
CyberTape: an interactive measurement tool on polyhedral surface

Charlie C. L. Wang*

*E-mail: cwang@acae.cuhk.edu.hk; Tel: (852) 2609 8052; Fax: (852) 2603 6002

Department of Automation and Computer-Aided Engineering

The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract

Polyhedral mesh surfaces are widely utilized to represent objects reconstructed from 3D ranged images. In

computer-aided engineering, it is desired to not only observe but also measure these three-dimensional objects.

This paper presents an approach to measure the curve distance between two points on a polyhedral surface in the

manner that simulates dragging a tapeline at the two points. After generating the initial measurement curve

through the leading points in linear computing time, an iteration algorithm is presented to approximate

stretching the measurement curve on the given polyhedral surface; as an option, the obtained measurement

curve can be further stretched to leave the measured surface in some concave places – this likes what a tapeline

behaves in reality. This novel interactive tool allows users to perform measurement tasks in an intuitive and

natural way in virtual space. Our implementation algorithm can be completed in real time on a standard PC. At

the end of the paper, applications of this tool are given to demonstrate its functionality.

Keywords: virtual reality; interaction techniques; computer-aided design; manufacturing.

1. Introduction

A lot of techniques for constructing a polyhedral mesh surface by the point cloud from three-dimensional

ranged images have been developed in the last fifteen years [1-5]. After obtaining the polyhedral mesh

representation of an object in computer, tools for manipulating the object in a virtual space are expected. In

literature, there are some techniques for cutting 3D mesh surfaces [6, 7] or dragging a feature on the surface of a

mesh [8]. However, there is no method for measuring a polyhedral surface in the manner of a tapeline like. In

this paper, we present a novel approach to measure the curve distance between two points on a polyhedral

surface in the manner that simulates dragging a tapeline at the two points – the tool is named as CyberTape. The

function of our CyberTape tool is illustrated in Fig.1. In this example, the given model is a closed polyhedral

surface (Fig. 1a). Users can interactively specify some leading points (small cubes in Fig. 1b) on the surface;

 2

after applying our approach, the result measurement curve that simulates dragging a tapeline is generated as

shown in Fig. 1c, where the starting and ending points are fixed – they are called location points in this paper.

From this example, it is easy to find that the interactive measurement tool presented here is very intuitive and

efficient.

(a) given model (b) input leading points

(c) result of CyberTape (d) result from shortest path technique

Fig.1 CyberTape – an example to illustrate its behavior

There are many algorithms for finding the shortest path between two points on 3D surfaces. The algorithms

for determining the extract shortest path on a polyhedral surface [9, 10] (including the non-convex case) usually

take high time costs. It is impractical to apply these algorithms to the dense polyhedral surface in a real-time

system. Instead, the techniques [11-13] appear, which focus on generating the approximate shortest path on a

polyhedral surface. During them, the time cost of the fastest approach is)log(nnO . They are based on using the

Dijkstra’s algorithm [14] to compute the undirected shortest path. If the approach of Thorup [15] is used to

compute the undirected shortest path, the computing time could be reduced. However, these shortest path

techniques cannot be directly adopted in our approach. It is because that the shortest path techniques do not have

the ability to reflect users’ intention of how to measure the given surface. For example, when computing the

shortest path between the two location points given in Fig.1b, the shortest path between them is as shown in

Fig.1d, which is opposite to the user wanted direction. Also, if the shortest path through all leading points is

computed, all the leading points are fixed on the surface – this does not follow the behavior of a physical

tapeline. The result of our method is encourage – the whole measurement curve can slip on the surface, which is

much closer to using a tapeline to measure the surface of a physical object in practice.

Our paper is organized as follows. After given necessary preliminaries in section 2, the detail algorithm of

our method is given in three steps. Firstly, the initial measurement curve is generated through the input leading

points in linear time in section 3; compared to [14], the algorithm given here is in more implementation detail.

 3

After determining the initial measurement curve through leading points, the section 4 presents an iteration

algorithm to simulate stretching the measurement curve on the given surface. In section 5, as an option, the

stretched curve is further improved to leave the concave surface parts like a physical tapeline. Finally, example

industrial applications of our tool are given.

2. Preliminaries

Before introducing the algorithms in detail, some preliminaries are first given in this section.

Definition 2-1 A polyhedral surface M is defined as a pair),(VK , where K is a simplicial complex

specifying the connectivity of the vertices, edges, and faces (in other words, the topological graph of M), and

},,{ 1 mvvV L= is the set of vertices defining the shape of polyhedral surface in 3ℜ .

The above definition follows the notation in [16]. In this paper, to simplify the algorithm, every polygonal face

in M is subdivided into triangles by the method of [17]. From K , it is very easy for our algorithm to get the

adjacent nodes, edges, and faces of a triangular node in constant time; the same, the left/right faces of an edge

and the three nodes/edges of a triangle can also be obtained by constant time cost. The geometric coverage of

our method is confined to the domain of two-manifold polyhedral surface. The definition is as follows.

