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Abstract 
 

This paper presents solution techniques for a three-dimensional Automatic Made-to-Measure (AMM) 

scheme for apparel products. Freeform surface is adopted to represent the complex geometry models of apparel 

products. When designing the complex surface of an apparel product, abstractions are stored in conjunction with 

the models using a non-manifold data structure. Apparel products are essentially designed with reference to 

human body features, and thus share a common set of features as the human model. Therefore, the parametric 

feature-based modeling enables the automatic generation of fitted garments on differing body shapes. In our 

approach, different apparel products are each represented by a specific feature template preserving its individual 

characteristics and styling. When the specific feature template is encoded as the equivalent human body feature 

template, it automates the generation of made-to-measure apparel products. The encoding process is performed 

in 3D, which fundamentally solves the fitting problems of the 2D tailoring and pattern-making process. This 

paper gives an integrated solution scheme all above problems. In detail, a non-manifold data structure, a 

constructive design method, four freeform modification tools, and a detail template encoding/decoding method 

are developed for the design automation of customized apparel products. 
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1. Introduction 
 

The purpose of this paper is to provide an integrated solution for the design automation of customized 

apparel products; in other words, Automatic Made-to-Measure (AMM) technology. After designing a garment 

on a standard size mannequin, AMM automatic generates the same garment styling to be fitted on different body 

shapes and guarantees the three-dimensional fitting.  This greatly improves the efficiency of pattern generation 

for the apparel industry. At present, 2D CAD systems are widely used in the cloth industry for pattern design 

and generation. However, this process remains a bottleneck in garment manufacturing, especially when the 

garment patterns of the same style are graded using empirical two-dimensional grading rules to fit different 

body shapes. Current commercial garment CAD systems [1-2] provide such 2D grading tools to generate 

patterns of different sizes from the basic pattern set. Their 2D grading rules are usually offset curves generated 

in plane; therefore it is not intuitive to preserve the fit of final dressing in spatial space. 2D approaches can 

hardly generate the fitted clothes for different human bodies. The only way to fundamentally solve the fitting 

problem of clothes is to design products in 3D. In the DresssingSim [3] solutions, some 3D design tools are 

provides. However, they remain relatively simple operations. 

Cloth simulation techniques [4-10] provide a way of testing patterns by assembling 2D patterns in a 

computer system and draping them on a virtual human body. However, the tools for modifying the shape of 

patterns according to different human body shapes are not available. Recently, an online made-to-measure 

system was presented by Cordier et al. [11]. Their system allows interactive adjustment of the 3D mannequin 

according to the shopper’s body measurements, online resizing of the garment to fit the mannequin, and real-

time simulation of the garment corresponding to the body motion. However, their approach is also based on 2D 

pattern design and draping simulation; and their major purpose is for visualization and animation purpose, not 

for design. Our approach provides tools to construct and modify patterns directly on virtual human bodies in 3D 

space with focus on solving the 3D fitting problem. The patterns for a garment product with a particular 

designer styling are represented as a feature template. The easing relationships between the feature template and 

the feature-based human body model are encoded and stored. When the same garment product is required for a 

customer with different human shape, a decoding process is performed to reconstruct the 3D cloth patterns 

preserving the easing relationships related to the human model. Fig. 1 gives an illustration of this concept by 

using four human models H, H1, H2, and H3. Using human model H as the reference for generating the 3D cloth 

pattern using the constructive design approach, the design related feature template is encoded. The same 

designer styled garment product can be generated automatically on H1, H2 and H3. Based on the constructive 
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design result, we can further modify its freeform surfaces to create more complex styles. By detail template 

encoding/decoding, the modified results can also be regenerated automatically on different body shapes.  

H2 H3
H1

H

Freeform 

Modification

Cloth Template

Cloth Template

++Decoding Decoding

Detail Template 

Encoding

Profile 

Template 

Encoding

 

Fig. 1    The process of encoding and decoding cloth template on parameterized human bodies  

The garment products are represented by freeform surfaces because of their geometric complexity. To 

simplify the complex surface representation of garment products, during the design phase, abstractions are 

stored along with the model, which lead to the use of non-manifold data structure and operators. Garment design 

has its own characteristic: garments are related to and encompass human bodies, and therefore share the same 

set of features. Thus, the feature-based modeling enables the automatic construction and fitting of garment 

products on differing human body shapes. Each garment product is represented by a unique feature template in 

our approach. The major contribution of this paper is 1) an integrated solution scheme is presented for 

generating automatic made-to-measure (AMM) apparel products, where the products designed on one human 

body can be automatically regenerated on different body shapes; 2) detail techniques for supporting AMM, 

including a non-manifold data structure, a constructive design method, four freeform modification tools, and a 

detail template encoding/decoding method, are developed.  
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The rest of the paper are organized as follows. After reviewing related works in section 2, section 3 gives 

the necessary non-manifold data structure and its related operators to manipulate complex surfaces. Based on 

this data structure, the profile template encoding/decoding method is introduced in section 4 so that a garment 

product can be stored as 3D cloth pattern template and regenerated on different human body shapes. Freeform 

modification is usually required to change the style of clothes – section 5 presents four tools supporting the 

freeform modifications of apparel products. Also, designers may want to automatically regenerate the freeform 

modification result on different bodies, so we develop a detail template encoding/decoding technique in section 

6 to convert a modified freeform surface into an apparel product template. 

