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Abstract 

Polyhedral mesh surfaces are widely utilized to represent objects reconstructed from 3D ranged images. In 

computer-aided engineering, it is desired to not only observe but also measure these three-dimensional objects. 

This paper presents an approach to measure the curve distance between two points on a polyhedral surface in the 

manner that simulates dragging a tapeline at the two points. After generating the initial measurement curve 

through the leading points in linear computing time, an iteration algorithm is presented to approximate 

stretching the measurement curve on the given polyhedral surface; as an option, the obtained measurement 

curve can be further stretched to leave the measured surface in some concave places – this likes what a tapeline 

behaves in reality. This novel interactive tool allows users to perform measurement tasks in an intuitive and 

natural way in virtual space. Our implementation algorithm can be completed in real time on a standard PC. At 

the end of the paper, applications of this tool are given to demonstrate its functionality.  

Keywords: virtual reality; interaction techniques; computer-aided design; manufacturing. 

1.  Introduction 

A lot of techniques for constructing a polyhedral mesh surface by the point cloud from three-dimensional 

ranged images have been developed in the last fifteen years [1-5]. After obtaining the polyhedral mesh 

representation of an object in computer, tools for manipulating the object in a virtual space are expected. In 

literature, there are some techniques for cutting 3D mesh surfaces [6, 7] or dragging a feature on the surface of a 

mesh [8]. However, there is no method for measuring a polyhedral surface in the manner of a tapeline like. In 

this paper, we present a novel approach to measure the curve distance between two points on a polyhedral 

surface in the manner that simulates dragging a tapeline at the two points – the tool is named as CyberTape. The 

function of our CyberTape tool is illustrated in Fig.1. In this example, the given model is a closed polyhedral 

surface (Fig. 1a). Users can interactively specify some leading points (small cubes in Fig. 1b) on the surface; 
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after applying our approach, the result measurement curve that simulates dragging a tapeline is generated as 

shown in Fig. 1c, where the starting and ending points are fixed – they are called location points in this paper.  

From this example, it is easy to find that the interactive measurement tool presented here is very intuitive and 

efficient.  

  
(a) given model (b) input leading points 

  
(c) result of CyberTape (d) result from shortest path technique 

Fig.1    CyberTape – an example to illustrate its behavior 

There are many algorithms for finding the shortest path between two points on 3D surfaces. The algorithms 

for determining the extract shortest path on a polyhedral surface [9, 10] (including the non-convex case) usually 

take high time costs. It is impractical to apply these algorithms to the dense polyhedral surface in a real-time 

system. Instead, the techniques [11-13] appear, which focus on generating the approximate shortest path on a 

polyhedral surface. During them, the time cost of the fastest approach is )log( nnO . They are based on using the 

Dijkstra’s algorithm [14] to compute the undirected shortest path. If the approach of Thorup [15] is used to 

compute the undirected shortest path, the computing time could be reduced. However, these shortest path 

techniques cannot be directly adopted in our approach. It is because that the shortest path techniques do not have 

the ability to reflect users’ intention of how to measure the given surface. For example, when computing the 

shortest path between the two location points given in Fig.1b, the shortest path between them is as shown in 

Fig.1d, which is opposite to the user wanted direction. Also, if the shortest path through all leading points is 

computed, all the leading points are fixed on the surface – this does not follow the behavior of a physical 

tapeline. The result of our method is encourage – the whole measurement curve can slip on the surface, which is 

much closer to using a tapeline to measure the surface of a physical object in practice. 

Our paper is organized as follows. After given necessary preliminaries in section 2, the detail algorithm of 

our method is given in three steps. Firstly, the initial measurement curve is generated through the input leading 

points in linear time in section 3; compared to [14], the algorithm given here is in more implementation detail. 
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After determining the initial measurement curve through leading points, the section 4 presents an iteration 

algorithm to simulate stretching the measurement curve on the given surface. In section 5, as an option, the 

stretched curve is further improved to leave the concave surface parts like a physical tapeline. Finally, example 

industrial applications of our tool are given. 

 

2.  Preliminaries 

Before introducing the algorithms in detail, some preliminaries are first given in this section.  

Definition 2-1 A polyhedral surface M  is defined as a pair ),( VK , where K  is a simplicial complex 

specifying the connectivity of the vertices, edges, and faces (in other words, the topological graph of M ), and 

},,{ 1 mvvV L=  is the set of vertices defining the shape of polyhedral surface in 3ℜ . 

