
The Chinese University of Hong Kong, Hong Kong, P.R.China

Abstract

This paper presents a technique for automatically approximating a given mesh
model with an ellipsoidal blobby model. Firstly, an ellipsoid decomposition algo-
rithm is introduced to approximate given models by ellipsoids. After that, a blobby
implicit surface employing ellipsoidal blobs is modelled to fit the sampling points
on the given mesh. Finally, the reconstructed ellipsoidal blobby model is applied
in two applications: the geometry data reduction and the target shape controlled
cloud animation.

Key words: Ellipsoidal blobby model; Implicit surface; Animation; Geometry data
reduction

∗ Corresponding author. Tel.: +86-571-88206681 ext 507; fax: +86-571-88206680.
E-mail addresses: liushengjun@cad.zju.edu.cn (S. Liu), jin@cad.zju.edu.cn (X. Jin),
cwang@mae.cuhk.edu.hk (C.C.L. Wang), kchui@mae.cuhk.edu.hk(K. Hui).

Preprint submitted to Elsevier Science 16 November 2006



1 Introduction

The computer graphics, computer-aided design and computer vision litera-
tures are filled with a diverse array of surface representations. The reason for
this variety is that there is no single representation that can satisfy the needs
of all problems in various applications. Implicit surface is one of the most pop-
ular representations which are widely employed in computer graphics appli-
cations including geometric modelling, three-dimensional metamorphosis and
collision detection. Among variety of implicit surfaces, one important class is
the so-called blobby model [1] and its variants — metaball [2] and soft object
[3]. However, the method to efficiently and effectively approximate a given
mesh model by a blobby model is still a problem under research. For simple
objects (e.g., spheres and peanut-like objects etc.), it is easy to obtain their
corresponding blobby representations. For a model with complex shape such
as a human body, it is a difficult and tedious work to construct blobs for the
model manually. The motivation of the work presented in this paper is to
seek an automatic method to approximate given mesh models by a blobby
representation.

Here we present an automatic approach to approximate a given mesh model
with an implicit surface employing ellipsoids as primitives — named as ellipsoidal-
blobs. Our algorithm consists of two steps: in the first step, the given mesh
model is sampled into points and then decomposed into a set of ellipsoids;
in the second step, the final blobby model is reconstructed and computed
from the ellipsoids through numerical optimization. The reconstructed blobby
model has many applications. To demonstrate the functionality of an ellip-
soidal blobby model, we apply it in the applications of the geometry data
reduction and the target shape controlled cloud animation.

Previous related works will be firstly reviewed in the following section. Af-
ter that, a modified ellipsoid decomposition algorithm will be introduced in
section 3. The mathematical representation and the reconstruction method of
ellipsoidal blobby models are then presented in section 4. In section 5, two
applications will be demonstrated. Lastly, our paper ends with the section of
conclusion and discussion.

2 Previous Work

An implicit surface S is usually defined by a continuous scalar function f(x)
with x ∈ <3. The geometry of S is given by the locus of points at which the
function f(x) = 0. In [1–3], the implicit surfaces are defined as the summation
of radial symmetric functions, which are generally in the form of

2



f(x) = −t +
n∑

i=1

ωifi(x). (1)

In this formula, the parameter t is a threshold of isosurface S, n is the number
of primitives, ωi is the weight for the ith primitive (with default value 1.0),
and the function fi describes the profile of a blobby sphere with a particular
center and radius. Due to the smooth blending property of implicit surfaces,
3D morphing can be easily conducted between two given implicit surfaces with
any topological structures. However, as aforementioned, the automatic recon-
struction technique for blobby models is still under research. For all existed
automatic approaches [4–7], spheres are adopted as the only primitives. As
spheres are isotropic, the aliasing errors of spherical blobby models on sharp
or thin features are relative great. Thus, we will employ an ellipsoidal blobby
implicit surface to fit a given model so that the error of approximation can be
reduced. First of all, the given object M is decomposed into a set of ellipsoids.
The ellipsoids are then employed as initial primitives in the blobby model. In
the following, the isosurface defined by these ellipsoidal blobs is adjusted to
improve the approximation through numerical optimization.