 

2. Related Works 
 

In the area of computer graphics, Terzopoulos et al. [12] were the first to develop a physical model for cloth 

simulation. Volino et al. [4] developed a cloth model based on elasticity theory and used a Newtonian 

formulation instead of a Lagrangian formulation. Fan et al. [5] also presented a cloth simulation system on 

elasticity theory. Since Baraff and Witkin [6] introduced the semi-implicit method, it has become a popular 

technique for numerically solving the equations of motion in cloth simulation. The aforementioned physical 

models were found to give fairly realistic cloth motion; however Choi and Ko [7] revealed that those models 

suffer from a post-buckling instability that can be particularly problematic in wrinkle formation. This instability 

is an inherent physical instability and is therefore independent of the numerical method employed. Noting that 

the buckling behavior of cloth differs from that of other thin materials, Choi and Ko assumed that application of 

a compressive force on cloth immediately initiates buckling rather than compression. Collision detection and 

responds takes an important role in the cloth simulation since such simulation usually runs around human 

bodies. Zhang et al [8] has provided a multilevel temporal coherence collision detection technique for both 

object collision and self-collision detection. Bridson et al. [9] proposed a robust collision handling technique 

that combines repulsive forces, geometric treatment of collisions, and rigid impact zones. The combination of 

those techniques made the collision resolution process run very efficiently. They additionally presented a 

subdivision scheme that avoids collisions during the subdivision steps. Recently, in [10], Bridson et al. provided 

mixed implicit/explicit modeling techniques to produce a cloth simulation with many folds and wrinkles to 

improve the realism. In the above techniques, no matter how real the simulation result is, the patterns of clothes 

are unchanged. They can only be utilized to test patterns, but not to modify patterns which is the purpose of our 

approach.  



 5 

In our approach, every human model must be parameterized based on a set of features. A lot of researches 

developed several parameterization algorithms for human models. The human body modeling methodologies in 

literature can be classified into the creative approaches and the reconstructive approaches. Anatomically based 

modelers [13, 14] can simulate underlying muscles, bones, and generalized tissue. They fall into the creative 

category of human modeling approaches. The interactive design is allowed in the anatomy-based modelers; 

however, these modelers require a relatively slow production time. A lot of the reconstruction approaches has 

been investigated to build 3D geometry of human model automatically by capturing existing shape [15-22]. 

Here, we adopt the parametric feature-based human model as proposed in [21, 22]. The feature-based human 

model H by the method of [21] gives a point-to-point correspondence among a set of human models with a same 

common topological structure for the defined features. Every human model is a feature-based model, which 

contains not only feature vertices and curves but also feature patches. Thus, the cloth pattern template can be 

encoded on the different levels of feature entity defined on the human model which include vertices, curves, and 

patches (e.g. Fig 2). 

    
(a) parameterized 

human body 

(b) mesh representation (c) feature curves and 

vertices 

(d) checkerboard to 

verify feature patches 

Fig. 2    An example parameterized feature-based human body 

As mentioned above, the non-manifold data structure and related operators are utilized in our approach. In 

previous literature, B-rep based data structures [23-25] usually assigned respectively the face-use, loop-use, 

edge-use, and vertex-use topological entities in association with the face, loop, edge, and vertex entities. A more 

recent research on the representation of non-manifold models was the Partial Entity Structure (PES) [26], which 

used a compact non-manifold boundary representation. The storage size of the PES is reduced to half of the 

radial edge structure (RES). However, incomplete boundaries cannot be represented in this data structure, which 

is vital to maintain in a product’s conceptual design. Some other approaches are complex-based representation 
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[27-29]. Since the complex-based data structure, unlike the afore-mentioned data structure, is based on a simple 

incidence graph that has no ordering information, it does not enable easy computation of certain important 

properties (orientability, for instance). The data structure adopted here (derived from [30]) is a combination of 

the boundary representation and the complex-based representation, which can overcome the above inadequacies.  

Many freeform modeling approaches have also been developed. Some of them are related to surface 

construction, some are interactive modification methods, and others are deformation techniques. Meyers et al.’s 

work [31] was concerned with the problem of reconstructing the surfaces of three-dimensional objects, given a 

collection of planar contours representing cross-sections through the objects. Bruyns et al. [32] developed a 

method that allows the user to directly sketch the desired cut contour on a three-dimensional surface in a manner 

assimilating the steering of scissors through fabric. Teddy system [33] can extrude a mesh to form a new closed 

mesh surface, and it can smooth a surrounded area by projecting this area onto a plane, triangulating the 

projected area using the constrained Delaunary triangulation algorithm, and finally dragging and pulling the new 

vertices in the surrounded area. The freeform modification part of our paper borrows some ideas from above 

techniques. Free-form deformations (FFDs) [34] and its variants [35-38] were popular and provide a high level 

of geometric control over the deformation. FFDs are useful for coarse-scale deformations but not finer-scale 

deformations, even if a very dense lattice or customized lattice shape is defined. Our detail template 

encoding/decoding method is indeed a deformation technique. The underlying technique is akin to the most 

recent t-FFD approach [39], which adopts the triangles as deformation primitives. Here, the polygonal facets of 

human bodies are utilized as deformation drivers. 

 

3. Non-manifold Data Structure and Operators 
 

In order to integrate the representation of geometric abstractions and the incomplete topological 

information, a non-manifold data structure for geometric object modeling by polygonal meshes is presented in 

this section. This data structure is a more generic version of the non-manifold data structure for triangular 

meshes presented in [30]. The proposed data structure is actually a hybrid of the boundary representation data 

structure and the complex-based data structure. Fig. 3 depicts the framework of our data structure. 

The data structure can globally be considered as a tree with BODY as the root. A BODY has a collection of 

PMESHs, each of which contains complexes of a number of PMESHEDGEs, PFACEs, PEDGEs, and PNODEs; 

and a BODY also has a collection of PMESHJOINTs, each of which is related to some ordered PMESHEDGEs. 