Definition 2-2 For every point on the surface of a two-manifold object, there exists a sufficiently small

neighborhood that is topologically the same as an open disk in 2ℜ ; if there is any points on the boundary that

do not satisfy the two-manifold condition, the object is classified as non-two-manifold, or simply non-manifold.

For a non-manifold polyhedral object, it should be converted into several two-manifold polyhedral patches

before applying our measurement tool. The measurement curves, which are generated in this approach, are not

allowed to change the topology and shape of the given surface. Thus, they cannot be stored in M ; they are

stored as attribute curves attached on M . In order to represent attribute curves, four kinds of attribute elements

are conducted in our data structure. They are defined in Tables 1 and 2, where ATTRIB_EDGENODEs and

ATTRIB_FACENODEs are derived form ATTRIB_NODEs. A ATTRIB_EDGENODE is an attribute node on a

triangular edge, whose coordinates depend on the position of the triangular edge by a parameter u; and a

ATTRIB_FACENODE is an attribute node in a triangular face, whose coordinates are given by (u, v, w) that

relates to the three nodes of the triangle. An ATTRIB_EDGE is an ordered collection list of ATTRIB_NODEs,

which are ATTRIB_EDGENODEs or ATTRIB_FACENODEs.

 4

After giving the above definitions, we will go into the detail algorithm description parts in the following of

the paper.

Table 1 Representational attributes

Attribute Comprises Represents physically

ATTRIB_NODE A point An attached point on the given polyhedral surface.

ATTRIB_EDGE Complex of ATTRIB_NODEs A curve attached on the given surface. It is an

ordered list of ATTRIB_NODEs.

ATTRIB_EDGENODE A point An attached point on a triangular edge. Its position

depends on the positions of the two endpoints of

the triangular edge.

ATTRIB_FACENODE A point An attached point in a triangular face. Its position

depends on the positions of the three nodes of the

triangular face.

Table 2 Pseudo-code of attributes

• ATTRIB_NODE

ATTRIB_NODE {

FLAGS flg; // Status flags

ATTRIB_EDGE *attr_edge; // ATTRIB_EDGEs contain this node

};

• ATTRIB_EDGE

ATTRIB_EDGE {

FLAGS flg; // Status flags

MESHSURFACE *mesh_surface; // Polyhedral surface contain this edge

ATTRIB_NODE **attr_node; // Pointer of ATTRIB_NODEs list

};

• ATTRIB_EDGENODE

ATTRIB_EDGENODE : public ATTRIB_NODE {

Double u; // Parameter coordinate of this node

TRGLEDGE *trgl_edge; // TRGLEDGE contain this node

};

• ATTRIB_FACENODE

ATTRIB_FACENODE : public ATTRIB_NODE {

Double u, v, w; // Areal coordinate of this node

TRGLFACE *trgl_face; // TRGLFACE contain this node

};

 5

3. Initial Measurement Curve

As the first step of the CyberTape tool, the algorithm in this section will generate the initial measurement

curve linking the leading points. The leading points are interactively specified on the given polyhedral surface

using the picking tool, which is an existing function in many popular graphics systems. First, a geodesic

distance map that approximately indicates the geodesic distance from every triangular node to a leading point on

the polyhedral surface is computed in linear time. After that, the approximate shortest path walking along

triangular edges between two adjacent leading points is generated from the map, also by linear time cost.

3.1. Geodesic distance map

If the point sp is a leading point, the geodesic distance map of sp –)(sM pG is generated by an

advancing method, which progressively moves the event list vL of nodes away from sp on the given surface

M . The geodesic distance form every vertex iv to the point sp is stored as a weight factor
ivW . Before

starting to move the event list, the
ivW of every internal vertex is initialized as +∞ , and the length of every

triangular edge je is calculated and stored. Our algorithm repeatedly moves vL away from sp on M ; during

the movement, the weight factors
ivW of the nodes neighboring vL are updated. The pseudo-code for the

algorithm to generate the geodesic distance map is given in Table 3.

After running Algorithm MapGeneration(M , sp), the weight factor
ivW of every node indicates the

approximate geodesic distance from the vertex iv to sp . The complex of
ivW , called W, and the pair (K, V)

comprise the approximate geodesic distance map)(sM pG = W + (K, V). Given the surface and the point sp

given in Fig.2a, the visualization for isohypses is generated from)(sM pG as shown in Fig.2c. The mesh

presentation (Fig.2b) of the given surface shows that the shape of triangles in M is not uniform – the upper

triangles are much longer than the other triangles; however, our algorithm can still generate a quasi-uniform

)(sM pG shown in Fig.2c. Consequently, the shape of triangles in M has less influence on)(sM pG derived

by Algorithm MapGeneration(M , sp).

