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Abstract

This paper presents a novel gradient-based image completion algorithm for re-
moving significant objects from natural images or photographs. Our method re-
constructs the region of removal in two phases. Firstly, the gradient maps in the
removed area are completed through a patch based filling algorithm. After that, the
image is reconstructed from the gradient maps by solving a Poisson equation. A
new patch-matching criterion is developed in our approach to govern the completed
of gradient maps. Both the gradient and the color information are incorporated in
this new criterion, so a better image completion result is obtained. Several examples
and comparisons are given at the end of the paper to demonstrate the performance
of our gradient-based image completion approach.
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1 Introduction

The removal of objects or the recovery of damaged portion in a given image,
known as image completion, is an important task in the photo editing or the
video post-processing. Given an input image I with a missing or unknown
region Ω, the task of image completion is to propagate structure and texture
information from the known region I\Ω into Ω. The removed parts can be
filled by various interactive tools such as clone brush strokes and compositing
processes. However, automatically and seamlessly filling Ω by the known region
in I is still a problem under research.
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A number of approaches related to image completion have been proposed in
computer graphics and computer vision literatures [2, 4–6]. In [4], Bertalmio
et al. conducted a PDE-based method to repair damaged images. The idea
is to extend the structures inwards by satisfying some continuities across the
boundaries of the damaged area. The recovered results are highly smooth.
This works well for small damaged regions. However, when the reconstructed
area is large, it will give a blurry artifact that lacks texture. Therefore this
approach fails in reconstructing large regions. Levin et al. [2] extended the
idea by measuring global image statistics based on the prior image knowl-
edge besides the local color information. Drori et al. [6] incorporated pyramid
image approximation and adaptive image fragments to achieve impressive re-
sults. Nevertheless, all these approaches are extremely slow due to the high
computational complexity.

Recently, some researchers have considered exemplar-based methods to
complete images with large portion removed [3, 5, 6, 8, 9, 16, 19]. The first at-
tempt to use exemplar-based synthesis for image completion was by Harri-
son [8], who filled the pixels in the target region by the level of ”textureness”
on the neighborhoods of a pixel. Although the intention sounds good, strong
linear structures were often overruled by nearby noises in his approach. Jia and
Tang [9] presented a technique for filling image regions by explicitly segment-
ing the unknown area into different homogeneous texture areas with a tensor
voting method. However, their approach requires both an expensive segmenta-
tion step and a difficult choice about how to stitch the boundary between two
textures. More recently, Criminisi et al. [5] proposed an exemplar-based image
completion algorithm through region filling, where the patch filling order is de-
termined by the angle between the isophote direction and the normal direction
of the local filling front - so that the missing region with stronger structures
can be filled in higher priority. Sun et al. [19] introduced a novel structure
propagation approach to image completion. In their system, the user manu-
ally specifies important missing structures by extending a few curves or line
segments from a known region to the unknown. Their approach synthesizes im-
age patches along these user-specified curves using patches selected around the
curves in the known region. Structure propagation is formulated as a global
optimization problem by enforcing structure and consistency-constraints. If
only a single curve is specified, structure propagation is solved using Dynamic
Programming. When multiple intersecting curves are specified, the Belief Prop-
agation algorithm is adopted to find the optimal patches. After completing the
structure propagation, the remaining unknown regions are filled using patch-
based texture synthesis.

None of these approaches [2–6, 8, 9, 16, 19] conducts gradient maps in the
image completion. The approach presented in this paper recovers the unknown
region Ω in two phases: in phase one, the region is filled in the gradient maps
by a patch based best-first filling algorithm; in phase two, the image is recon-
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structed in Ω from the reconstructed gradients by solving a Poisson equation.

The gradient-based image processing techniques and the Poisson equation
solving techniques have been addressed in several related areas such as high
dynamic range compression [7], Poisson image editing [11], image fusion for
context enhancement [13], interactive photomontage [1], Poisson image mat-
ting [14] and photography artifacts removal [18]. In our approach, a new cri-
terion is developed for selecting similar patches to fill the damaged region
in gradient maps, so that the image can be reconstructed from gradients by
solving a Poisson equation.