A PFACE has n PEDGEs, and every PEDGE is a line segment ended by two PNODEs. Each PMESHEDGE has 

a collection of PEDGEs; and each PEDGE has its own direction flag in the PMESHEDGE. The adjacency 
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information of PMESHs at some PMESHEDGEs is stored in a new entity – PMESHJOINT. Each 

PMESHJOINT has a collection of PMESHEDGEs, which contain the same number of PEDGEs, and the 

PEDGEs are one to one connected (as shown in Fig. 4). If a PMESHEDGE is in the same direction with a 

PMESHJOINT, it is defined as a positive one in the PMESHJOINT; otherwise, it is defined as a negative one. 

The PMESHEDGEs in a PMESHJOINT are stored in a clockwise order by the right-hand rule (as shown in Fig. 

4; where M1, M2, and M3 are three PMESHs, E1, E2, and E3 are their related PMESHEDGEs which contain 

the same number of PEDGEs, and EO is the PMESHJOINT containing the adjacent information). The detail 

description of each entity is shown in Appendix A. Using the data structure, it is easy to carry out any 

topological and geometrical manipulation on the manifold or non-manifold polygonal mesh models. 

BODY

PMESH

PMESHEDGE

PFACE

PEDGE

PNODE

PMESHJOINT

ATTRIB_EDGE

ATTRIB_FACENODE

ATTRIB_EDGENODE

Complex based

B-rep

 

BODY entire model complex PMESH mesh surface 

PMESHEDGE mesh surface edge PFACE polygonal face 

PMESHJOINT mesh surfaces joint PEDGE polygonal face edge 

ATTRIB_EDGE curves on mesh surface PNODE polygonal face node 

ATTRIB_EDGENODE nodes on polygonal edge ATTRIB_FACENODE nodes on polygonal face 

Fig. 3    Non-manifold data structure frame 
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E2
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M2

M3
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EO’

E3
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E1

 

Fig. 4    Clockwise list of PMESHEDGEs in a PMESHJOINT 
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We define four attributes in our data structures. They include ATTRIB_NODE, ATTRIB_EDGE, 

ATTRIB_EDGENODE, and ATTRIB_FACENODE, where ATTRIB_EDGENODE and 

ATTRIB_FACENODE are derived from ATTRIB_NODE. ATTRIB_EDGENODE is the attribute node on a 

PEDGE, and ATTRIB_FACENODE is the attribute node in a PFACE. Their coordinates depend on the position 

of PEDGE’s nodes or the position of PFACE’s nodes. In detail, the coordinate of an ATTRIB_EDGENODE is 

represented by a parameter u  related to the nodes of a PEDGE; and the coordinate of an ATTRIB_FACENODE 

is represented by ),( vu  – the local coordinate of a PFACE. An ATTRIB_EDGE is an ordered collection of 

ATTRIB_NODEs, which can be either ATTRIB_EDGENODEs or ATTRIB_FACENODEs. The detail 

description of each attribute is shown in Appendix A. 

The construction of a valid geometric model is achieved through the use of a proper set of topological 

operators. In geometric modeling, the fundamental topological operators are Euler operators [24, 40] that are 

consistent with the Euler-Poincarè formula. Likewise, the extended topological operators for non-manifold 

geometric modeling have to satisfy the same formula. Since no volume is included in our approach, only eight 

extended Euler operators are utilized (shown in Appendix B), and they are restricted to the polygonal meshes. 

When editing a model, often several repeated sequences of the extended Euler operators are used. These 

sequences are formulated as high level editing operations. Five of these sequences are formulated as high level 

editing operations, these include edge collapse, edge split, edge swap, face split, and face triangulation. These 

high level operators are provided to automate the performance of the extended Euler operator sequences and 

increase the efficiency of topological operations, and they are frequently used in polygonal mesh processing 

algorithms. The detail description of these operators and their sequences of extended Euler operators can be 

found in [30]. 

 

4. Constructive Design: Profile Template Encoding/Decoding 
 

Based on the non-manifold data structure presented in the above section, and the parameterized feature-

based human model representation described in [21], a constructive design technique is developed in this 

section. By this method, we can construct different feature-based garment profile templates, each representing a 

different garment product styling, in direct correspondence to feature vertices, curves and patches of a 

parameterized feature-based human model by incorporating the easing relationships. Then when applying to 

different body shape, by our decoding method, the easing relationships preserving garment product will be 
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generated. We can also control the final shape on edges through changing the profile curves on the encoded 

templates.  

Feature-based profile template encoding 

When building the feature-based profile template TP for a garment product, two steps of interactivities are 

involved. Every feature node in the profile template should first be encoded in relationship to either the feature-

based parameterized human model or other nodes that have already been encoded in TP. After all feature nodes 

in the profile template are encoded, the topological graph linking the nodes should be interactively input by 

users. The processes of profile template encoding more or less like using the interactive tools to build a coarse 

freeform surface. 

When encoding a feature node on a parameterized human model H, which is also represented by a feature-

based polygonal mesh, the feature node can be encoded on a vertex, an edge, or a face on the mesh of human 

model – they are called reference elements. Every feature node is first created by specifying its (x, y, z) 

coordinate. One then can choose the encoding mode: 1) by vertex, 2) by edge, or 2) by face. When the mode is 

chosen, one could pick the reference element, which one wants to encode the feature node, on the surface of H. 

Then, the relationship between the feature node and a human model is encoded. The relationship is actually the 

relative coordinate of the feature nodes on the selected element. A feature node 
PTV  in TP can be exactly 

encoded on a feature node of H in the vertex mode, be encoded on a feature curve of H in the edge mode (since 

each feature curve is actually a set of linked edges), and be encoded on a feature patch by a face of the patch. 