In the area of geometry model data reduction, some approaches reduce the
data size of geometry models through the transformation between the bound-
ary representation and the volumetric (or implicit) representation (e.g.,[8,9]).
As will be shown later, the reconstruction of ellipsoidal blobby models can be
considered as a lossy compression technique, where we use very few blobs to
approximate a given geometry model.

The other application of the ellipsoidal blobby model shown in our paper is the
target shape controlled cloud animation. In computer graphics, there are two
categories of works to simulate the gaseous motion of clouds or smokes. The
approaches in one category simulate the physical process of fluid dynamics
[10–13], and the methods in another category are heuristic using the tech-
niques such as procedural modelling [14–21] or fractals [22–24]. The physics-
simulation based methods consider the shape and motion of gas as the result
of air movement, so they produce realistic images by approximating the phys-
ical phenomena during the movement of clouds. Although Stam developed
a fast simulation method by simplifying fluid dynamics in [11,12] where he
demonstrated a real-time animation of smoke on a high-end workstation, the
physics-based simulation governed by fluid dynamics in general is still time-
consuming — especially when the target shape is desired to be controlled.
Techniques for the target shape controlled fluids in [25,26] involved the care-
fully designed force fields and a modified diffusion equation for smoke gath-
ering. Shi et al. in [27] also proposed a method to control the density and
dynamics of smoke so that the synthetic appearance of the smoke resembles

3



a still or moving object. They represented the smoke region and the target
object as implicit functions, and imposed the designed velocity constraints on
the smoke boundary during a dynamic fluid simulation. As their approach
is based on the simulation of atmospheric fluid dynamics, the computational
cost is expensive. On the other hand, none of the heuristic approaches [14–24]
are sufficient for the purpose to efficiently generate a target shape controlled
cloud animation. Relying on the reconstructed ellipsoidal blobby approxima-
tion, we will present two geometry-based cloud animation schemes with the
target shape controlled.

3 Ellipsoid Decomposition

For a given polygonal mesh, obviously there are many different possible el-
lipsoid decompositions. In [28], Bischoff and Kobbelt designed an algorithm
to find one candidate among this multitude of decompositions, where the
computed decomposition is a local optimum with respect to the shape, the
orientation and the distribution of ellipsoids. However, some small features on
given models are missed in their algorithm. To avoid this, under the framework
of [28], a modified scheme is developed.

3.1 The Framework of Ellipsoid Decomposition

The framework of Bischoff and Kobbelt [28] is in fact a greedy optimization
algorithm — i.e., only a finite number of configurations are searched.

Briefly, every ellipsoid is generated by growing from a surface point p on the
given mesh model. First of all, by fixing the sphere center c on the normal
direction np of p, the largest inscribed sphere is determined by searching all
other surface points until finding a point q that makes the radius of the sphere
minimal. A tangent plane Pq of the sphere at q can be determined by nq, to-
gether with the tangent plane Pp at p. We then strengthen the sphere in the
wedge defined by Pp and Pq to an ellipsoid until the surface of the ellipsoid
touch the third surface point r. Finally, the ellipsoid is grown in the direction
perpendicular to the plane pqr until the fourth point s is touched. The whole
procedure is illustrated in Figure 1. For this point-based method, as long as
the density of surface points is high enough, the intersection between the con-
structed ellipsoid and the given polygonal mesh can be neglected. Therefore, a
sampling procedure is needed before generating ellipsoids from surface points
for low-resolution models.

After constructing all the ellipsoids, to reduce the redundancy led by overlap-

4



Fig. 1. The illustration of an ellipsoid generation.

ping, only the ones provide significant contribution to the volume of object are
selected. This is achieved by a greedy optimization: started from sorting the
ellipsoid in a minimal heap by their volumes in descending order, the ellipsoids
are added into the final set one by one in the order of their contribution to
the incrementation of volume. When popping an ellipsoid from the top of the
heap we re-calculate the volume contribution of all the interacting ellipsoids
and update their positions in the heap. The selection procedure stops when
the incremental volume by adding an ellipsoid is small enough.