The contributions of our proposed approach consists of two aspects:

• A new framework for image completion is developed by integrating the
techniques of 1) exemplar-based image completion, 2) image processing in
gradient domain, and 3) Poisson equation;

• We introduce a better patch-matching criterion, which incorporates both
the gradient and the color factors.

Based on this, as will be demonstrated later, our approach can generate better
completion results than other existing methods in a comparable computing
time.

2 Gradient-Based Image Completion

2.1 Algorithm Overview

The input of an image completion algorithm is an image I which contains a
manually masked area as the unknown region Ω (the region to be filled), while
the output is a modified image I ′ with Ω filled. Here, we conduct the similar
notation as that used in the image completion literatures [4–6, 16, 19]. We
denote the unknown region by Ω, the known region by Φ, the contour of Ω by
∂Ω, the source and target patches by Ψs,Ψt respectively. The symbol G(· · · ) is
conducted to represent the information and operations in the gradient domain.
As mentioned above, the whole algorithm consists of two phases: 1) image
inpainting of G(Ω) and 2) reconstruction of Ω from G(Ω).

The first phase is completed by iteratively copying the information from
a source patch Ψs to a target patch Ψt, which shows the highest priority of
patch-filling among all candidate patches with centers located on ∂Ω - the
method for determining patch-filling order will be described in section 2.2. Ψs

is a patch in Ψ showing the highest similarity to Ψt based on some matching
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criterion (which will be detailed in section 2.3). After finding Ψs, the pixels
p ∈ Ψt with its confident parameter C(p) = 0 are filled by their corresponding
pixels in Ψs. Note that the pixel values to be filled are its gradients G(p) (both
Gx(p) and Gy(p)). Ω and ∂Ω should be updated correspondingly after filling,
so as the priority of candidate patches on ∂Ω. The purpose of the second
phase is to compute a new I ′ based on the inpainted G so that ‖∇I ′ −G‖ is
minimized - this will be addressed in section 2.4.

In summary, the overall algorithm is listed below.

(1) Initialization;
(2) Selecting a target patch Ψt with its center pc ∈ ∂Ω, which is with the

highest filling priority P (pc);
(3) Searching Φ to determine a source patch Ψs, which shows the highest

similarity between Ψs and Ψt;
(4) For ∀p ∈ Ψt, if its confident parameter C(p) = 0, filling its gradients G(p)

by the gradients G(p′) on its corresponding pixel p′ ∈ Ψs and setting
C(p) = 1;

(5) Updating Ω and ∂Ω;
(6) If Ω 6= ∅, go back (2);
(7) Computing I ′ which leads to min ‖∇I ′ −G‖.

During the initialization, the filling front ∂Ω is searched, and the confident
parameter and the gradients on every pixel are computed.

2.2 Gradient-Confidence Based Patch-Filling Order

Image content features, such as color histogram, gradient, texture, shape
and object composition, are usually introduced to extract image salient infor-
mation. These features are usually employed to determine the filling order of
patches into Ω. Zhang et al. [16] incorporated the textureness in the neigh-
borhoods of a patch to determine the filling order, and Criminisi et al. [5]
used the angle between the isophote direction and the normal direction ∂Ω
to define the priority of patch filling so that the patches along structures in
the damaged region can be filled before filling other textures. In this paper
we compute the patch filling order using image gradient feature which is akin
to [5].

The confidence parameter C(p) at a pixel p is initialized to zero if p ∈ Ω;
otherwise it is assigned to one.