The detail encoding processes are as follows. 

In the vertex-encoding mode, if a vertex bV  is selected as the reference element, it is easy to obtain the unit 

normal vector 
bVn  at the vertex; getting the first vertex 1

bV  adjacent to bV  in its adjacent vertices list, we can 

have 

bVV nX = , 
bV

bb

bb
V n

VV

VV
Y ×

−

−
=

1

1

, VVV YXZ ×= .                                             (1) 

If VY  is degenerated, by 01 =− bb VV  or 
bVbb nVV //)(

1 − , we can replace 1
bV  by 2

bV  in (1). Thus, when a 

feature node 
PTV  in TP is encoded on bV , the encoded information includes the index of bV  on H, and the 

scalars of VbTV XVVu
P

⋅−= )( , VbTV YVVv
P

⋅−= )( , and VbTV ZVVw
P

⋅−= )( . In the edge-encoding mode, an 

edge bE  serves as the reference element; the normal 
bEn  at bE  is usually computed by averaging the normal 
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vectors of its left and right faces. After determining the nearest point 
bEV  on bE  to 

PTV , a local frame at 
bEV  

can be determined by 

bEE nX = , 
bb eeE ttY = , VVE YXZ ×= ,                                                 (2) 

where 
bet  is the direction vector of edge bE . Since the normals on bE ’s left and right faces are perpendicular to 

bev , they form a plane perpendicular to bE ; 
bEn  is on the plane, so 

bEn ⊥
bev . The encoded information in the 

edge mode includes the index of bE  on H, the parameter t of 
bEV  on bE  ( ]1,0[∈t ), the scalars of 

EETE XVVu
bP

⋅−= )( , EETE YVVv
bP

⋅−= )( , and EETE ZVVw
bP

⋅−= )( . In the face-encoding mode, after a 

face bF  is chosen to be a reference element, its centroid 
bFV  and its normal 

bFn  can be easily determined. 

Getting the first vertex 
1

bFV  in the vertices list of bF , the local frame at 
bFV  is as 

bFF nX = , 

bb

bb

FF

FF

F
VV

VV
Y

−

−
=

1

1

, FFF YXZ ×= .                                             (3) 

Thus, the encoded information includes the index of bF  on H, and the scalars of FFTF XVVu
bP

⋅−= )( , 

FFTF YVVv
bP

⋅−= )( , and FFTF ZVVw
bP

⋅−= )( . 

When encoding a feature node 
PTV  in PT  by other nodes in TP, we have 1) one-to-one mode and 2) n-to-

one mode defined. The one-to-one mode encode 
PTV  on another feature node PT TV

P
∈*

 by storing the 

information of 
*

PTV ’s index in H and the vector 
*

PP TT VV −=δ . The n-to-one mode has more than one feature 

nodes in PT  to determine the position of 
PTV , they are 

i
TP

V  (i = 1, …, n). We encode them by the indexes of 

i
TP

V s, the vectors 
i

TTi PP
VV −=δ , and the weights iω  corresponding to the ith 

i
TP

V . The weights determine the 

contribution of every 
i

TP
V  on the final position of 

PTV . It is computed by 

3

1

i
TT

i

PP
VV −+

=

ε
ω ,                                                                    (4) 

where 810−=ε to avoid the singularity when i
TT PP

VV − =0. After the positions of 
i

TP
V s are changed to 

i
TP

V
~

, the 

new position of 
PTV  can be determined by  

∑

∑ +
=

i
i

i

i
Tii

T

P

P

V
V

ω

δω )
~

(~
.                                                                  (5) 
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It is not hard to prove that 
PP TT VV =

~
 when 

i
T

i
T PP

VV =
~

. 

After all the feature nodes in PT  are encoded, they need to be linked with edges and faces using interactive 

tools (i.e., specifying the topological graph 
f

PT  of PT  interactively). The topological graph is a collection of 

PMESHs that are connected by PMESHJOINTs. For example, Fig. 5a shows the topological graph of a PT  

stored in a BODY. Since our data structure is complex-based, the incomplete topology information generated by 

the construction process is easily stored. Fig. 5b-5h shows some fragments of the construction process of the 

topological graph. In Fig. 5b, the feature nodes have been defined around the reference model. An interactive 

tool is utilized to connect the feature nodes by edges as shown in Fig. 5c-5d; and Fig. 5e shows the feature 

template after creating all edges. Polygonal faces can also be created one by one interactively (Fig. 5f and 5g). 

Fig. 5h shows the final result. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 5    An example of topological graph construction process 

Using profile curves to control shape 

In the above encoded PT , the shape on an edge is not controlled. Here, we use the profile curves to control 

the shape of final surfaces. A profile curve is a parametric curve )(uC p  on a PEDGE pE  in PT , where )0(pC  

and )1(pC  are coincident to the two ending vertices on pE . Typically, it is represented as a 4
th

 order Bézier 

curves in our prototype system. The curve )(uC p  can be specified by the traditional 3D curve input methods in 
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CAD systems or by the sketched-input as shown in [41]. The following profile template decoding process will 

persuade the final refined surface interpolating the specified profile curves. Thus, the profile curves are utilized 

to control local shape of the final surface. A profile curve )(uC p  is encoded on its PEDGE by 

)()()( uEuCuep pp −= .                                                                 (6) 

After encoding the polynomial of )(uep , the relationship between )(uC p  and pE  is stored. When the positions 

of the endpoints of pE  are adjusted, we can construct a new parametric line segment )(
*

uE p  for it. Thus, the 

new profile curve can be obtained by  

)()()(
**

uEuepuC pp += .                                                                 (7) 

Feature-based profile template decoding  

After a feature-based profile template PT  has been encoded, it can be applied to any parameterized feature-

based human model H*. This involves the profile template decoding process. A decoding process includes the 

steps of relocating the positions of feature nodes, reshaping the profile curves, and surface refinement. 