The above definition follows the notation in [16]. In this paper, to simplify the algorithm, every polygonal face 

in M  is subdivided into triangles by the method of [17]. From K , it is very easy for our algorithm to get the 

adjacent nodes, edges, and faces of a triangular node in constant time; the same, the left/right faces of an edge 

and the three nodes/edges of a triangle can also be obtained by constant time cost. The geometric coverage of 

our method is confined to the domain of two-manifold polyhedral surface. The definition is as follows. 

Definition 2-2 For every point on the surface of a two-manifold object, there exists a sufficiently small 

neighborhood that is topologically the same as an open disk in 2ℜ ; if there is any points on the boundary that 

do not satisfy the two-manifold condition, the object is classified as non-two-manifold, or simply non-manifold. 

For a non-manifold polyhedral object, it should be converted into several two-manifold polyhedral patches 

before applying our measurement tool. The measurement curves, which are generated in this approach, are not 

allowed to change the topology and shape of the given surface. Thus, they cannot be stored in M ; they are 

stored as attribute curves attached on M . In order to represent attribute curves, four kinds of attribute elements 

are conducted in our data structure. They are defined in Tables 1 and 2, where ATTRIB_EDGENODEs and 

ATTRIB_FACENODEs are derived form ATTRIB_NODEs. A ATTRIB_EDGENODE is an attribute node on a 

triangular edge, whose coordinates depend on the position of the triangular edge by a parameter u; and a 

ATTRIB_FACENODE is an attribute node in a triangular face, whose coordinates are given by (u, v, w) that 

relates to the three nodes of the triangle. An ATTRIB_EDGE is an ordered collection list of ATTRIB_NODEs, 

which are ATTRIB_EDGENODEs or ATTRIB_FACENODEs. 
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After giving the above definitions, we will go into the detail algorithm description parts in the following of 

the paper. 

Table 1    Representational attributes 

Attribute Comprises Represents physically 

ATTRIB_NODE A point An attached point on the given polyhedral surface. 

ATTRIB_EDGE Complex of ATTRIB_NODEs A curve attached on the given surface. It is an 

ordered list of ATTRIB_NODEs. 

ATTRIB_EDGENODE A point An attached point on a triangular edge. Its position 

depends on the positions of the two endpoints of 

the triangular edge. 

ATTRIB_FACENODE A point An attached point in a triangular face. Its position 

depends on the positions of the three nodes of the 

triangular face. 

Table 2    Pseudo-code of attributes 

• ATTRIB_NODE 

ATTRIB_NODE { 

FLAGS flg; // Status flags 

ATTRIB_EDGE *attr_edge; // ATTRIB_EDGEs contain this node 

}; 

• ATTRIB_EDGE 

ATTRIB_EDGE { 

FLAGS flg; // Status flags 

MESHSURFACE *mesh_surface; // Polyhedral surface contain this edge 

ATTRIB_NODE **attr_node; // Pointer of ATTRIB_NODEs list 

}; 

• ATTRIB_EDGENODE 

ATTRIB_EDGENODE : public ATTRIB_NODE { 

Double u; // Parameter coordinate of this node 

TRGLEDGE *trgl_edge; // TRGLEDGE contain this node 

}; 

• ATTRIB_FACENODE 

ATTRIB_FACENODE : public ATTRIB_NODE { 

Double u, v, w; // Areal coordinate of this node 

TRGLFACE *trgl_face; // TRGLFACE contain this node 

}; 
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3.  Initial Measurement Curve 

As the first step of the CyberTape tool, the algorithm in this section will generate the initial measurement 

curve linking the leading points. The leading points are interactively specified on the given polyhedral surface 

using the picking tool, which is an existing function in many popular graphics systems. First, a geodesic 

distance map that approximately indicates the geodesic distance from every triangular node to a leading point on 

the polyhedral surface is computed in linear time. After that, the approximate shortest path walking along 

triangular edges between two adjacent leading points is generated from the map, also by linear time cost. 

3.1.  Geodesic distance map 

If the point sp  is a leading point, the geodesic distance map of sp  – )( sM pG  is generated by an 

advancing method, which progressively moves the event list vL  of nodes away from sp  on the given surface 

M . The geodesic distance form every vertex iv  to the point sp  is stored as a weight factor 
ivW . Before 

starting to move the event list, the 
ivW  of every internal vertex is initialized as +∞ , and the length of every 

triangular edge je  is calculated and stored. Our algorithm repeatedly moves vL  away from sp  on M ; during 

the movement, the weight factors 
ivW  of the nodes neighboring vL  are updated. The pseudo-code for the 

algorithm to generate the geodesic distance map is given in Table 3. 