3.2 The Modified Scheme

In order to improve the quality of decomposition results, we modify the original
decomposition algorithm of [28] in the following aspects:

• To grow the ellipsoid as big as possible, instead of using the exact touching
points p, q, r, s, the authors in [28] employed points p′, q′, r′, s′ which
are obtained by shifting the original points by some small offset ε along
normal direction into the interior of the mesh. However, during our investi-
gation, we found that processing the points in this manner will make some
small features neglected during the ellipsoid selection because of their small
volume contribution. Therefore, we generate the points p′, q′, r′, s′ by shift-
ing the original points along normal vectors outwards but not inwards the
mesh. The approximation error introduced by this point shifting will be

5



a. Given model. b. Decomposition by [28]. c. Decomposition by ours.

Fig. 2. The comparison of ellipsoid decompositions.

compensated later during the blobby fitting step in section 4.

• Furthermore, during ellipsoids selection, the geometry significance is consid-
ered together with the volume contribution. We use the curvature at each
sampling point as a weight of volume contribution so that the ellipsoids
whose volume contributions are small but are important to the surface fea-
tures can be selected to remain. It is greatly helpful for preserving small
features on the given model.

• Lastly, for the given model with a very dense mesh, we adopt the vertices
of simplified model (with quadratic error controlled) as the sampling points
for generating ellipsoids, instead of randomly selected vertices. It is because
that random selection may miss some important features of the model,
but using a good mesh simplification algorithm can preserve them. In our
implementation, we adopt the mesh simplification algorithm of [29].

With the above modifications, the ellipsoid decomposition result has been
significantly improved. For instance, the decomposition results shown in Figure
2 are from the original approach [28] and our modification respectively. It is
easy to find that the result from our modified scheme preserves the important
details (such as ears of the horse) much better. This provides a good start for
the following ellipsoidal blobby model reconstruction.

4 Reconstruction of Ellipsoidal Blobby Models

With the ellipsoids decomposed from the given mesh model M as input, an
ellipsoidal blobby model Ω approximating M is reconstructed from the ellip-
soids by taking their centers as the skeletons with associated field functions.
The isosurface of Ω approximates the surface of M . After that, the parameters
of blobs in Ω are optimized to reduce the approximation error.

6



4.1 Mathematical Representation

Field functions employed in a blobby model can be classified into global and
local ones. For the global field functions, the computational cost will be quite
expensive when there are many primitives included in a blobby model, and
their fields will overlap each other globally [1,4]. This limits the number of
blobs that could be involved. Thus, we choose local polynomial field functions
in our blobby model. Local field functions [2,3,5–7] decrease to zero at the
distance of influence radius R. Based on the local influence region, a fast com-
puting speed can be achieved. Besides, local field functions offer local controls
on the defined implicit surfaces, which is extremely important for using an
implicit surface to approximate a given mesh surface. The parameters of the
field functions will be modified through a numerical optimization procedure
later, where the number of parameters will directly affect the dimension of
searching space in optimization. The fewer dimension, the faster computation
could be achieved in the optimization. Based on these reasons, we choose the
following field function

fi(p) =





B2
i (1− r2

i

R2
i
)2, if ri ∈ [0, Ri]

0, elsewhere
(2)

which is originally employed for a spherical blobby model, where i represents
the index of a primitive, ri = d(p, ci) returns the Euclidean distance from a

given point p to the center of blob ci, Ri =
√

e2
i (1 + Ai) defines the influence

region, ei is the radius of ith sphere. Ai and Bi are two parameters that can
be adjusted in a field function — Ai is used to adjust the influence radius and
Bi is conducted to change the shape of fi. Substituting the field functions into
Eq.(1) defines an implicit surface using points ci as skeletons which is similar
to the function in [7], but provides two more parameters on each field function
to adjust the implicit surface.

When using the field function defined in Eq.(2), all primitives are spheres.
We distort every fi(p) to fnew

i (q) in the following way to introduce ellipsoidal
blobs

fnew
i (q) = fi(Tq) = fi(p) (3)

where T is a transformation matrix to map the point q on an ellipsoid E onto
the point p on its largest inscribed sphere S. In general, an ellipsoid can be
represented implicitly by a matrix Q as [x y z 1]Q[x y z 1]T = 0, and a sphere
can be expressed as [x y z 1]P[x y z 1]T = 0, where P is a matrix. Relating
them by P = TQTT , we can determine the transformation matrix T. The

7



mathematical representation of an ellipsoidal blobby model is then obtained
by substituting Eq.(3) into Eq.(1).

