
Design Automation for Customized Apparel Products

Charlie C. L. Wang
*

Department of Automation and Computer-Aided Engineering, Chinese University of Hong Kong,

Shatin, N.T., Hong Kong, P. R. China

Yu Wang Matthew M. F. Yuen

Department of Mechanical Engineering, Hong Kong University of Science and Technology,

Clear Water Bay, N.T., Hong Kong, P. R. China

Abstract

This paper presents solution techniques for a three-dimensional Automatic Made-to-Measure (AMM)

scheme for apparel products. Freeform surface is adopted to represent the complex geometry models of apparel

products. When designing the complex surface of an apparel product, abstractions are stored in conjunction with

the models using a non-manifold data structure. Apparel products are essentially designed with reference to

human body features, and thus share a common set of features as the human model. Therefore, the parametric

feature-based modeling enables the automatic generation of fitted garments on differing body shapes. In our

approach, different apparel products are each represented by a specific feature template preserving its individual

characteristics and styling. When the specific feature template is encoded as the equivalent human body feature

template, it automates the generation of made-to-measure apparel products. The encoding process is performed

in 3D, which fundamentally solves the fitting problems of the 2D tailoring and pattern-making process. This

paper gives an integrated solution scheme all above problems. In detail, a non-manifold data structure, a

constructive design method, four freeform modification tools, and a detail template encoding/decoding method

are developed for the design automation of customized apparel products.

Keywords: automation, made-to-measure, fitting, apparel products, and three-dimensional solution.

*
 Corresponding Author: Charlie C. L. Wang; E-mail: cwang@acae.cuhk.edu.hk; Tel: (852) 2609-8052; Fax: (852) 2603-6002

 2

1. Introduction

The purpose of this paper is to provide an integrated solution for the design automation of customized

apparel products; in other words, Automatic Made-to-Measure (AMM) technology. After designing a garment

on a standard size mannequin, AMM automatic generates the same garment styling to be fitted on different body

shapes and guarantees the three-dimensional fitting. This greatly improves the efficiency of pattern generation

for the apparel industry. At present, 2D CAD systems are widely used in the cloth industry for pattern design

and generation. However, this process remains a bottleneck in garment manufacturing, especially when the

garment patterns of the same style are graded using empirical two-dimensional grading rules to fit different

body shapes. Current commercial garment CAD systems [1-2] provide such 2D grading tools to generate

patterns of different sizes from the basic pattern set. Their 2D grading rules are usually offset curves generated

in plane; therefore it is not intuitive to preserve the fit of final dressing in spatial space. 2D approaches can

hardly generate the fitted clothes for different human bodies. The only way to fundamentally solve the fitting

problem of clothes is to design products in 3D. In the DresssingSim [3] solutions, some 3D design tools are

provides. However, they remain relatively simple operations.

Cloth simulation techniques [4-10] provide a way of testing patterns by assembling 2D patterns in a

computer system and draping them on a virtual human body. However, the tools for modifying the shape of

patterns according to different human body shapes are not available. Recently, an online made-to-measure

system was presented by Cordier et al. [11]. Their system allows interactive adjustment of the 3D mannequin

according to the shopper’s body measurements, online resizing of the garment to fit the mannequin, and real-

time simulation of the garment corresponding to the body motion. However, their approach is also based on 2D

pattern design and draping simulation; and their major purpose is for visualization and animation purpose, not

for design. Our approach provides tools to construct and modify patterns directly on virtual human bodies in 3D

space with focus on solving the 3D fitting problem. The patterns for a garment product with a particular

designer styling are represented as a feature template. The easing relationships between the feature template and

the feature-based human body model are encoded and stored. When the same garment product is required for a

customer with different human shape, a decoding process is performed to reconstruct the 3D cloth patterns

preserving the easing relationships related to the human model. Fig. 1 gives an illustration of this concept by

using four human models H, H1, H2, and H3. Using human model H as the reference for generating the 3D cloth

pattern using the constructive design approach, the design related feature template is encoded. The same

designer styled garment product can be generated automatically on H1, H2 and H3. Based on the constructive

 3

design result, we can further modify its freeform surfaces to create more complex styles. By detail template

encoding/decoding, the modified results can also be regenerated automatically on different body shapes.