For Algorithm MapGeneration(M , sp), the running time of step 1-6 is)(NΟ , where N is the number of

triangular nodes; the running time of step 7 is)(EΟ , where E is the number of triangular edges; and during

step 9-17, since every node visits its adjacent nodes only once – in other words, every edge is passed twice, the

running time is)(EΟ . Therefore, the running time of Algorithm MapGeneration(M, sp) is)(EN +Ο .

 6

Table 3 Pseudo-code of Algorithm MapGeneration(M , sp)

Algorithm MapGeneration(M , sp)

Input: The given polyhedral surface M and the source point sp .

Output: The updated weight factor
ivW of every triangular node.

1. for every node Gvi ∈ {

2. +∞←
ivW ;

3. Set the passed flag of iv –
ivfp to false;

4. if (iv on the triangle containing sp)

5. Add iv to vL , ←
ivW distance between iv and sp , and set

ivfp to true;

6. }

7. Calculate the length
jel of every edge Me j ∈ ;

8. φ←′vL ;

9. do{

10. for every node vk Lv ∈ {

11. for every node jv adjacent to kv {

12. if ((
kvW + the length of edge kjvv) <

jvW), then
kj vv WW ← + the length of edge kjvv ;

13. if (
jvfp is false), then add jv to vL′ and set

jvfp to be true;

14. }

15. }

16. Replace vL by vL′ and empty vL′ ;

17. }while(φ≠vL);

(a) given surface with sp (b) mesh representation (c) isohypse of)(sM pG

Fig.2 Geodesic distance map

 7

Fig.3 Determine the undirected shortest path by)(sM pG

3.2. Curve generation

The user input leading points are stored as ATTRIB_FACENODEs in a list 0L . In order to construct an

initial measurement curve, we generate the approximate shortest paths between the adjacent leading points in

0L . For any leading point 0Lpa ∈ , the approximate shortest path Ρ between ap and sp is formed by the

steepest descent method [18] according to the geodesic distance map)(sM pG of sp , where ap and sp are

neighboring points in 0L . The approximate shortest path walks along the triangular edges of M .

During the path searching, for any triangular node Ρ∈sv , all its adjacent nodes are candidates for forming

the new part of the path. We choose the node jv , whose descent function),(jsd vvf has the maximum value

among the candidates. The definition of),(jsd vvf is

js

vv

jsd
vv

ww
vvf

js
−

=),((1)

Among the three nodes of the triangle containing ap , we choose the one - sv with smallest weight factor to

start the path searching. The major part of Ρ is formed incrementally by adding the nodes with the maximum

),(jsd vvf one by one. The path Ρ stops at the triangle containing sp . After linking Ρ with ap and sp , the

approximate shortest path between ap and sp is finally determined. For example, in Fig.3, the circled nodes

are ap and sp , and the bolded edges are the determined path. The pseudo-codes of the path generation

algorithm are given in Table 4 as Algorithm PathGeneration (ap ,)(sM pG). In the worst case (e.g., the given

mesh is a triangle strip with a band shape), every node on the given mesh surface M visits its adjacent node

 8

once; so the time cost of Algorithm PathGeneration (ap ,)(sM pG) is)(EΟ . In summary, we can generate the

approximate shortest path between two leading points on M in linear time.

The initial measurement curve through all leading points is formed by linking the approximate shortest

paths between the adjacent leading points in 0L . In section 4, we will describe an iterative algorithm to simulate

stretching the measurement curve on the surface of M .

Table 4 Pseudo-code of Algorithm PathGeneration (ap ,)(sM pG)

Algorithm PathGeneration (ap ,)(sM pG)

Input: Geodesic distance map)(sM pG and a leading point ap .

Output: The initial measurement curve Ρ .

1. +∞←minW ;

2. for every node jv in the triangle containing ap

3. if minWw
jv < , then js vv ← and

jvwW ←min ;

4. Add savp into Ρ ;

5. while(∉sv the triangle containing sp) {

6. ←maxv any node adjacent to sv ;

7. for every node jv adjacent to sv

8. if (),(jsd vvf >),(maxvvf sd), then jvv ←max ;

9. Add the edge maxvvs into Ρ ;

10. maxvvs ← ;

11. }

12. Add ss pv into Ρ ;

13. return Ρ ;

4. Stretching Simulation

This section presents an iteration algorithm, which simulates the stretching activity of a tapeline on the

surface of a given object. The basic idea of the stretching simulation algorithm is to make the measurement

curve locally shortest at every passed triangular edge. Based on this, two local operators are derived in section

4.2. During the iteration, the redundant points should be eliminated before the next iteration step; otherwise, the

measurement curve will stick at the local optimum. The elimination of two types redundant points is described

in section 4.3. At last, the pseudo-code of the iteration algorithm is given.