After running Algorithm MapGeneration( M , sp ), the weight factor 
ivW  of every node indicates the 

approximate geodesic distance from the vertex iv  to sp . The complex of 
ivW , called W, and the pair (K, V) 

comprise the approximate geodesic distance map )( sM pG  = W + (K, V). Given the surface and the point sp  

given in Fig.2a, the visualization for isohypses is generated from )( sM pG  as shown in Fig.2c. The mesh 

presentation (Fig.2b) of the given surface shows that the shape of triangles in M  is not uniform – the upper 

triangles are much longer than the other triangles; however, our algorithm can still generate a quasi-uniform 

)( sM pG  shown in Fig.2c. Consequently, the shape of triangles in M  has less influence on )( sM pG  derived 

by Algorithm MapGeneration( M , sp ). 

For Algorithm MapGeneration( M , sp ), the running time of step 1-6 is )(NΟ , where N  is the number of 

triangular nodes; the running time of step 7 is )(EΟ , where E  is the number of triangular edges; and during 

step 9-17, since every node visits its adjacent nodes only once – in other words, every edge is passed twice, the 

running time is )(EΟ . Therefore, the running time of Algorithm MapGeneration(M, sp ) is )( EN +Ο . 
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Table 3    Pseudo-code of Algorithm MapGeneration( M , sp ) 

Algorithm MapGeneration( M , sp ) 

Input: The given polyhedral surface M and the source point sp . 

Output: The updated weight factor 
ivW  of every triangular node. 

1. for every node Gvi ∈  { 

2. +∞←
ivW ; 

3. Set the passed flag of iv  – 
ivfp  to false; 

4. if ( iv  on the triangle containing sp ) 

5. Add iv  to vL , ←
ivW distance between iv  and sp , and set 

ivfp  to true; 

6. } 

7. Calculate the length 
jel  of every edge Me j ∈ ; 

8. φ←′vL ; 

9. do{ 

10. for every node vk Lv ∈  { 

11. for every node jv  adjacent to kv  { 

12. if ((
kvW  + the length of edge kjvv ) < 

jvW ), then 
kj vv WW ← + the length of edge kjvv ; 

13. if (
jvfp  is false), then add jv  to vL′  and set 

jvfp  to be true; 

14. } 

15. } 

16. Replace vL  by vL′  and empty vL′ ; 

17. }while( φ≠vL ); 

 

 

   

(a) given surface with sp  (b) mesh representation (c) isohypse of )( sM pG  

Fig.2    Geodesic distance map 
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Fig.3    Determine the undirected shortest path by )( sM pG  

3.2.  Curve generation 

The user input leading points are stored as ATTRIB_FACENODEs in a list 0L . In order to construct an 

initial measurement curve, we generate the approximate shortest paths between the adjacent leading points in 

0L . For any leading point 0Lpa ∈ , the approximate shortest path Ρ  between ap  and sp  is formed by the 

steepest descent method [18] according to the geodesic distance map )( sM pG  of sp , where ap  and sp  are 

neighboring points in 0L . The approximate shortest path walks along the triangular edges of M .  

During the path searching, for any triangular node Ρ∈sv , all its adjacent nodes are candidates for forming 

the new part of the path. We choose the node jv , whose descent function ),( jsd vvf  has the maximum value 

among the candidates. The definition of ),( jsd vvf  is 

js

vv

jsd
vv

ww
vvf

js
−

=),(                                                                (1) 

Among the three nodes of the triangle containing ap , we choose the one - sv  with smallest weight factor to 

start the path searching. The major part of Ρ  is formed incrementally by adding the nodes with the maximum 

),( jsd vvf  one by one. The path Ρ  stops at the triangle containing sp . After linking Ρ  with ap  and sp , the 

approximate shortest path between ap  and sp  is finally determined. For example, in Fig.3, the circled nodes 

are ap  and sp , and the bolded edges are the determined path. The pseudo-codes of the path generation 

algorithm are given in Table 4 as Algorithm PathGeneration ( ap , )( sM pG ).  In the worst case (e.g., the given 

mesh is a triangle strip with a band shape), every node on the given mesh surface M  visits its adjacent node 
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once; so the time cost of Algorithm PathGeneration ( ap , )( sM pG ) is )(EΟ . In summary, we can generate the 

approximate shortest path between two leading points on M  in linear time. 

The initial measurement curve through all leading points is formed by linking the approximate shortest 

paths between the adjacent leading points in 0L . In section 4, we will describe an iterative algorithm to simulate 

stretching the measurement curve on the surface of M . 