C(p) =





0, ∀p ∈ Ω

1, ∀p ∈ I\Ω
(1)
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The second relevant parameter defined on p is the gradient term G(p), which
reflects the local shape feature, and its value is based on the magnitude of
the gradient information at location p. The gradient term G(p) is defined as
follows:

G(p) =
1

|A|
∑

q∈A

√
G2

x(q) + G2
y(q) (2)

where A denotes the neighborhood area around pixel p, and G = [Gx, Gy]
denotes the gradient field of an image for the horizontal and vertical directions
using a simple forward difference. Here, A is chosen with the same size as the
patches Ψs and Ψt.

For a given patch Ψt centered at the point pc for some pc ∈ ∂Ω, we define
its filling priority as the following formula:

P (pc) = Υ(pc) ·G(pc), (3)

Υ(pc) =

∑
q∈Ψt∩(I\Ω) C(q)

|Ψt| , (4)

where |Ψt| represents the area of Ψt. The gradient term G(pc) is a measurement
of the amount of edge and structure information surrounding the pixel pc.
The purpose for calculating the patch priority value P (pc) is to encourage the
structural regions, which are with greater P (pc), to be filled first. Therefore this
can help to propagate the broken lines into the connected ones. The greater
value returned by P (pc), the higher filling priority is given on the patch Ψt.

2.3 Patch-Matching Criterion

After computing the patch filling priorities on ∂Ω, the patch Ψt with the
highest priority is firstly selected to fill gradients. The target region is filled
with corresponding gradients on some source region Ψs. Therefore, the crite-
rion of selecting a best source patch takes a central role in an exemplar-based
image completion algorithm. As aforementioned, under the assumption that
the content in the unknown area is similar to the content of the known region
for some similarity measurement [16], the traditional inpainting techniques
propagate pixel-information via diffusion (e.g., [4, 6]), which results in blurry
artifact and discontinuous lines in large regions. Criminisi et al. [5] propagated
the filling patches by directly sampling the source patch. Alternatively, here
we only fill the gradients sampled from a source patch. In addition, we do not
employ the Sum of Squared Difference (SSD) in [5], which is widely used in
image completion to measure the similarity between space patches. The rea-
son is that the SSD does not always suffice to provide the desired completion
results (ref. [15]).
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We develop an exponential similarity measurement to search the target
patch Ψt in Φ, which incorporates both the color differences and the gradient
differences between two patches. The similarity is defined as

s(Ψs, Ψt) = edc(Ψs,Ψt)+dg(Ψs,Ψt) (5)

with
dc(Ψs, Ψt) =

∑
(x,y)

‖Ψc
s(x, y)−Ψc

t(x, y)‖ (6)

dg(Ψs, Ψt) =
∑

(x,y)
‖Ψg

s(x, y)−Ψg
t (x, y)‖ (7)

where Ψc
s, Ψc

t represent the color information of the source patch and the
target one in RGB, while Ψg

s, Ψg
t represent the corresponding gradient vectors.

For those unknown pixels, zeros are used as pixel values. Based on this new
criterion, the source patch Ψs for filling the gradients in Ψt can be determined
by

Ψs = arg minΨi∈Φ

s(Ψi, Ψt)

|Ψi| (8)

The functionality of this new patch-matching criterion will be demonstrated
later.

As described in the overall algorithm, after iteratively filling the gradients in
Ω, we obtain the final updated gradient map G′ = [G′

x, G
′
y] which is conducted

to reconstruct the image I ′ by solving a Poisson equation.

2.4 Image Reconstruction from Gradients

Image reconstruction from gradient fields is a very active research area.
In 2D, a modified gradient vector field G′ = [G′

x, G
′
y] may not be integrable.

Let I ′ denote the completion image reconstructed from G′, we employ one of
the direct methods recently proposed in [7] to minimize ‖∇I ′ − G‖, so that
G ≈ ∇I ′. By introducing a Laplacian and a divergence operator, I ′ can be
obtained by solving the Poisson differential equation [12,18]

∇2I ′ = div([G′
x, G

′
y]) (9)

Since both the Laplacian ∇2 and div are linear operators, approximating
them using standard finite differences yields a large system of linear equa-
tions. We use the full multigrid method [10] to solve the Laplacian equation
with Gaussian-Seidel smoothing iterations. This leads to O(n) operations to
reach an approximate solution, where n is the number of pixels in the region
Ω. Note that the Poisson equation is only solved in Ω.