4.1. Basic idea

Let us first assume that the given polyhedral surface M is planar (as shown in Fig.4); if we stretch the

initial measurement curve as the location points, the final optimum will be a straight line linking the two

location points (Fig.4a). Now, considering only the part around an intersection point of a triangular edge and the

 9

final optimized measurement curve, the optimized curve maintains a constant angle with the triangular edge

(Fig.4b), which leads the curve to be a straight line on a planar surface – we call it the constant angle condition.

When every node on the measurement curve satisfies the constant angle condition, the measurement curve is a

straight line between the two location points – the shortest curve between them. If M is non-planar, two

adjacent faces of a triangular edge on a three-dimensional polyhedral surface can be flattened into a plane by

rotating around the edge. The mapping between the faces before and after flattening is isometric; when moving

a node of the measurement curve along the triangular edge, the local optimum position is still the position that

makes the measurement curve and the triangular edge have a constant angle. Using an iteration procedure, we

can achieve a global shortest curve on the given polyhedral surface when every node on the measurement curve

satisfies the constant angle condition. When a vertex ip of the measurement curve is on a triangular node of M

(Fig.4c), if 1111 −++− ∠≠∠ iiiiii pppppp , moving ip to the position that makes 1111 −++− ∠=∠ iiiiii pppppp will

achieve the local optimum. In the following section, the detail operators for getting local optimum are given.

φφ

1−ip

ip

1+ip

(b) edge local optimum

location points

1−ip

ip

1+ip

(a) shortest path on a planar M (c) node local optimum

Fig.4 Basic idea illustration

4.2. Local operators

There are two local operators adopted in our approach: the edge operator and the node operator. After

linking the leading points by approximate shortest paths, the initial measurement curve is stored in an

ATTRIB_EDGE – 0L as a list of points. Every leading point is stored as an ATTRIB_FACENODE, every

approximate shortest path is firstly converted into a list of triangular nodes, and all triangular nodes are further

 10

converted into ATTRIB_EDGENODEs, where each ATTRIB_EDGENODE is attached to one of the triangular

node’s adjacent edges. The parameter u of every ATTRIB_EDGENODE is either zero or one (In detail, if the

triangular node is the start node in its adjacent edge, we set 0=u ; if it is the end node, set 1=u). After that, all

ATTRIB_FACENODEs except the two location points are removed from 0L . In our iterative stretching

algorithm, either of the two local optimum operators is applied to every internal node in 0L to achieve the

shortest measurement curve on M .

Edge operator

For an internal node 0Lpi ∈ , if its parameter)1,0(∈u , the following edge operator is applied on it to

obtain the local optimum. As illustrated in Fig.5, if ip is on the edge edstvv , the edge operator adjusts its

parameter u to make the length of 11 +− + iiii pppp shortest. First, we map the points 1−ip , ip , 1+ip , edv

into an x-y plane maintaining the angle 1φ and 2φ not changed, where edv′ is on the positive x-axis,

steded vvov =′ , stii vpop =′ , iiii pppp 11 ++ =′′ , and 11 −− =′′ iiii pppp (see the right part of Fig.5).

Then, the intersection point ip * of the line 11 −+ ′′ ii pp and the x-axis is computed on the x-y plane. The new

parameter of ip is defined by















′

>
′

<
′

=

otherwise
vx

px

vx

px
if

vx

px
if

u

ed

i

ed

i

ed

i

,
][

]*[

1
][

]*[
,1

0
][

]*[
,0

* , (2)

where][Kx returns the x coordinate of a point. After updating the parameter of ip by *u , the edge operator on

ip is completed. In our algorithm, we utilize the symbol][ie pO to represent the edge operator on ip .

1φ

2φ

1−ip

ip

1+ip

stv

edv

y

z

x

⇒

1φ

2φ

1−′ip

ip′

1+′ip

o
edv′

y

x
ip *

Fig.5 Edge optimize operator

 11

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

Right edges

Left edges

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

Right edges

Left edges

(a) (b)

Fig.6 The left edges and the right edges around a triangular node

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

][ipL∠

][ipR∠

⇒

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

2+ip

3+ip

(a) right push operator

1−ip

ip

1+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

][ipL∠

][ipR∠

⇒

1−ip

ip

2+ip

0e

x

y

z

1e

2e3e

4e

5e

6e

0v

1v

2v
3v

4v

5v

6v

1+ip

(b) left push operator

Fig.7 Node operators

Node operators

If the parameter u of an internal node 0Lpi ∈ does not belong to)1,0(, ip is coincident with a triangle

node iv ; we conduct the following node operator to adjust the points in 0L . First, the edges adjacent to iv are

sorted in an anti-clockwise order around iv ; so the edges between ii pp 1− and 1+ii pp in the anti-clockwise

direction are defined as the left edges of iv , and the edges between 1+ii pp and ii pp 1− are defined as the right

edges of iv (see Fig.6a). If a triangular edge coincides with the line ii pp 1− or the line 1+ii pp , it is neither a left