4.2 Model Reconstruction

The ellipsoidal blobby model Ω approximating a given polygonal object can
be reconstructed through an automatic procedure. First of all, we take the
ellipsoids decomposed in section 3 as the initial blobs — the transformation
matrix of each ellipsoid and its largest inscribed sphere are computed at the
meanwhile. After that, a numerical optimization is conducted to reduce the
difference between the isosurface of Ω and the given model. We use the down-
hill simplex algorithm [30] to optimize the parameters. The object function is
defined as F = 1

m
(
∑

p∈Ω (f(p))2), where m is the number of the samples, Ω is
the sample points set. To accelerate the optimization procedure, the centers
of blobs are fixed, so we have only two parameters, Ai and Bi, to be optimized
for each blob. For all the examples shown in this paper, the isosurfaces are
computed on f(x) = 0 with the threshold parameter t = 1.0.

Figure 3 shows a comparison of the reconstructed blobby models using spher-
ical blobs [7] vs. ellipsoidal blobs, where the left is the result using a spherical
blobby model defined by 639 blobs and the right one is an ellipsoidal blobby
model with only 300 blobs. The approximation errors, Lmean and Lmax, are
computed by the publicly available Metro tool [31] and the polygonization
algorithm [32]. Every spherical blob is with 5 coefficients to record its posi-
tion and shape, and each ellipsoidal blob has 9 coefficients — thus for the
spherical blobby result 5× 639 = 3195 numbers need to be record while only
9 × 300 = 2700 coefficients are needed for the ellipsoidal model. From the
results, it is not hard to conclude that the ellipsoidal blobby model gives a
better result with even less primitives.

5 Applications of Ellipsoidal Blobby Models

5.1 Data Reduction of Geometric Model

The first application of the ellipsoidal blobby models is in the area of geometry
data reduction — i.e., lossy geometry compression. For a given mesh model,
if it has nv vertices and nf triangular faces, the total bytes to recording this
model is 12nv + 12nf where every vertex has 3 float numbers for its <3 co-
ordinate, every triangle has 3 integers for encoding indices of vertices, and
both integer and float numbers occupy 4 bytes. On the other side, for the

8



Fig. 3. The reconstructed implicit surfaces using spherical (top left: with 639 blobs,
Lmean = 0.16 and Lmax = 0.53) and ellipsoidal (bottom left: with 300 blobs,
Lmean = 0.03 and Lmax = 0.29) blobby objects respectively. The top middle is
a superimposed image of the given model and spherical blobs. The bottom middle
is an image superimposed with the given model and ellipsoidal blobs. The two right
images are the given bunny model.

approximation with nb ellipsoidal blobs, we need to conduct 36nb bytes to
record the ellipsoidal blobby model. Nine float numbers are used to define a
blob, which are Bi, the center ci of the blob, the orientation (θx, θy) and the

radiuses (rx, ry, rz) of the ellipsoidal blob, where rk = tk
√

e2
s(1 + Ai), tk is the

ratio between the radii of the ellipsoid E and its largest inscribed sphere S,
k ∈ {x, y, z}. Based on the Euler formula nf ≈ 2nv, a triangular mesh model
needs about 36nv bytes. Therefore, as long as nb < nv, the data size has been
reduced.

We have implemented the ellipsoidal-blob approximation algorithm on a PC
with standard configuration (Inter PIV 3.4GHz CPU + 1GB RAM). Figures
4-7 show the experimental results of approximating polygonal meshes by el-
lipsoidal blobs. In each example, the original mesh model, and the ellipsoidal
blobby models before vs. after optimization are shown. The approximation
errors, both Lmean and Lmax, are also reported on each example. Again, the
approximation errors are computed by the publicly available Metro tool [31]
after polygonization by [32]. We can easily find that after optimizing the blend-
ing parameters, the approximation errors have been significantly reduced.