For a feature node 
PTV  encoded on a vertex, by the encoded vertex index, the vertex *

bV  on H* is 

determined. A local frame can be established at *
bV  as given by the formula in eq.(1). By the stored (uV, vV, wV) 

and the reconstructed local frame at *
bV  on H*, it is straightforward to determine the new position of 

PTV . For a 

feature node encoded on an edge, by index and t, the edge *
bE  on H* and the vertex 

*

bEV  on *
bE  are easily to be 

obtained. After the local frame at 
*

bEV  is determined by eq.(2), the new position of 
PTV is obtained using (uE, vE, 

wE). Also, for the feature nodes encoded on faces, we relocate their position in the same way: calculate the 

centroid of the face on H*; computer the local frame at the centroid by eq.(3); finally relocate the feature node 

by the stored (uF, vF, wF). If a feature node is encoded on another feature node 
*

PTV , its new position is 
*

PTV+δ  

with 
*

PTV  providing its position on H*. If a feature node 
PTV  is encode on n other feature nodes in PT , applying 

their new positions in eq.(5) gives the decoding result of 
PTV . After all feature nodes have been relocated, the 

new parametric representation of the profile curves are computed by eq.(7). They and the feature nodes are 

interpolated during the following surface refinement.   

The surface refinement step of profile template decoding is to provide detail and smooth freeform surfaces 

for representing the shape of an apparel product in computer system. The method applied here is from [41] – the 
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modified variational subdivision scheme, which iteratively applies a topological splitting operator to introduce 

new vertices to increase the degrees of freedom, followed by a discrete fairing operator to increase the overall 

smoothness. The constructed mesh surfaces interpolate not only the initial vertices but also the specified 

profiles. The topological splitting operator inserts new control vertices into the mesh. The split operation is 

chosen to be uniform so that all the new vertices are regular (valance is equal to 6, as shown in Fig. 6a). If non- 

triangular faces are involved, we just simply triangulate them before refinement. When inserting a new vertex 

on a edge, its position is located at the middle of the edge if there is no profile curve attached; if a profile curve 

)(uC p  is attached on this edge, the inserted vertex is located at )5.0(pC . The curve )(uC p  is divided into two 

curves and attached on the split two edges (see Fig. 6b). The smoothing operator moves the control vertices 

according to the weighted averages of neighboring vertices. The positions of vertices in the refined mesh are 

changed to achieve a global energy functional minimization. Here, we implement the 2
nd

 order umbrella 

operator as an iterative solver of the problem [42]. In order to guarantee that the resultant fine mesh interpolates 

the originally given vertices, the umbrella operator must not be applied to those vertices belonging to the initial 

mesh. Also in order to guarantee that the resultant fine mesh interpolates the 3D profiles, the umbrella operator 

must not update the positions of the vertices lying on the profiles. As mentioned in [41], collision detection 

should also be incorporated to prevent vertices moving inside human models. 

⇒

 

)(1 uC

)(2 uC

⇒

)(1 uC b

)(1 uC f

)(2 uC f

)(2 uC b

 
(a) without profile interpolation (b) with profile interpolation 

Fig. 6    Topological splitting operator 

Fig. 7 shows the profile template decoding results on different human models. Fig. 7a and 7e are the new 

human models H
1
 and H

2
; Fig. 7b and 7f show the decoding processing with all feature nodes relocated; Fig. 7c 

and 7g give the final surface of the garment product on human models generated by the modified variational 

subdivision scheme, and Fig. 7d and 7h are related mesh representations. Fig. 8 explains how the profile curves 

(blue curves in the figure) control the final shape of refined surfaces. Fig. 8a is a template of pants without 

profile curves, and Fig. 8b gives its resultant shape. Fig. 8c and 8d shows the template and final shape with 

profile curve control, which has a much smoother surface but with no shrinkage. 
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(a) H
1
 (b) feature nodes 

relocated on H
1
 

(c) resultant surface on 

H
1
 

(d) mesh representation 

    

(e) H
2
 (f) feature nodes 

relocated on H
2
 

(g) resultant surface on 

H
2
 

(h) mesh representation 

Fig. 7    Profile template decoding on different human models 

    
(a) template without 

profile curves 

(b) resultant shape 

without profile control 

(c) template with profile 

curves 

(d) resultant shape with 

profile control 

Fig. 8    Using profile curves to control final shape 

 

5. Freeform Modification 
 

As mentioned at the beginning of this paper, the freeform surface on the decoding result of profile templates 

might need to be further modified. In this section, four most useful freeform surface modification tools for 

apparel products are introduced. 

Mesh painting 

Users can conduct this tool to specify curves on the surface of products by 2D strokes. Our algorithm 

creates 3D line segments by projecting each line segment of the input 2D stroke onto the surface meshes of the 
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model along the view direction. The overall procedure is: for each line segment of the 2D stroke, first determine 

a bounding plane containing the projection of the line segment from the viewing position; then the system finds 

all intersections between the plane and each polygon of the object, and splices the resulting 3D line segments 

together (see Fig. 9). The actual implementation searches for the intersections efficiently using polygon 

connectivity information. If a ray from the viewing position crosses multiple polygons, only the polygon nearest 

to the viewing position is used for the surface painting. If the resulting 3D segments cannot be sliced together 

(e.g., if the stroke crosses a “fold” of the object, as shown in Fig. 10), the algorithm fails. The painted curves are 

stored by the ATTRIB_EDGEs in the data structure. There is another kind of painting, called penetrated 

painting, in which, all the polygons crossed by the rays are used to compute intersections. A “fold” does not 

influence the penetrated painting. The painting result is also stored by the ATTRIB_EDGEs. Both these 

paintings are implemented, and examples are shown in Fig. 11. 