 12

edge nor a right edge of iv (e.g., 0e and 3e in Fig. 6b). We can replace the node ip in 0L either by a list of

points on the right edges of iv (Fig.7a) – which is called right push operator, or by a list of points on the left

edges of iv (Fig. 7b) – called left push operator. In both the push operators, the positions of the new inserted

points are very close to iv , where the distance to iv is usually set to
100

1
 of the edge length in our

implementation. The order of the inserted new edge nodes is according to the order of the related triangular edge

around iv .

The measurement curve 11 +− −− iii ppp separates the tessellation at iv into two parts: left and right (the

curve direction pointing from ip to 1+ip); the total angle in the left part is represented by][ipL∠ , and the total

angle in the right part is represented by][ipR∠ . For example, in Fig.7a,

1665544331][−+ ∠+∠+∠+∠+∠=∠ iiiiiiii ppvvpvvpvvpvvpppL

and

12211001][+− ∠+∠+∠+∠=∠ iiiiiii ppvvpvvpvvpppR .

The sum of][ipL∠ and][ipR∠ is represented by][ipθ∠ . By the values of][ipL∠ ,][ipR∠ , and][ipθ∠ ,

we choose either left push operator or right push operator to process the node ip in 0L .

The triangles adjacent to a vertex can be isometrically unfolded to an Euclidean plane – partial or multiple

area around the vertex on the plane is covered by the unfolded triangles. There are three situations as shown in

Fig.8, which metrically characterize the vertex into a Spherical vertex, a Euclidean vertex, or a Hyperbolic

vertex [19]. For example, the tip of a convex cone is a spherical vertex and a saddle point is a hyperbolic vertex.

πθ 2][<∠ ipπθ 2][=∠ ip πθ 2][>∠ ip

Spherical Vertex Hyperbolic VertexEuclidean Vertex

Fig.8 Classification of vertices on a polyhedral surface

 13

On a Euclidean vertex

If ip coincides to a Euclidean vertex, on the unfolded adjacent triangles, the local shortest curve between

1−ip and 1+ip is the straight line between them. Thus, when][][ii pRpL ∠>∠ , we push the point ip to the

right side by applying the right push operator. The right push operator will not immediately make

11 +− −− iii ppp be a straight line; however, after iteratively applying the edge operators to them, they converge

to a straight line. When][][ii pRpL ∠<∠ , pushing the point ip to the left side by applying the right push

operator will give the collinear tendency to 11 +− −− iii ppp (see the dash lines illustrated in Fig. 9). For the case

with][][ii pRpL ∠=∠ , the three points 1−ip , ip , and 1+ip have already been collinear – no change is required

on ip .

1−ip

ip

1+ip

][ipL∠

][ipR∠

Lines after

pushing

1−ip

ip

1+ip

4v

][ipL∠

][ipR∠

Lines after

pushing

(a)][][ii pRpL ∠>∠ (b)][][ii pRpL ∠<∠

Fig.9 Operator chosen criterion on a Euclidean vertex

On a spherical vertex

For the situation of ip on a spherical vertex, we first cut its adjacent faces along the line ii pp 1− , and then

unfold them onto a Euclidean plane – the unfolding result is generally as shown in Fig.10. The point 1−ip linked

to the left part triangles after cutting and unfolding is renamed as 1−′ip . When][][ii pRpL ∠>∠ , since

iiii pppp 11 −− ′= , the distance between 1+ip and 1−ip is smaller than the distance between 1+ip and 1−′ip on

the plane; when][][ii pRpL ∠<∠ , we have 1111 +−+− ′> iiii pppp . Therefore, for the][][ii pRpL ∠>∠ case,

we apply the right push operator on ip to make it have the tendency of being coincident with the 11 −+ ii pp line;

for the][][ii pRpL ∠<∠ case, the left push operator is adopted to lead ip to be collinear with 11 −+ ′ii pp . When

][][ii pRpL ∠=∠ , the lengths of 11 +− ii pp and 11 +−′ ii pp are equal – we just randomly choose either the left

push operator or the right push operator on ip .