The running time analysis of the algorithm for the examples shown in Figures
4-7 is listed in Table 1. During the ellipsoid decomposition, we use about
60,000 sample points to cover the models and avoid intersection between one

9



(a) (b) (c)

Fig. 4. Bunny: (a) the given polygonal model with 2,557 vertices, (b) the ellipsoidal
blobby without optimizing Ai and Bi (Lmean = 0.24 and Lmax = 0.68), and (c) the
final fitting result (Lmean = 0.03 and Lmax = 0.29). The blobby models are with
300 blobs (≈ 87% data reduction).

ellipsoid and the original model, and record the ellipsoids according to their
volume contributions using a 110 × 110 × 110 voxel grid. In Figure 4, we
generate 2,500 candidates and select 300 ellipsoids with significant volume
contribution. In Figure 5 and 6, we generate 2,500 ellipsoid candidates and
select 400 ellipsoids from them. In Figure 7, 3,560 ellipsoid candidates are
generated and 1,000 ellipsoids are selected. In the optimizing procedure, three
iterations are conducted for each blob. In all examples, mesh vertices are used
as surface sample points except the bunny model which uses 25,000 sampled
points on its mesh surface. The statistic of computational time is reported
in seconds. The complexity of the ellipsoid decomposition and the greedy
selection is O(mn) and O(k log m), where n is the number of surface sample
points, m is the number of ellipsoid candidates and k is the number of finally
selected ellipsoids.

Table 1
The running time of ellipsoidal-blobs approximation.

Model Figure
Time for ellipsoid
decomposition (s)

Time for the opti-
mization of blobby
objects (s)

Total
time(s)

Bunny 4 3,139 360 3,499

Dog 5 3,367 1,010 4,377

Horse 6 1,568 789 2,357

Dragon 7 2,029 1,538 3,567

5.2 Target Shape Controlled Cloud Animation

The second application presented here is the target shape controlled cloud
animation. Cloud is an important element of natural scene with their various

10



(a) (b) (c)

Fig. 5. Dog: (a) the given triangular mesh model with 49,998 vertices, (b) the
ellipsoidal blobby without optimizing Ai and Bi (Lmean = 0.27 and Lmax = 0.85),
and (c) the final fitting result (Lmean = 0.07 and Lmax = 0.45). The blobby models
are with 400 blobs (≈ 99% data reduction).

Fig. 6. Horse: (a) the given polygon model with 48,486 vertices, (b) the ellipsoidal
blobby without optimizing Ai and Bi (Lmean = 0.36 and Lmax = 0.76), and (c) the
final fitting result (Lmean = 0.05 and Lmax = 0.33). The blobby models are with
400 blobs (≈ 99% data reduction).

(a) (b) (c)

Fig. 7. Dragon: (a) the given model with 24,708 vertices, (b) the ellipsoidal blobby
without optimizing Ai and Bi (Lmean = 0.25 and Lmax = 0.62), and (c) the final
fitting result (Lmean = 0.05 and Lmax = 0.43). The blobby models are with 1000
blobs (≈ 96% data reduction).

11



fascinating appearances. Moving clouds usually give plenty of space for imagi-
nation. We feel exciting when a cloud in the sunshiny sky resembles the shape
of an animal or some other real objects. The magic performance of clouds
with their shapes and metamorphosis are often employed in movies. For in-
stance, recently, the movie — ”Kung Fu Hustle” [33] used a special effect to
morph a piece of cloud into a Buddha. Here, we are going to develop tech-
niques for digitally producing the similar effect, which have many applications
in entertainment industries. Our method involves using the aforementioned el-
lipsoidal blobby models to approximate the given model and to simulate the
metamorphosis between objects with cloudy appearances. Benefited from the
implicit representation, we can approximate both the target object and the
initial clouds by blobby models and easily deform between them. Therefore,
the only left issue we need to address is how to design animation schemes for
the motion of blobs to simulate the metamorphosis of clouds naturally. Two
schemes are proposed here.