  

Fig. 9    Painting illustration Fig. 10    Stroke across a “fold” leads algorithm fail 

 

      
(a) painting result (b) penetrated painting result 

Fig. 11    Examples of painting 

Mesh cutting 

The mesh cutting is to remove some parts of the given mesh surface by input 2D strokes. Similar to the 

Teddy system [33], the cutting tool is based on the painting algorithm. After painting a curve on the surface of a 

model, the constrained Delaunay triangulation algorithm [43] makes the painted curves to form the triangle 

edges of the model. Removing the triangles on the user-selected side of the painted curve (specified by another 
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stroke) from the model, the cutting result is obtained (illustrated in Fig. 12). Fig. 13 shows an example for using 

the mesh cutting tool to modify an evening dress. 

  

Fig. 12    Mesh cutting illustration Fig. 13    Example of mesh cutting 

 

    

(a) extrude a ring out (b) the band sleeve 

elongated 

(c) extrude a curve out (d) a hanging patch 

formed 

Fig. 14    Mesh extrusion 

  
(a) parting curves are defined on the dress (b) partitioned 3D pieces 

Fig. 15    Mesh partitioning 
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Mesh extrusion 

The extrusion operation is applied in our approach to create new polygonal meshes from base surface line 

segments (called the base curve) and extruding strokes. The mesh extrusion method implemented here is from 

our previous development in [44]. The mesh extrusion method is best illustrated by examples such as that shown 

in Fig. 14. In these examples, the given initial model is the freeform surface of a shirt; the mesh extrusion tool 

allows the user to sketch 2D input strokes (one stroke on the surface of given mesh, and other strokes depicting 

the profile curves of the extruded surface) to extrude a surface from the given mesh. Firstly the user draws a 

stroke on the object surface; then rotates the model to bring the stroke sideways and draws silhouette lines to 

extrude the surface. A sweep operation is applied to construct the 3D shape by moving the surface base curve, 

which is obtained by projecting the first stroke onto the surface of the given mesh, along the skeleton of the 

profile curves. 

Mesh partitioning 

The same as the cutting tool, the partitioning operation is also based on the painting algorithm. After 

painting the separating curves on the surface of a model (Fig. 15a), we apply the constrained Delaunay 

triangulation algorithm [43] to convert the painted curves into triangle edges of the model. After re-

triangulation, the whole model can be divided to several sets of triangles; each set is a component of the product 

model (see Fig. 15b). 

 

6. Detail Template Encoding/Decoding 
 

When the freeform surface of an apparel product is modified, it is impossible to maintain the relationship 

between the product and a human model since lots of vertices have been inserted and removed. In this case, we 

need to rebuild the relationship between the product and a parameterized human model, so the detail template of 

a product’s surface is created. The same as profile template, the detail template is also stored in our BODY data 

structure; however, comparing to a profile template, a detail template usually contains much more vertices and 

faces, and each vertices is encoded on several polygons of the parameterized human body. 

The basic problem of encoding/decoding a detail template is actually how to parameterize a vertex on a 

freeform surface M by the polygons of a human model H. After the parameters of each vertex on M are 

determined, the detail template M can be deformed with the shape change of H by a mapping. This is similar to 

the manner of Free-Form Deformation (FFD) [34]. Nevertheless, as mentioned in [39], the parameterization 

method of FFD, which uses volumetric lattice to control a deformation, cannot be directly applied when using 
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polygonal surfaces to control a deformation. Using FFD usually needs high computational cost to solve non-

linear equations. Here, we adopt a method to blend linear mapped points given in the axial deformation methods 

[45-47]. This gives a very efficient and effective parameterization of vertices in M on a given H. Each vertex in 

M is parameterized and weighed by a number of polygons of a human model H. These values are stored and 

used for mapping to the new position when the shape of H is changed. 

When parameterizing a vertex ∈q M, the following problems should be solved in the process: 1) what are 

the polygons on H should q be encoded on; 2) what are the parameters of q on a polygon ∈iP H; 3) how to 

determine the weights for mapping the position of q by the new shape of H. 

   

(a) detail template to be encoded  (b) result of single p-polygon 

encoding/decoding 

(c) result of multiple p-polygons 

encoding/decoding 

Fig. 16    Encoding/decoding with single p-polygon vs. multiple p-polygons 

    
(a) single p-polygon mode (b) multiple p-polygons mode 

Fig. 17   Encoding/decoding of a vertex with single p-polygon vs. multiple p-polygons manners 

Once a point q on M is given, a fixed number of polygons on H are utilized to determine its new position 

when the shape of H is changed, they are called p-polygons. Why not just simply use the nearest polygon on H 

as the p-polygon? It is because that, as proposed in [39, 47], this simple solution gives significant ramps and 

bumps (as shown in Fig. 16, especially the circled regions). The blending result of multiple p-polygons blurs the 

above effects. The blending of multiple p-polygon mappings also preserves symmetry. As shown in Fig. 17, the 

encoding/decoding in single p-polygon mode did not maintain the vertex on the centerline of H, but it is 
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centered in the multiple p-polygons mode. By observation, in single p-polygon mode, the vertex is encoded on a 

polygon on the left leg of H (the green color region shows the related p-polygons). When the legs on another 

human body spreading out more, the vertex will be dragged to the left part. This is the cause of asymmetric 

occurrences. 