 14

1−ip

ip

1+ip

][ipL∠

][ipR∠

1−′ip

1−ip

ip

1+ip

][ipL∠

][ipR∠

1−′ip

(a)][][ii pRpL ∠>∠ (b)][][ii pRpL ∠<∠

Fig.10 Operator chosen criterion on a spherical vertex

1−ip

ip

1+ip

][ipL∠

][ipR∠

1+′ip

1−ip

ip

1+ip

][ipL∠

][ipR∠

1+′ip

(a) π<∠][ipL (b) π<∠][ipR

Fig.11 Operator chosen criterion on a hyperbolic vertex

On a hyperbolic vertex

When ip is on a hyperbolic vertex, similar to dealing with the spherical case, we cut its adjacent faces

along the line ii pp 1+ and unfold them onto a Euclidean plane. The point 1+ip linked to the left part triangles

after cutting and unfolding is renamed as 1+′ip . When π<∠][ipL , as shown in Fig.11a, moving ip be

collinear with 11 +− ′ii pp will generate the shortest path from 1−ip to 1+′ip - the left push operate gives this

possibility. When π<∠][ipR (see Fig.11b), applying the right push operator will lead the curve

11 +− −− iii ppp to be shortened. If both π≥∠][ipL and π≥∠][ipR are satisfied, it is difficult to find a

mathematical support to choose the left or the right push operators, we just randomly choose one. From

experiments, we find that the edge operator will pull the measurement curve back after iterations if the random

change makes the curve elongated.

 15

Table 5 Chosen method of push operators

Vertex Type][][ii pRpL ∠>∠][][ii pRpL ∠<∠][][ii pRpL ∠=∠

Euclidean vertex Right push operator Left push operator None

Spherical vertex Right push operator Left push operator Random

Vertex Type π<∠][ipR π<∠][ipL others

Hyperbolic vertex Right push operator Left push operator Random

The chosen method of the left and right push operators is summarized in Table 5. This chosen method and

the two push operators are generally called a node operator, which is represented by the symbol][iv pO in our

iterative stretching algorithm.

4.3. Remove redundant points

After repeatedly applying the local operators to the nodes in 0L , redundant points may appear. These

redundant points must be removed from the measurement curve efficiently; otherwise, the measurement curve

will stick on some points so that the global optimum cannot be reached. There are two types of redundant

points: Type I – redundant points around a triangular node, and Type II – redundant points in a triangle.

As shown in Fig.12, Type I redundant points are the points that are very close to the endpoints of a

triangular edge but not exactly coincident to the point. Thus, even after applying the edge operator to it for many

times, it still stick at the triangular node. Fig.14a gives an example with Type I redundant points not eliminated

during the iteration. Our solution is that if ε<u , let 0=u ; if ε−> 1u , let 1=u . ε is a very small threshold

number, in our approach, we choose 510−=ε . Also, for any point 0Lpi ∈ , if ip and 1+ip are coincident, ip

will be removed from 0L .

A Type II redundant point ip is the point whose two neighboring point 1−ip and 1+ip in 0L are in the

same triangle (e.g., the one in Fig.13a). If this is the case, ip should be removed from 0L ; otherwise, the

measurement curve will stick on the triangular edge of ip . Fig.14b gives an example that Type II redundant

points are not removed.

 16

redundant points

⇒

result point

(a) before removing the redundant points (b) after removing the redundant points

Fig.12 Remove Type I redundant points

redundant points

⇒

points maintained

(a) before removing the redundant points (b) after removing the redundant points

Fig.13 Remove Type II redundant points

⇓ apply local operators repeatedly ⇓ apply local operators repeatedly

(a) Type I redundant points (b) Type II redundant points

Fig.14 Examples of the redundant points not removed

 17

4.4. Algorithm summary

To sum up, the iteration algorithm to simulate stretching the measurement curve has two operations in each

iteration step: 1) applying local operators on every internal nodes of the measurement curve, and 2) removing

redundant points. During the iteration, the length of the measurement curve decreases while the step number of

iteration increases. Usually, two criteria are utilized to give the terminal condition: the curve length and the step

number. Here, we employ a mixture of them. Either µ<− −1jj LL or the iteration steps is greater than maxN ,

the iteration stops, where jL is the length of the measurement curve in the jth iteration (current value), maxN is

the maximum iteration number, and µ is a small number. We usually choose 5000max =N and 510−=µ in

our testing examples. The pseudo-code of the iterative stretching algorithm is given in Table 6 as Algorithm

IterativeStretching (0L).

Table 6 Pseudo-code of Algorithm IterativeStretching (0L)

Algorithm IterativeStretching (0L)

Input: The initial measurement curve 0L .

Output: The stretched measurement curve 0L .