Table 4    Pseudo-code of Algorithm PathGeneration ( ap , )( sM pG ) 

Algorithm PathGeneration ( ap , )( sM pG ) 

Input: Geodesic distance map )( sM pG  and a leading point ap . 

Output: The initial measurement curve Ρ . 

1. +∞←minW ; 

2. for every node jv  in the triangle containing ap  

3. if minWw
jv < , then js vv ←  and 

jvwW ←min ; 

4. Add savp  into Ρ ; 

5. while( ∉sv  the triangle containing sp ) { 

6. ←maxv any node adjacent to sv ; 

7. for every node jv  adjacent to sv   

8. if ( ),( jsd vvf > ),( maxvvf sd ), then jvv ←max ; 

9. Add the edge maxvvs  into Ρ ; 

10. maxvvs ← ; 

11. } 

12. Add ss pv  into Ρ ; 

13. return Ρ ; 

 

 

4.  Stretching Simulation 

This section presents an iteration algorithm, which simulates the stretching activity of a tapeline on the 

surface of a given object. The basic idea of the stretching simulation algorithm is to make the measurement 

curve locally shortest at every passed triangular edge. Based on this, two local operators are derived in section 

4.2. During the iteration, the redundant points should be eliminated before the next iteration step; otherwise, the 

measurement curve will stick at the local optimum. The elimination of two types redundant points is described 

in section 4.3. At last, the pseudo-code of the iteration algorithm is given. 

4.1.  Basic idea 

Let us first assume that the given polyhedral surface M  is planar (as shown in Fig.4); if we stretch the 

initial measurement curve as the location points, the final optimum will be a straight line linking the two 

location points (Fig.4a). Now, considering only the part around an intersection point of a triangular edge and the 
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final optimized measurement curve, the optimized curve maintains a constant angle with the triangular edge 

(Fig.4b), which leads the curve to be a straight line on a planar surface – we call it the constant angle condition. 

When every node on the measurement curve satisfies the constant angle condition, the measurement curve is a 

straight line between the two location points – the shortest curve between them. If M  is non-planar, two 

adjacent faces of a triangular edge on a three-dimensional polyhedral surface can be flattened into a plane by 

rotating around the edge. The mapping between the faces before and after flattening is isometric; when moving 

a node of the measurement curve along the triangular edge, the local optimum position is still the position that 

makes the measurement curve and the triangular edge have a constant angle. Using an iteration procedure, we 

can achieve a global shortest curve on the given polyhedral surface when every node on the measurement curve 

satisfies the constant angle condition. When a vertex ip  of the measurement curve is on a triangular node of M  

(Fig.4c), if 1111 −++− ∠≠∠ iiiiii pppppp , moving ip  to the position that makes 1111 −++− ∠=∠ iiiiii pppppp  will 

achieve the local optimum. In the following section, the detail operators for getting local optimum are given.  

φφ

1−ip

ip

1+ip

 
(b) edge local optimum 

location points

 

1−ip

ip

1+ip

 
(a) shortest path on a planar M  (c) node local optimum 

Fig.4    Basic idea illustration 

4.2.  Local operators 

There are two local operators adopted in our approach: the edge operator and the node operator. After 

linking the leading points by approximate shortest paths, the initial measurement curve is stored in an 

ATTRIB_EDGE – 0L  as a list of points. Every leading point is stored as an ATTRIB_FACENODE, every 

approximate shortest path is firstly converted into a list of triangular nodes, and all triangular nodes are further 
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converted into ATTRIB_EDGENODEs, where each ATTRIB_EDGENODE is attached to one of the triangular 

node’s adjacent edges. The parameter u of every ATTRIB_EDGENODE is either zero or one (In detail, if the 

triangular node is the start node in its adjacent edge, we set 0=u ; if it is the end node, set 1=u ). After that, all 

ATTRIB_FACENODEs except the two location points are removed from 0L . In our iterative stretching 

algorithm, either of the two local optimum operators is applied to every internal node in 0L  to achieve the 

shortest measurement curve on M . 

Edge operator 

For an internal node 0Lpi ∈ , if its parameter )1,0(∈u , the following edge operator is applied on it to 

obtain the local optimum. As illustrated in Fig.5, if ip  is on the edge edstvv , the edge operator adjusts its 

parameter u to make the length of 11 +− + iiii pppp  shortest. First, we map the points 1−ip , ip , 1+ip , edv  

into an x-y plane maintaining the angle 1φ  and 2φ  not changed, where edv′  is on the positive x-axis, 

steded vvov =′ , stii vpop =′ , iiii pppp 11 ++ =′′ , and 11 −− =′′ iiii pppp  (see the right part of Fig.5). 