During our tests, we found that choosing Nq = ROUND(NH / 100) p-polygons usually gives good results, 

where NH is the total number of polygons on H. We adopt the Nq nearest polygons on H to parameterize q. The 

nearest here does not mean the distance from q to a polygon’s plane, but the distance from q to the centroid of a 

polygon. A voxel-based algorithm is developed to determine the p-polygons. The space around H is divided into 

LNM ××  boxes; each box kjiB ,,  contains a list of polygons whose centroid falls in the region of kjiB ,, . Then, 

the following algorithm using a minimum heap Ψ  is adopted to determine the p-polygons, where Ψ  uses the 

distance from q to the centroid of a polygon as the measurement parameter. 

Algorithm determine_p-polygons() 

1. φ←Ψ  and 1←h ; 

2. Determine the box 
000 ,, kjiB containing q; 

3. Insert all polygons in 
000 ,, kjiB  into Ψ ; 

4. Set the checked flag of 
000 ,, kjiB  as true; 

5. for (di= -h; di<=h; di++)  

6. for (dj= -h; dj<=h; dj++)  

7. for (dk= -h; dk<=h; dk++)  

8. if (the checked  flag of dkkdjjdiiB +++ 000 ,,  is false) { 

9. Insert all polygons in dkkdjjdiiB +++ 000 ,,  into Ψ ; 

10. Set the checked flag of dkkdjjdiiB +++ 000 ,,  as true; 

11. } 

12. if (the number of polygons in Ψ  < Nq ) { 

13. 1+← hh ;  

14. Go back step 5; 

15. } 

16. return the top Nq  polygons in Ψ ; 

 

The voxel-based technique greatly reduces the time of skipping all polygons on H to determine the Nq nearest p-

polygons. After the p-polygons are determined, we need to consider about the parameterization method of each 

polygon.  
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For a polygon >=< ni pppP L21  on H, a linear local coordinate system iΓ  is formed at the centroid cp  

of iP  (Fig. 18). Axis vectors of iΓ  are given by the following formulas: 

ii PP nX = , 
c

c
P

pp

pp
Y

i −

−
=

1

1 , 
iii PPP YXZ ×= ,                                            (8). 

where 
iPn  is the normal of iP . If iP  is degenerated as a line segment or a point, it is simply ignored for the 

parameterization. Thus, the local coordinate (ui, vi, wi) of a point ∈q M is 

iPci Xpqu ⋅−= )( , 
iPci Ypqv ⋅−= )( , 

iPci Zpqw ⋅−= )( .                                    (9) 

Besides (ui, vi, wi), a weight iϖ  of iP  should also be determined for the mapping process. The weight iϖ  has a 

meaning of relative “strength” of iΓ  against other jΓ s, and is calculated by an effect function. Without loss of 

general, the value of an effect function should be non-negative and decrease monotonously according to the 

distance between q and iP . Also, the distance we adopted is the Euclidean distance between q and the centroid 

of iP , pc. The effect function conducted in our approach is 

3

1

c

i

pq −+
=

ε
ϖ                                                                    (10) 

with 810−=ε  is utilized to avoid the singularity when cpq − =0. In summary, the encoded information of a 

vertex ∈q M is Nq indexes of the related p-polygons on H and the ),,,( iiii wvu ϖ s of each p-polygon.  

p1

p2

pn

…

…

ipX

ipY

ipZ

q

pc

 
Fig. 18    Local frame iΓ  on iP  

iP jP

q
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~
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~
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iϖ jϖ

 
Fig. 19    Blending of mappings 
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The mechanism of blending the Nq mapping of p-polygons is shown in Fig. 19. After a human model Η
~

 

different from H is applied for decoding. The geometry of each polygon iP  is changed to iP
~