1. Convert all internal nodes of 0L into ATTRIB_EDGENODEs;

2. 1←j ;

3. do {

4. for every internal node 0Lpi ∈ {

5. if (the parameter of ip -)1,0(∈u)

6. Apply][ie pO on ip ;

7. else

8. Apply][iv pO on ip ;

9. }

10. Remove all Tape I nodes from 0L ;

11. Remove all Tape II nodes from 0L ;

12. if (µ<− −1jj LL), then break;

13. 1+← jj ;

14. }while(maxNj ≤);

5. Further Improvement

The resultant stretched measurement curve of Algorithm IterativeStretching (0L) in the above section lies

on the surface of M . Sometimes, in reality, users intend to further stretch the tapeline to let it leave the

measured surface. The additional algorithm introduced in this section will simulate this performance of a

physical tapeline. For example, to get the tape measurement between the two location points shown in Fig.15a,

 18

the result of Algorithm IterativeStretching (0L) is as shown in Fig.15b; after further stretching 0L , the result is

as in Fig. 15c. The further stretching algorithm is an incremental method, which detects every internal node,

0Lpi ∈ , whether ip can be removed from 0L . If the line segment 11 +− ii pp has any intersection point with M

(not including 1−ip and 1+ip), the point ip must be maintained in 0L ; otherwise, we can remove ip from 0L .

In detail, the algorithm for further stretching 0L is listed in Table 7.

Table 7 Pseudo-code of Algorithm FurtherStretching (0L)

Algorithm FurtherStretching (0L)

Input: The measurement curve 0L .

Output: The further stretched measurement curve 0L .

1. for every internal node 0Lpi ∈ {

2. do {

3. if the line segment 11 +− ii pp has any intersection with M , then break;

4. Remove ip from 0L ;

5. 1−← ii ;

6. } while(0>i);

7. }

8. return 0L ;

(a) given surface with two

location points

(b) result of Algorithm

IterativeStretching (0L)

(c) after applying Algorithm

FurtherStretching (0L)

Fig.15 Further stretching the measurement curve

6. Results

The interactive measurement tool presented in this paper can be widely used in industry. One example

application is in the appeal industry, where the design and manufacturing comes more and more worldwide. A

general case is that the service centers, the design centers, and the manufacturing workshops for customized

cloth design and manufacturing are not located in the same region. Thus, the body data of customers should be

transferred between them. However, problems occur when the human dimensions measured at the service center

 19

is not enough for the operations at the design center. At present, the popular solution is to transfer the 3D full

body data but not the dimensions between the centers. The ranged scanner in a service center captures the point

cloud for the body shape of a customer; after that, the point cloud is converted into a polyhedral surface to

reduce the data size while maintaining the accuracy [20]; the result polyhedral surface is finally transferred from

the service center to the design center for customized design and manufacturing. For example, Fig.16a gives an

example of a point cloud captured in a service center, and the transferred polyhedral surface is shown in

Fig.16b. In the design center, various dimensions are measured on the virtual human body by the requirements

of different designers (example measurement curves are shown in Fig.16b). The tool presented in this paper will

be a most important measurement tool in the design center, which simulates the behavior of a tapeline in cyber

space. For example, one key dimension for women garments is the apex-to-apex measurement around neck. As

shown in Fig.16c and 16d, after interactively specifying the location points at the busty points and giving the

leading points around the neck, the approach presented in this paper determines the stretched measurement

curve, which passes through the two location points.

(c) location points and leading points

(a) point cloud (b) polyhedral surface (d) result measurement curve

Fig.16 Application in appeal industry

 20

Fig.17 gives another example application of CyberTape in the reverse engineering of a mechanical part. For

example, after the point cloud of a mechanical part is obtained from CMMs, the related polyhedral surface is

constructed by the algorithm in [2]; then, our CyberTape tool can be applied to determine the measurement

curves, which helps us give manufacturing parameters before making physical prototypes.

The computation statistics of the examples are listed in Table 8. From the statistics, it is not hard to find that

the computation of CyberTape can be finished in real time on a dense polyhedral surface using a standard

desktop PC.

(a) point cloud (b) polyhedral surface (c) location points and

leading points

(d) result measurement

curve

Fig.17 Application in the reverse engineering of mechanical part

Table 8 Computation statistics of the examples

Length of 0L (unit: CM) Tessellation

Example Figure
Before

stretching

After

stretching

Node

number

Triangle

number

Iteration

steps number

Computing

time

I 11 2.75 1.96 667 1330 246 < 1 sec.

II 12 67.33 60.74 3774 7508 806 1 sec.

III 13 9.21 7.84 1900 3808 135 < 1 sec.

* All with 5000max =N and 510−=µ on a PIII 500 PC with a program written in C++.

7. Conclusion and Discussion

This paper presents an interactive virtual measurement tool – CyberTape on a polyhedral surface in the

manner that dragging a tapeline between two location points, which is intuitive and efficient to measure a

polyhedral surface in virtual space. Our tool allows not only location points but also leading points to be

 21

specified on the given surface, where the leading points give the expected direction of the measurement curve.

Compared to existing shortest path techniques, our method is more flexible to the inclination of users. The

process consists of three steps: 1) generating the approximate shortest paths through the leading points as an

initial measurement curve; 2) applying local operators on every internal points to approximate a stretched curve

on the given surface; and 3) further stretching the measurement curve to leave the measured surface in concave

places (this is an optional step). Our implementation algorithm of the CyberTape tool can be completed in real

time on a standard PC.