Then, the intersection point ip *  of the line 11 −+ ′′ ii pp  and the x-axis is computed on the x-y plane. The new 

parameter of ip  is defined by 















′

>
′

<
′

=

otherwise
vx

px

vx

px
if

vx

px
if

u

ed

i

ed

i

ed

i

,
][

]*[

1
][

]*[
,1

0
][

]*[
,0

* ,                                                   (2) 

where ][Kx  returns the x coordinate of a point. After updating the parameter of ip  by *u , the edge operator on 

ip  is completed. In our algorithm, we utilize the symbol ][ ie pO  to represent the edge operator on ip . 

1φ

2φ

1−ip

ip

1+ip

stv

edv

y

z

x
 

⇒  

1φ

2φ

1−′ip

ip′

1+′ip

o
edv′

y

x
ip *

 

Fig.5    Edge optimize operator 
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1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

Right edges

Left edges

 

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

Right edges

Left edges

 
(a) (b) 

Fig.6    The left edges and the right edges around a triangular node 

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

][ ipL∠

][ ipR∠

 

⇒  

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

2+ip

3+ip

 
(a) right push operator 

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

][ ipL∠

][ ipR∠

 

⇒  

1−ip

ip

2+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

1+ip

 
(b) left push operator 

Fig.7    Node operators 

Node operators 

If the parameter u  of an internal node 0Lpi ∈  does not belong to )1,0( , ip  is coincident with a triangle 

node iv ; we conduct the following node operator to adjust the points in 0L . First, the edges adjacent to iv  are 

sorted in an anti-clockwise order around iv ; so the edges between ii pp 1−  and 1+ii pp  in the anti-clockwise 

direction are defined as the left edges of iv , and the edges between 1+ii pp  and ii pp 1−  are defined as the right 

edges of iv  (see Fig.6a). If a triangular edge coincides with the line ii pp 1−  or the line 1+ii pp , it is neither a left 
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edge nor a right edge of iv  (e.g., 0e  and 3e  in Fig. 6b). We can replace the node ip  in 0L  either by a list of 

points on the right edges of iv  (Fig.7a) – which is called right push operator, or by a list of points on the left 

edges of iv  (Fig. 7b) – called left push operator. In both the push operators, the positions of the new inserted 

points are very close to iv , where the distance to iv  is usually set to 
100

1
 of the edge length in our 

implementation. The order of the inserted new edge nodes is according to the order of the related triangular edge 

around iv .  

The measurement curve 11 +− −− iii ppp  separates the tessellation at iv  into two parts: left and right (the 

curve direction pointing from ip  to 1+ip ); the total angle in the left part is represented by ][ ipL∠ , and the total 

angle in the right part is represented by ][ ipR∠ . For example, in Fig.7a,  

1665544331][ −+ ∠+∠+∠+∠+∠=∠ iiiiiiii ppvvpvvpvvpvvpppL  

and  

12211001][ +− ∠+∠+∠+∠=∠ iiiiiii ppvvpvvpvvpppR . 

The sum of ][ ipL∠  and ][ ipR∠  is represented by ][ ipθ∠ . By the values of ][ ipL∠ , ][ ipR∠ , and ][ ipθ∠ , 

we choose either left push operator or right push operator to process the node ip  in 0L .  

The triangles adjacent to a vertex can be isometrically unfolded to an Euclidean plane – partial or multiple 

area around the vertex on the plane is covered by the unfolded triangles. There are three situations as shown in 

Fig.8, which metrically characterize the vertex into a Spherical vertex, a Euclidean vertex, or a Hyperbolic 

vertex [19]. For example, the tip of a convex cone is a spherical vertex and a saddle point is a hyperbolic vertex. 

πθ 2][ <∠ ipπθ 2][ =∠ ip πθ 2][ >∠ ip

Spherical Vertex Hyperbolic VertexEuclidean Vertex
 

Fig.8    Classification of vertices on a polyhedral surface 
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On a Euclidean vertex 

If ip  coincides to a Euclidean vertex, on the unfolded adjacent triangles, the local shortest curve between 

1−ip  and 1+ip  is the straight line between them. Thus, when ][][ ii pRpL ∠>∠ , we push the point ip  to the 

right side by applying the right push operator. The right push operator will not immediately make 

11 +− −− iii ppp  be a straight line; however, after iteratively applying the edge operators to them, they converge 

to a straight line. When ][][ ii pRpL ∠<∠ , pushing the point ip  to the left side by applying the right push 

operator will give the collinear tendency to 11 +− −− iii ppp  (see the dash lines illustrated in Fig. 9). For the case 

with ][][ ii pRpL ∠=∠ , the three points 1−ip , ip , and 1+ip  have already been collinear – no change is required 

on ip .  