For solving the Poisson equation more efficiently, an alternative is to use a
rapid Poisson solver, which uses a sine transform based on the method [12] to

6



invert the Laplacian operator. However, the complexity with the rapid Poisson
solver will be O(n(log(n))). Therefore, the full multigrid method is employed
in our implementation.

The regions to be filled are zero-padded on all sides, so that the Dirichlet
boundary condition instead of the Neumann boundary condition is used to
reconstruct the image I ′, so that the scale-shift ambiguity mentioned in [18]
is avoided.

3 Experimental Results and Discussions

Our algorithm has been applied to a variety of colorful photographs with
complex background structures. As the purpose of image completion is to fill
damaged areas while satisfying visual perception, it is commonly accepted
that the quality of results is detected by the human perception of the ap-
pearance in completed images [6]. The experimental results demonstrate that
satisfactory completed images have been generated by our approach. All the
examples shown in this section are tested on a PC with Pentium IV 1.6GHz
CPU + 512MB RAM. Similar to other patch-filling based image completion
approaches (e.g., [5]), we employ patches with 9× 9 pixels in all our examples
except the one in Figure 7, where a better result is given on the patches with
13×13 pixels as larger patches make it more robust to the ambiguity on depth.

Our first example shown in Figure 1 is downloaded from the web site —
http : //www.cis.rit.edu/fairchild. The result shows that even if about 39%
region (the foreground persons) has been removed, our method can still recover
the background reasonably good in the damaged region. However, the result
from [6] blurs the texture and lacks detail texture in the filled area. Moreover,
our algorithm takes only about 4 minutes to compute the result while Drori
et al.’s algorithm [6] requires more than 4 hours by our implementation.

Figures 2 and 3 show the comparisons of results obtained by our gradient-
based method vs. other previous methods [4–6], where our method performs
better. For the example II in Figure 2, it is easy to find the blurry artifact
introduced by diffusion and the lack of texture in the result of [4] while ours
shows no blurry effect. In example III (see Figure 3), a larger object has been
removed, where our approach dramatically outperforms earlier works in terms
of perceptual quality. The image generated by our approach provides more
details and is more coherent than the results from other approaches. Notice
that the comparison is based on our implementations of previous techniques
[4–6]. One interesting observation is that the result of our implementation
on [5] (see Figure 3(e)) is not as good as the one shown in their paper (ref.
Figure 15(e) in [5]). If our new patch-matching criterion is applied in the

7



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Example I: (a) original image; (b) the figure needs to be completed (in white
with red boundary); (c), (d) the initial gradient maps in horizontal and vertical
directions; (e), (f) the inpainted gradient maps in horizontal and vertical directions;
(g) the result of [6]; (h) the result by our method.

implementation of [5], the result is somewhat improved (see Figure 4(a)). A
similar comparison is given on the performances of SSD and our criterion in our
own image-completion framework (see Figure 4(b) vs. 4(c)), which also shows
the advantage of our patch-matching criterion. The second comparison that
could be given is about the color-based approach vs. gradient-based approach
(see Figure 4(a) vs. 4(c)). It is easy to find that the gradient-based approach
outperforms the color-based one.

Figure 5 shows the results of our gradient-based algorithm on one example
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Example II: (a) original image; (b) the region of removed microphone needs
to be completed; (c) the result obtained by the inpainting method [4]; (d) the result
determined by our method; (e) zoom-view of the marked region in the result of [4];
(f) zoom-view of our result.

used in [6]. It is obvious that, comparing the result from [6], our algorithm
does not introduce the edge blur which is given on the result of [6]. In Figure
6, we complete the same image but in different filling orders - one is with the
naive line-scan filling order while another is with the filling order suggested
by the priority value (Eq.(3)). As has already been proved in [5], the scheme
with order suggested by priority values gives a better result.