5.2.1 Aggregation Scheme

The scheme simulates a large scale cloud animation, where several pieces of
clouds are aggregated into the target shape progressively. The motion of clouds
in an aggregation manner is produced backwards. To simulate the aggregation,
the blobs approximating the target shape are firstly subdivided into several
subsets. Then, the shape of clouds corresponding to each subset of blobs is
modelled at several key-frames during the animation. Finally, the cloud ani-
mation is generated by interpolating the positions and shapes of blobs between
key-frames.

In detail, the bounding box of the ellipsoidal blobby model approximating
the target shape is computed, and the space covered by the bounding box is
subdivided into several sub-spaces by some planes. The planes are defined by
users or generated automatically according to pre-defined rules. For instance
the cloud animation resembling a dragon shown in Figure 8, after determining
the blobby model, we divide the space of its bounding box into 24 sub-regions
by six planes: y = −1/6h, y = 1/6h, z = 0, x = 0, z = x, z = −x, where
h is the height of the bounding box. The ellipsoidal blobs are classified into
24 clusters by the positions of their centers, where the blobs falling into one
cluster are conducted to model a piece of cloud. The moving direction for a
piece of cloud is defined according to the region where it locates (following
some prescribed rules) and the magnitude of its velocity is then generated
randomly. Based on their velocities, the positions of each cluster of blobs in
the key-frames can be easily determined.

Simply placing the clusters into their corresponding key-frame positions is
not enough to generate realistic cloud animation. In order to improve the

12



Fig. 8. Eight key-frames in the cloud animation forming the shape of a dragon.

reality, in each key-frame, we slightly move every blob in random while keeping
it in the bounding box of its cluster. Meanwhile, the size of a blob is also
slightly adjusted in random. At last, we conduct particle forces to repulse
ellipsoidal blobs so that they do not intersect each other too much. In this
way, the positions and shapes of all blobs in each key-frame are determined.
The clouds at every time step can be finally generated by interpolating the
position and shape of every ellipsoidal blob in all key-frames, which results
in a realistic animation that each piece of cloud (i.e., cluster of blobs) moves
in a constant speed between key-frames but the shapes and the velocities of
blobs vary randomly. More specifically, in every time step of the animation,
after determining the positions and the shapes of all blobs, the implicit surface
defined by the blobs is computed by Eq.(1) and displayed by volume rendering.
Figure 9 shows eight key-frames of a cloud animation generated by this scheme.

5.2.2 Diffusion Scheme

In the second scheme, the cloud with a specified target shape is formed starting
from one piece of cloud in a diffusion manner. Different from the aggregation
scheme, the cloud animation in this scheme is produced in a forward manner.
When we progressively display the ellipsoidal blobs of a blobby model in some
sequence, we can simulate the diffusion effect of fluid dynamics similar to [27].

To generate a diffusion-like animation, we classify the blobs into three cate-
gories:

• Category I: The initial cloud blob;
• Category II: The cloud blobs represent the target shape roughly;
• Category III: The blobs refine the target shape of clouds.

As the greedy optimization has been conducted in the ellipsoid selection (sec-
tion 3), the first selected ellipsoid is always with the largest volume (which

13



Fig. 9. The cloud animation forming a dragon shape produced by the aggregation
scheme.

(a) Unsatisfactory order.

(b) Order for diffusion effect.

Fig. 10. Orders for displaying blobs.

is classified to the blob in category I) followed by the ellipsoids adding which
leads to the most significant change of the volume among the rest ones. Thus,
except the very beginning one, the first 10% blobs in the decomposition se-
quence are classified into category II while the rest 90% fall into the last cat-
egory. The blobs of three categories are consecutively added into the implicit
model (defined in Eq.(1)) to generate the diffusion-like cloud animation.

However, simply displaying the blobs by their order in the decomposition
sequence may lead to artificial results. For example, the sequence of ellipsoid
selection in the order shown in Figure 10(a) will lead to two separated cloud
regions, which acts against the natural phenomenon of diffusion. A diffusion
procedure usually desires the continuous expansion of cloud regions. Therefore,

14



Fig. 11. The cloud animation resembling a horse shape produced by the diffusion
scheme.

we adjust the displaying order of blobs following the rule that: the newly added
blob should be an ellipsoidal blob whose signed distance from its center to the
current implicit surface f(p) = 0 is smaller than other remaining blobs in
the same category. Here, the signed distance means that the value of the
distance is negative if its center cp leads to f(cp) < 0. For instance, the newly
determined order is shown in Figure 10(b). Certainly, the order of displaying
can be further adjusted by users through an interactive tool. For the blobs
of Category III, which represent the details of the model, they will be finally
added into the implicit model together.