1−ip

ip

1+ip

][ ipL∠

][ ipR∠

Lines after 

pushing

 

1−ip

ip

1+ip

4v

][ ipL∠

][ ipR∠

Lines after 

pushing

 
(a) ][][ ii pRpL ∠>∠  (b) ][][ ii pRpL ∠<∠  

Fig.9    Operator chosen criterion on a Euclidean vertex 

On a spherical vertex 

For the situation of ip  on a spherical vertex, we first cut its adjacent faces along the line ii pp 1− , and then 

unfold them onto a Euclidean plane – the unfolding result is generally as shown in Fig.10. The point 1−ip  linked 

to the left part triangles after cutting and unfolding is renamed as 1−′ip . When ][][ ii pRpL ∠>∠ , since 

iiii pppp 11 −− ′= , the distance between 1+ip  and 1−ip  is smaller than the distance between 1+ip  and 1−′ip  on 

the plane; when ][][ ii pRpL ∠<∠ , we have 1111 +−+− ′> iiii pppp . Therefore, for the ][][ ii pRpL ∠>∠  case, 

we apply the right push operator on ip  to make it have the tendency of being coincident with the 11 −+ ii pp  line; 

for the ][][ ii pRpL ∠<∠  case, the left push operator is adopted to lead ip  to be collinear with 11 −+ ′ii pp . When 

][][ ii pRpL ∠=∠ , the lengths of 11 +− ii pp  and 11 +−′ ii pp  are equal – we just randomly choose either the left 

push operator or the right push operator on ip .  
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1−ip

ip

1+ip

][ ipL∠

][ ipR∠

1−′ip

 

1−ip

ip

1+ip

][ ipL∠

][ ipR∠

1−′ip

 
(a) ][][ ii pRpL ∠>∠  (b) ][][ ii pRpL ∠<∠  

Fig.10    Operator chosen criterion on a spherical vertex 

1−ip

ip

1+ip

][ ipL∠

][ ipR∠

1+′ip

 

1−ip

ip

1+ip

][ ipL∠

][ ipR∠

1+′ip

 

(a) π<∠ ][ ipL  (b) π<∠ ][ ipR  

Fig.11    Operator chosen criterion on a hyperbolic vertex 

On a hyperbolic vertex 

When ip  is on a hyperbolic vertex, similar to dealing with the spherical case, we cut its adjacent faces 

along the line ii pp 1+  and unfold them onto a Euclidean plane. The point 1+ip  linked to the left part triangles 

after cutting and unfolding is renamed as 1+′ip . When π<∠ ][ ipL , as shown in Fig.11a, moving ip  be 

collinear with 11 +− ′ii pp  will generate the shortest path from 1−ip  to 1+′ip  - the left push operate gives this 

possibility. When π<∠ ][ ipR  (see Fig.11b), applying the right push operator will lead the curve 

11 +− −− iii ppp  to be shortened. If both π≥∠ ][ ipL  and π≥∠ ][ ipR  are satisfied, it is difficult to find a 

mathematical support to choose the left or the right push operators, we just randomly choose one. From 

experiments, we find that the edge operator will pull the measurement curve back after iterations if the random 

change makes the curve elongated. 
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Table 5    Chosen method of push operators 

Vertex Type ][][ ii pRpL ∠>∠  ][][ ii pRpL ∠<∠  ][][ ii pRpL ∠=∠  

Euclidean vertex Right push operator Left push operator None 

Spherical vertex Right push operator Left push operator Random 

 

Vertex Type π<∠ ][ ipR  π<∠ ][ ipL  others 

Hyperbolic vertex Right push operator Left push operator Random 

The chosen method of the left and right push operators is summarized in Table 5. This chosen method and 

the two push operators are generally called a node operator, which is represented by the symbol ][ iv pO  in our 

iterative stretching algorithm. 

4.3.  Remove redundant points 

After repeatedly applying the local operators to the nodes in 0L , redundant points may appear. These 

redundant points must be removed from the measurement curve efficiently; otherwise, the measurement curve 

will stick on some points so that the global optimum cannot be reached. There are two types of redundant 

points: Type I – redundant points around a triangular node, and Type II – redundant points in a triangle.  