. The new centroid  

cp~  and axes 
iPX

~
, 

iPY
~

, 
iPZ

~
 of iP

~
 are computed by the same method described in eq. (9). Then, q is mapped to 

iq  with iP
~

 as  

iii PiPiPici ZwYvXupq
~~~~ +++=                                                          (11) 

The new position qj of q mapped by jP
~

 can be calculated in the same way. Since ),,( iii wvu  represents the 

relative position of q to the polygon iP , generally, iq  and jq  are not coincident. The final mapped point q~  is 

calculated by the following formula, which blends the points iq  with the weights iϖ : 

∑

∑
=

i
i

i
iiq

q
ϖ

ϖ
~ .                                                                        (12) 

By changing the position of each ∈q M as q~ , the deformed mesh Μ
~

 is determined. The decoding process of a 

detail template is finished. 

Examples of using detail template for the design automation of customized apparel products are shown in 

Fig. 20 and Fig. 21, where the customized apparel products are designed on the body of H, after the detail 

template encoding and decoding, the fitted products for different body shapes – H
1
, H

2
, and H

3
 are generated. 

 

7. Patterns for Manufacturing 
 

The garment manufacturing industry needs 2D patterns to be used in the manufacturing processes. The 

energy-based surface-flattening algorithm presented in [48] is integrated to generate the corresponding 2D 

patterns of a 3D apparel model by using a spring-mass model. This procedure consists of triangles flattening and 

planar mesh deformation. During the triangles flattening phase, triangles are flattened one by one; and a partial 

spring-mass system containing flattened triangles is deformed to release the strain energy during the flattening. 

After all the triangles are flattened, the spring-mass system will have all the triangles of the given surface. The 

planar triangular mesh deformation process is directed by the energy function of the spring-mass system. By 

releasing the energy function, we can obtain the 2D pattern related to the given 3D mesh surface. Fig. 22 shows 

an example of the corresponding 2D patterns of the dress shown in Fig. 15. 
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1
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2
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3
 

Fig. 20    Example I of detail template encoding/decoding: design automation of a trimmed dress 
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On H On H

1
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2
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3
 

Fig. 21    Example II of detail template encoding/decoding: a set of shirt and pants 
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Fig. 22    2D patterns for the 3D dress previously shown in Fig. 16 

 

8. Conclusion and Discussion 
 

This paper provides three-dimensional solution techniques to achieve the automatic made-to-measure 

(AMM) scheme for apparel products. With the help of AMM, the fitting guaranteed three-dimensional clothes 

of a same style can be automatically generated around the human bodies with different shapes in the computer 

system. This can greatly improve the efficiency of pattern generation in apparel industry. To overcome the 

limitation of solving fitting and grading in 2D, we develop our AMM in 3D. Compared to other cloth simulation 

based approaches, our solution solves the problem in a reverse way – directly design product in 3D space. 

Different styles of clothes are represented by different 3D feature templates which are well encoded on the 

parameterized human bodies. The easing relationships between the feature template and the parameterized 

human body are encoded and stored in the template of clothes. When clothes on different human bodies are 

required, a decoding process is performed to reconstruct the 3D cloth patterns preserving easing relationships 

around human bodies. Based on the constructive design result, we can modify its freeform surfaces to achieve 

more complex style. By detail template encoding/decoding, the modified result can also be applied 

automatically on different body shapes. In summary,  

• an integrated solution is presented for achieving the automatic made-to-measure (AMM) for apparel 

products, where the products designed on one human body can be automatically regenerated on 

different bodies according to their own morphology; 

• to represent the complex surface and the uncompleted model of an apparel product during design, a 

non-manifold data structure, that is a hybrid of the B-rep and the complex-based ones, is given; 
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• a constructive design approach by profile templates encoding/decoding is presented for the design of a 

new product (i.e., start from none); 

• after giving four intuitive freeform modification tools, a novel detail template encoding/decoding 

technique is developed to implement the AMM of an apparel product with detail freeform surfaces. 

In one word, our approach gives an integrated solution for the design automation of customized apparel 

products. 

The modified variation subdivision scheme applied in the profile template decoding has the shrinkage effect 

that influences the final shape of a constructive product. Although the profile curves can more or less resist 

shrinkages, we are still seeking other better surface interpolation techniques to take place of the modified 

variation subdivision scheme. More freeform modification tools are still under research for generating 

decorative elements on the surface of an apparel product (e.g., wrinkles, laces, and plies). Another possible 

further research relates to the detail template decoding. The detail template decoding process may take the 

adaptive subdivision scheme into consideration so the surfaces with better qualities could be generated at the 

place with high curvatures. 
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Appendix A    Entities and Attributes 
 

The detail descriptions of each entity and attribute in our data structure are listed below. 

Table A-1    Representational Entities 

Entity Representation Description 

BODY Complex of PMESHs and 

PMESHJOINTs 

Highest level entity in a model. 

PMESH Complex of PMESHEDGEs, 

PFACEs, PEDGEs, and PNODEs 

A portion of BODY’s surface. It defines the 

shape of BODY, and is represented by many 

polygons. 

PMESHJOINT Complex of PMESHEDGEs Assembly information of PMESHs. 

PMESHEDGE Complex of PEDGEs A collection of PEDGES, every PEDGE has 

its own direction flag. 

PFACE Complex of n PEDGEs Portion of a PMESH. 

PEDGE Complex of two PNODEs Boundary of a PFACE, holds the model 

together with adjacency information. (+ve, 

clockwise; -ve, anti-clockwise) 

PNODE A point Boundary of a PEDGE. 

 

Table A-2    Representational Attributes 

Attribute Representation Description 

ATTRIB_NODE A point An attribute point on the surface of a 

PMESH. 

ATTRIB_EDGE Complex of ATTRIB_NODEs An attribute curve lying on the surface of a 

PMESH. It is a list of ATTRIB_NODEs, 

and passes polygonal faces of the PMESH 

ATTRIB_EDGENODE A point An attribute point on a polygonal edge. Its 

position depends on the positions of the two 

endpoints of the edge. 

ATTRIB_FACENODE A point An attribute point in a polygonal face. Its 

position depends on the positions of the 

nodes of the face. 

 

Appendix B    Extended Euler Operators 

The eight extended Euler operators are listed in Table B-1 and Fig. B-1. Reverse operators are enclosed in 

brackets, and Chole denotes a hole in a complex. 
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make[kill]_vertex_complex Make[kill]_face_kill[make]_Chole 

  
Make[kill]_vertex_edge make[kill]_vertex_ring 

  
make[kill]_edge_Chole make[kill]_edge_kill[make]_ring 

  
make[kill]_edge_kill[make]_complex split[merge]_edge 

Fig. B-1    Extended Euler operators 

Table B-1    Function Description of Extended Euler Operators 

Operator Function of operator 

make[kill]_vertex_complex Create a single vertex complex 

make[kill]_vertex_edge Create a vertex and an edge connecting to an existed vertex (the 

operator can be carried out freely or inside a face) 

make[kill]_edge_Chole Connect two vertex by a new edge to form a hole in a complex 

make[kill]_edge_kill[make]_complex Connect two vertex complexes by a new edge  (since the two complexes 

are connected, one complex should be removed) 

make[kill]_face_kill[make]_Chole Create a new face on a complex hole and remove the hole 

make[kill]_vertex_ring Create a stand-alone vertex on a face (the single vertex forms a ring) 

make[kill]_edge_kill[make]_ring Connect two stand-alone vertices by a new edge on a face (two rings are 

merged into one ring, thus one ring should be removed) 

Split[merge]_edge Split one edge into two edges by adding a new vertex on the original 

edge 

 

 