According to the displaying order of blobs, we generate the diffusion-like
cloud animation by adding the ellipsoidal blobs into the implicit model. When
adding a new blob, we first show it at the position with its center coincident
to the nearest visible blob. In the following, the blob is moved to its proper
position with the size being changed from zero to its own size. This changes
the shape of cloud smoothly. Figure 11 shows the cloud animation produced
by the diffusion scheme. The cloud diffuses from one small piece and finally
matches the user specified target shape — a horse.

6 Conclusion and Discussion

This paper developed an automatic scheme for approximating a given polygo-
nal mesh with an ellipsoidal blobby model. The experimental results prove that
the reconstructed implicit surfaces can approximate the original model very
well. Based on this, we demonstrate two applications of the blobby models:
the geometry data reduction and the target shape controlled cloud animation.
In summary, our work presented in this paper has the following contributions.

• A novel implicit ellipsoidal blobby model has been presented in this paper

15



to approximate a given model — this representation is more accurate than
the spherical blobby models when adopting the same number of blobs. By
this approximation, we actually introduce a data reduction technique where
we can use much smaller size of data to approximate the given models.

• Output of the ellipsoid decomposition algorithm has been enhanced, which
can preserve more details comparing to the previous scheme.

• Based on the ellipsoidal blobby representation, two geometry-based schemes
for cloud animations are introduced — one simulates the motion of clouds
in an aggregation manner while the other generates cloud animation in a
diffusion way. Both of these schemes can effectively produce realistic cloud
animations that mimic results from the time-consuming physics-based mod-
elling approaches but much faster.

One limitation of the proposed approach is that aliasing exists on sharp fea-
tures when using a blobby implicit surface to approximate the shape of a given
polygonal model. Although the newly developed ellipsoidal blobby model can
reduce the approximation error when comparing to the spherical blobby mod-
els, the approximation does not converge to the discontinuous features even
if the sampling rate is increased. This is because that the primitives in a
blobby model are all continuous. To solve this convergence problem, some
other quadratic primitives with sharp edges/corners will be considered in our
future research.

7 Acknowledgements

The authors would like to acknowledge the helpful comments given by the
reviewers. This work was supported by the National Natural Science Founda-
tion of China (Grant No. 60573153), Natural Science Foundation of Zhejiang
Province (Grant No. R105431) and Program for New Century Excellent Tal-
ents in University (Grant No. NCET-05-0519). It was partially supported by
the Hong Kong RGC/CERG grant CUHK/412405 and the CUHK project
CUHK/2050341.

References

[1] Blinn JF. A generalization of algebraic surface drawing. ACM Transactions on
Graphics 1982;1(3):235-256.

[2] Nishimura H, Hirai M, Kawai T, Kawata T, Shirakawa I, Omura K.
Object modeling by distribution function and a method of image generation.

16



Transaction IEICE Japan 1995;J68-D(4):718-725.

[3] Wyvill G, McPheeters C, Wyvill B. Data structure for soft objects. The Visual
Computer 1986;2:227-234.

[4] Muraki S. Volumetric shape description of range data using blobby model.
Computer Graphics 1991,25(4):227-235.

[5] Tsingos N, Bittar E, Gascuel MP. Semi-automatic reconstruction of implicit
surfaces for medical applications. In: Proceedings of Computer Graphics
International’95, 1995. p. 3-15.

[6] Bittar E, Tsingos N, Gascuel MP. Automatic reconstruction of unstructured
3D data: combining a medial axis and implicit surfaces. Computer Graphics
Forum 1995,14:457-468.

[7] Jin XG, Liu SJ, Wang CCL, Feng JQ, Sun HQ. Blob-based liquid morphing.
Computer Animation and Virtual Worlds 2005,16:391-403.