As shown in Fig.12, Type I redundant points are the points that are very close to the endpoints of a 

triangular edge but not exactly coincident to the point. Thus, even after applying the edge operator to it for many 

times, it still stick at the triangular node. Fig.14a gives an example with Type I redundant points not eliminated 

during the iteration. Our solution is that if ε<u , let 0=u ; if ε−> 1u , let 1=u .  ε  is a very small threshold 

number, in our approach, we choose 510−=ε . Also, for any point 0Lpi ∈ , if ip  and 1+ip  are coincident, ip  

will be removed from 0L .  

A Type II redundant point ip  is the point whose two neighboring point 1−ip  and 1+ip  in 0L  are in the 

same triangle (e.g., the one in Fig.13a). If this is the case, ip  should be removed from 0L ; otherwise, the 

measurement curve will stick on the triangular edge of ip . Fig.14b gives an example that Type II redundant 

points are not removed. 
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redundant points
 

⇒  

result point
 

(a) before removing the redundant points  (b) after removing the redundant points 

Fig.12    Remove Type I redundant points 

redundant points
 

⇒  

points maintained
 

(a) before removing the redundant points  (b) after removing the redundant points 

Fig.13    Remove Type II redundant points 

  

⇓  apply local operators repeatedly ⇓  apply local operators repeatedly 

  

(a) Type I redundant points (b) Type II redundant points 

Fig.14    Examples of the redundant points not removed 
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4.4.  Algorithm summary 

To sum up, the iteration algorithm to simulate stretching the measurement curve has two operations in each 

iteration step: 1) applying local operators on every internal nodes of the measurement curve, and 2) removing 

redundant points. During the iteration, the length of the measurement curve decreases while the step number of 

iteration increases. Usually, two criteria are utilized to give the terminal condition: the curve length and the step 

number. Here, we employ a mixture of them. Either µ<− −1jj LL  or the iteration steps is greater than maxN , 

the iteration stops, where jL  is the length of the measurement curve in the jth iteration (current value), maxN  is 

the maximum iteration number, and µ  is a small number. We usually choose 5000max =N  and 510−=µ  in 

our testing examples. The pseudo-code of the iterative stretching algorithm is given in Table 6 as Algorithm 

IterativeStretching ( 0L ). 

Table 6    Pseudo-code of Algorithm IterativeStretching ( 0L ) 

Algorithm IterativeStretching ( 0L ) 

Input: The initial measurement curve 0L . 

Output: The stretched measurement curve 0L . 

1. Convert all internal nodes of 0L  into ATTRIB_EDGENODEs; 

2. 1←j ; 

3. do { 

4. for every internal node 0Lpi ∈  { 

5. if (the parameter of ip  - )1,0(∈u ) 

6. Apply ][ ie pO  on ip ; 

7. else 

8. Apply ][ iv pO  on ip ; 

9. } 

10. Remove all Tape I nodes from 0L ; 

11. Remove all Tape II nodes from 0L ; 

12. if ( µ<− −1jj LL ), then break; 

13. 1+← jj ; 

14. }while( maxNj ≤ ); 

 

 

5.  Further Improvement 

The resultant stretched measurement curve of Algorithm IterativeStretching ( 0L ) in the above section lies 

on the surface of M . Sometimes, in reality, users intend to further stretch the tapeline to let it leave the 

measured surface. The additional algorithm introduced in this section will simulate this performance of a 

physical tapeline. For example, to get the tape measurement between the two location points shown in Fig.15a, 
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the result of Algorithm IterativeStretching ( 0L ) is as shown in Fig.15b; after further stretching 0L , the result is 

as in Fig. 15c. The further stretching algorithm is an incremental method, which detects every internal node, 

0Lpi ∈ , whether ip  can be removed from 0L . If the line segment 11 +− ii pp  has any intersection point with M  

(not including 1−ip  and 1+ip ), the point ip  must be maintained in 0L ; otherwise, we can remove ip  from 0L . 

In detail, the algorithm for further stretching 0L  is listed in Table 7. 

Table 7    Pseudo-code of Algorithm FurtherStretching ( 0L ) 

Algorithm FurtherStretching ( 0L ) 

Input: The measurement curve 0L . 

Output: The further stretched measurement curve 0L . 