The current implementation of CyberTape is robust and efficient enough for experimental use. However, to

enhance its functionality, the following problem needs to be solved. Since Algorithm FurtherStretching (0L)

performances as a post-processing step in our current implementation, the result of Algorithm FurtherStretching

(0L) may not be optimal enough. For example, as shown in Fig.18, the measurement curve is stuck at the

bellybutton of a human body since there is a little cavity. If Algorithm FurtherStretching (0L) and Algorithm

IterativeStretching (0L) are integrated together, the measurement curve can easily slip over the bellybutton.

Simply putting them together will decrease the efficiency of our approach; further research can focus on how to

mix the two algorithms into a single algorithm while maintaining the efficiency.

(a) location points and leading points on an initial

measurement curve

(b) local optimum – bellybutton sticks the

measurement curve

Fig.18 The measurement curve is stuck on the bellybutton

References

[1] Hoffman R, Jain A. Segmentation and classification of range images, IEEE transactions on pattern

analysis and machine intelligence, vol.9, no.5, pp.608-620, 1987.

[2] Hoppe H, DeRose T, Duchamp T, Halstead M, Jin H, McDonald J, Schweitzer J, Stuetzle W. Piecewise

smooth surface reconstruction, SIGGRAPH 1994 Conference Proceedings, pp.295-302, 1994. ACM.,

New York, NY, USA.

 22

[3] Várady T, Martin RR, Cox J. Reverse engineering of geometric models – an introduction, Computer-

Aided Design, vol.29, no.4, pp.255-268, 1997.

[4] Barhak J, Fischer A. Parameterization for reconstruction of 3D freeform objects from laser-scanned data

based on a PDE method, The Visual Computer, vol.17, no.6, pp.353-369, 2001.

[5] Allen B, Curless B, Popović Z. The space of human body shapes: reconstruction and parameterization

from range scans, SIGGRAPH 2003 Conference Proceedings.

[6] Bielser D, Volker A, Gross M. Interactive cuts through 3-dimensional soft tissue, Computer Graphics

Forum, vol.18, no.3, pp.31-38, 1999.

[7] Bruyns CD, Senger S. Interactive cutting of 3D surface meshes, Computers & Graphics, vol.25, no.4,

pp.635-642, 2001.

[8] Suzuki H, Sakurai Y, Kanai T, Kimura F. Interactive mesh dragging with an adaptive remeshing

technique, The Visual Computer, vol.16, no.3-4, pp.159-76, 2000.

[9] Mitchell JSB, Mount DM, Papadimitriou CH. The discrete geodesic problem, SIAM Journal on

Computing, vol.16, no.4, pp.647-668, 1987.

[10] Chen J, Han Y. Shortest paths on a polyhedron. Proceedings 6
th

 ACM Symposium on Computational

Geometry, pp.360-369, 1990.

[11] Lanthier MA, Maheshwari A, Sack JR. Approximating weighted shortest paths on polyhedral surfaces.

Proceeding 13
th

 ACM Symposium on Computational Geometry, pp.274-283, 1997.

[12] Mata CS, Mitchell JSB. A new algorithm for computing shortest paths in weighted planar subdivisions.

Proceeding 13
th

 ACM Symposium on Computational Geometry, pp.265-273, 1997.

[13] Kanai T, Suzuki H. Approximate shortest path on a polyhedral surface and its application, Computer-

Aided Design, vol.33, no.11, pp.801-811, 2001.

[14] Cormen TH, Leiserson CE, Rivest RL. Introduction to Algorithms, New York: McGraw-Hill, 1990.

[15] Thorup M. Undirected single source shortest paths in linear time, Proceeding 13
th

 ACM Symposium on

Computational Geometry, pp.12-21, 1997.

[16] Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W. Mesh optimization, SIGGRAPH 93

Proceeding, ACM., 1993, pp. 19-26, New York, USA.

[17] Ganapathy S, Dennehy TG. A new general triangulation method for planar contours, Computer Graphics,

vol.16, no.3, pp.69-75, 1982.

 23

[18] Chapra SC, Canale RP. Numerical methods for engineers: with software and programming applications

(4
th

 ed), Boston: McGraw-Hill, 2002.

[19] Polthier K, Schmies M. Straightest Geodesics on Polyhedral Surfaces, in: Mathematical Visualization,

Ed: H.C. Hege, K. Polthier, Springer Verlag, Berlin, 1998.

[20] Wang CCL, Chang TKK, Yuen MMF. From laser-scanned data to feature human model: a system based

on fuzzy logic concept, Computer-Aided Design, vol.35, no.3, pp.241-253, 2003.