Considering about the computational time aspect, the cost of our method
is much faster than [6], faster than [4], and comparative with [5]. Note that in
the implementation of [4], we iterate 100,000 times. Ours is a little bit slower
than [5] since we need to take some time to solve the Poisson equation. In our
current implementation, the Poisson equation can be quickly solved in several
seconds. The computing time statistics have been listed in Table 1.

The gradient-based method works well if the damaged structures can be
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Example III: (a) original image from [4]; (b) the removed region covers 13%
of the total image area; (c) the result of region filling by traditional image inpainting
[4]; (d) result from [6]; (e) the result image by exemplar-based completion [5] based
on our implementation; (f) the final image where the bungee jumper has been
completely removed and the occluded region has been well reconstructed by our
new algorithm.

represented by a set of linear structures remained. However, our approach
also shares the common limitations with other exemplar-based approaches: 1)
if there are not enough samples in the given image, it will be impossible to
reconstruct the desired structure or texture; 2) our approach has no ability
to handle depth ambiguities, where the missing area covers the intersection
of two perpendicular regions as shown in Figure 7; 3) our algorithm also has
problems when dealing with curved structures. The later two limitations are
partially solved in [19] by interactive user inputs. In our algorithm, pixel colors
are represented in RGB, we may achieve better experimental results in the CIE
Lab color space because of its property of perceptual uniformity (ref. [5, 21]),
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(a) (b) (c)

Fig. 4. Illustration for showing the performance of our patch-matching criterion and
the gradient-based approach: (a) the completion by [5] but using our new patch–
matching criterion; (b) the result from our gradient-based algorithm but with the
SSD criterion; (c) the result of our full approach.

(a) (b)

(c) (d)

Fig. 5. Example IV: (a) a photo of the oil painting “Still Life with Apples”, by
P. Cézanne, c. 1890; (b) the manually selected region to be completed; (c) result
obtained by [6]; (d) result obtained by our gradient method. Note that our result is
more sharp.

which leads the similarity distances more meaningful than in RGB.
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Fig. 6. The results from the naive line-scan patch filling order (left) vs. the priority
based patch filling order (right).

Table 1
Computational Statistics

Examples Fig. 1 Fig. 2 Fig. 3

Image Size 600× 338 480× 640 206× 308

Inpainting Area 78,824 pixels 3,235 pixels 7,997 pixels

Time of [4] 261.78 min. 7.82 min. 18.24 min.

Time of [5] 4.23 min. 1.02 min. 0.81 min.

Time of [6] 4.17 hr. 2.38 hr. 2.67 hr.

Time of ours* 4.47 min.(1.03 sec.) 1.01 min.(1.97 sec.) 1.08 min.(1.28 sec.)

*The time listed in bracket is the time for solving Poisson equations.

4 Conclusions and Future Work

A novel gradient-based image completion algorithm by solving Poisson
equation has been proposed in this paper. Our image completion approach
is conducted in two phases. At first, the gradient maps of the damaged re-
gion are reconstructed by an exemplar-based method which depends on a new
patch-matching criterion incorporating both the color and the gradient factors.
After determining the gradient maps, the completion result is computed from
the gradients by solving a Poisson equation. Experimental results demonstrate
both the feasibility and the efficiency of our algorithm.

Currently, we are intending to extend our approach from the still photogra-
phy completion to the areas of video completion and the completion of mesh
surfaces (e.g., [20]). The difficulties in removing objects from video include the
global motion compensation and the method to maintain consistency of the
unknown area over the whole video sequence [15,17,22].
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(a) (b)

(c) (d)

Fig. 7. Our approach does not handle depth ambiguities: (a) a synthesis image in
which the missing area covers the intersection of two perpendicular regions [6]; (b) a
nature image with the same ambiguity; (c) the result obtained by [6]; (d) the result
obtained by our method.
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