1. for every internal node 0Lpi ∈  { 

2. do {  

3. if the line segment 11 +− ii pp  has any intersection with M , then break; 

4. Remove ip  from 0L ; 

5. 1−← ii ; 

6. } while( 0>i ); 

7. } 

8. return 0L ; 

 

   

(a) given surface with two 

location points 

(b) result of Algorithm 

IterativeStretching ( 0L )   

(c) after applying Algorithm 

FurtherStretching ( 0L ) 

Fig.15    Further stretching the measurement curve 

 

6.  Results 

The interactive measurement tool presented in this paper can be widely used in industry. One example 

application is in the appeal industry, where the design and manufacturing comes more and more worldwide. A 

general case is that the service centers, the design centers, and the manufacturing workshops for customized 

cloth design and manufacturing are not located in the same region. Thus, the body data of customers should be 

transferred between them. However, problems occur when the human dimensions measured at the service center 
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is not enough for the operations at the design center. At present, the popular solution is to transfer the 3D full 

body data but not the dimensions between the centers. The ranged scanner in a service center captures the point 

cloud for the body shape of a customer; after that, the point cloud is converted into a polyhedral surface to 

reduce the data size while maintaining the accuracy [20]; the result polyhedral surface is finally transferred from 

the service center to the design center for customized design and manufacturing. For example, Fig.16a gives an 

example of a point cloud captured in a service center, and the transferred polyhedral surface is shown in 

Fig.16b. In the design center, various dimensions are measured on the virtual human body by the requirements 

of different designers (example measurement curves are shown in Fig.16b). The tool presented in this paper will 

be a most important measurement tool in the design center, which simulates the behavior of a tapeline in cyber 

space. For example, one key dimension for women garments is the apex-to-apex measurement around neck. As 

shown in Fig.16c and 16d, after interactively specifying the location points at the busty points and giving the 

leading points around the neck, the approach presented in this paper determines the stretched measurement 

curve, which passes through the two location points.  

  

(c) location points and leading points 

  
  

(a) point cloud (b) polyhedral surface (d) result measurement curve 

Fig.16    Application in appeal industry 
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Fig.17 gives another example application of CyberTape in the reverse engineering of a mechanical part. For 

example, after the point cloud of a mechanical part is obtained from CMMs, the related polyhedral surface is 

constructed by the algorithm in [2]; then, our CyberTape tool can be applied to determine the measurement 

curves, which helps us give manufacturing parameters before making physical prototypes. 

The computation statistics of the examples are listed in Table 8. From the statistics, it is not hard to find that 

the computation of CyberTape can be finished in real time on a dense polyhedral surface using a standard 

desktop PC. 

    

(a) point cloud (b) polyhedral surface (c) location points and 

leading points 

(d) result measurement 

curve 

Fig.17    Application in the reverse engineering of mechanical part 

Table 8    Computation statistics of the examples 

Length of 0L  (unit: CM) Tessellation 

Example Figure 
Before 

stretching 

After 

stretching 

Node 

number 

Triangle 

number 

Iteration 

steps number 

Computing 

time 

I 11 2.75 1.96 667 1330 246 < 1 sec. 

II 12 67.33 60.74 3774 7508 806 1 sec. 

III 13 9.21 7.84 1900 3808 135 < 1 sec. 

* All with 5000max =N  and 510−=µ  on a PIII 500 PC with a program written in C++. 

7.  Conclusion and Discussion 

This paper presents an interactive virtual measurement tool – CyberTape on a polyhedral surface in the 

manner that dragging a tapeline between two location points, which is intuitive and efficient to measure a 

polyhedral surface in virtual space. Our tool allows not only location points but also leading points to be 
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specified on the given surface, where the leading points give the expected direction of the measurement curve. 

Compared to existing shortest path techniques, our method is more flexible to the inclination of users. The 

process consists of three steps: 1) generating the approximate shortest paths through the leading points as an 

initial measurement curve; 2) applying local operators on every internal points to approximate a stretched curve 

on the given surface; and 3) further stretching the measurement curve to leave the measured surface in concave 

places (this is an optional step). Our implementation algorithm of the CyberTape tool can be completed in real 

time on a standard PC. 

The current implementation of CyberTape is robust and efficient enough for experimental use. However, to 

enhance its functionality, the following problem needs to be solved. Since Algorithm FurtherStretching ( 0L ) 

performances as a post-processing step in our current implementation, the result of Algorithm FurtherStretching 

( 0L ) may not be optimal enough. For example, as shown in Fig.18, the measurement curve is stuck at the 

bellybutton of a human body since there is a little cavity. If Algorithm FurtherStretching ( 0L ) and Algorithm 

IterativeStretching ( 0L ) are integrated together, the measurement curve can easily slip over the bellybutton. 

Simply putting them together will decrease the efficiency of our approach; further research can focus on how to 

mix the two algorithms into a single algorithm while maintaining the efficiency. 

  

(a) location points and leading points on an initial 

measurement curve 

(b) local optimum – bellybutton sticks the 

measurement curve 

Fig.18    The measurement curve is stuck on the bellybutton 
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