[8] He T, Hong L, Kaufman A, Varshney A, Wang S. Voxel based object
simplification. In: IEEE Visualization’95, 1995.p.296-303.

[9] Nooruddin F, Turk G. Simplification and repair of polygonal models using
volumetric techniques. IEEE Transactions on Visualization and Computer
Graphics 2003;9(2):191-205.

[10] Kajiya JT, Herzen BPV. Ray tracing volume densities. Computer Graphics
1984,18(3):165-174.

[11] Stam J. Stable fluids. In: Proceedings of SIGGRAPH’99, 1999. p. 121-128.

[12] Stam J. Interacting with smoke and fire in real time. Communications of the
ACM 2000,43(7):76-83.

[13] Fedkiw R, Stam J, Jensen HW. Visual simulation of smoke. In: Proceedings of
SIGGRAPH’01, 2001. p. 15-22.

[14] Ebert DS. Volumetric modeling with implicit functions: a cloud is born. In:
Visual Proceedings of ACM SIGGRAPH’97, 1997. p. 147.

[15] Dobashi Y, Nishita T, Yamashita H, Okita T. Using metaballs to modeling and
animate clouds from satellite images. The Visual Computer 1998;15(9):471-482.

[16] Ebert DS. Procedural volumetric cloud modeling and animation. In: Simulating
nature: from theory to application. 1999. p. 5.1-5.52. SIGGRAPH’99 Course
Notes No 26.

[17] Elinas P, Stürzlinger W. Real-time rendering of 3D clouds. Journal of Graphics
Tools 2000,5(4):33-45.

[18] Dobashi Y, Kaneda K, Yamashita H, Okita T, Nishita T. A simple, efficient
method for realistic animation of clouds. In: Proceedings of SIGGRAPH’00,
2000. p. 19-28.

17



[19] Ebert D, Musgrave F, Peachey D, Perlin K, Worley S. Texturing & Modeling:
A Procedural Approach, Morgan Kaufmann Publishers; 2002.

[20] Schpok J, Simons J, Ebert DS, Hansen C. A real-time cloud modeling,
rendering, and animation system. In: Symposium on Computer Animation’03,
2003. p. 160-166.

[21] Bouthors A, Neyret F. Modeling clouds shape. In: Eurograhics’04 (short
papers), 2004.

[22] Gardner GY. Visual simulation of clouds. Computer Graphics 1985;19(3):279-
303.

[23] Nishita T, Takao S, Katsumi T, Nakamae E. Display of the earth taking into
account atmospheric scattering. In: Proceedings of SIGGRAPH’93, 1993. p.
175-182.

[24] Nishita T, Takao S, Nakamae E. Display of clouds taking into account multiple
anisotropic scattering and sky light. In: Proceedings of SIGGRAPH’96, 1996.
p. 379-386.

[25] Fattal R, Lischinski D. Target-driven smoke animation. ACM Transactions on
Graphics 2004,23(3):439-446.

[26] Yu YZ, Shi L. Object modeling and animation with smoke. Technical Report
UIUCDCS-R-2002-2262. Computer Science, University of Illinois at Urbana-
Champaign. 2002.

[27] Shi L, Yu YZ. Controllable smoke animation with guiding objects. ACM
Transactions on Graphics 2005,24(1):1-25.

[28] Bischoff S, Kobbelt L. Ellipsoid decomposition of 3D-models. In: Proceedings
of 3DPVT’02, 2002. p. 480-488.

[29] Garland M, Heckbert PS. Surface simplification using quadric error metrics. In:
Proceedings of SIGGRAPH’97, 1997. p. 209-216.

[30] Press WH, Flannery BP, Teukolsky SA, Vetterling WT. Numerical Recipes in
C. Cambridge University Press: Cambridge, 1988.

[31] Cignoni P, Rocchini C, Scopigno R. Metro: measuring error on simplified
surfaces. Computer Graphics Forum 1998;17(2):167-174.

[32] Bloomenthal J. An implicit surface polygonizer. In: Heckbert PS, editor,
Graphics Gems IV. New York: Academic Press; 1994.p.324-350.

[33] “Kung Fu Hustle”. http://www. kungfuhustle.com/.

18