H2 H3
H1

H

Freeform

Modification

Cloth Template

Cloth Template

++Decoding Decoding

Detail Template

Encoding

Profile

Template

Encoding

Fig. 1 The process of encoding and decoding cloth template on parameterized human bodies

The garment products are represented by freeform surfaces because of their geometric complexity. To

simplify the complex surface representation of garment products, during the design phase, abstractions are

stored along with the model, which lead to the use of non-manifold data structure and operators. Garment design

has its own characteristic: garments are related to and encompass human bodies, and therefore share the same

set of features. Thus, the feature-based modeling enables the automatic construction and fitting of garment

products on differing human body shapes. Each garment product is represented by a unique feature template in

our approach. The major contribution of this paper is 1) an integrated solution scheme is presented for

generating automatic made-to-measure (AMM) apparel products, where the products designed on one human

body can be automatically regenerated on different body shapes; 2) detail techniques for supporting AMM,

including a non-manifold data structure, a constructive design method, four freeform modification tools, and a

detail template encoding/decoding method, are developed.

 4

The rest of the paper are organized as follows. After reviewing related works in section 2, section 3 gives

the necessary non-manifold data structure and its related operators to manipulate complex surfaces. Based on

this data structure, the profile template encoding/decoding method is introduced in section 4 so that a garment

product can be stored as 3D cloth pattern template and regenerated on different human body shapes. Freeform

modification is usually required to change the style of clothes – section 5 presents four tools supporting the

freeform modifications of apparel products. Also, designers may want to automatically regenerate the freeform

modification result on different bodies, so we develop a detail template encoding/decoding technique in section

6 to convert a modified freeform surface into an apparel product template.

2. Related Works

In the area of computer graphics, Terzopoulos et al. [12] were the first to develop a physical model for cloth

simulation. Volino et al. [4] developed a cloth model based on elasticity theory and used a Newtonian

formulation instead of a Lagrangian formulation. Fan et al. [5] also presented a cloth simulation system on

elasticity theory. Since Baraff and Witkin [6] introduced the semi-implicit method, it has become a popular

technique for numerically solving the equations of motion in cloth simulation. The aforementioned physical

models were found to give fairly realistic cloth motion; however Choi and Ko [7] revealed that those models

suffer from a post-buckling instability that can be particularly problematic in wrinkle formation. This instability

is an inherent physical instability and is therefore independent of the numerical method employed. Noting that

the buckling behavior of cloth differs from that of other thin materials, Choi and Ko assumed that application of

a compressive force on cloth immediately initiates buckling rather than compression. Collision detection and

responds takes an important role in the cloth simulation since such simulation usually runs around human

bodies. Zhang et al [8] has provided a multilevel temporal coherence collision detection technique for both

object collision and self-collision detection. Bridson et al. [9] proposed a robust collision handling technique

that combines repulsive forces, geometric treatment of collisions, and rigid impact zones. The combination of

those techniques made the collision resolution process run very efficiently. They additionally presented a

subdivision scheme that avoids collisions during the subdivision steps. Recently, in [10], Bridson et al. provided

mixed implicit/explicit modeling techniques to produce a cloth simulation with many folds and wrinkles to

improve the realism. In the above techniques, no matter how real the simulation result is, the patterns of clothes

are unchanged. They can only be utilized to test patterns, but not to modify patterns which is the purpose of our

approach.

 5

In our approach, every human model must be parameterized based on a set of features. A lot of researches

developed several parameterization algorithms for human models. The human body modeling methodologies in

literature can be classified into the creative approaches and the reconstructive approaches. Anatomically based

modelers [13, 14] can simulate underlying muscles, bones, and generalized tissue. They fall into the creative

category of human modeling approaches. The interactive design is allowed in the anatomy-based modelers;

however, these modelers require a relatively slow production time. A lot of the reconstruction approaches has

been investigated to build 3D geometry of human model automatically by capturing existing shape [15-22].

Here, we adopt the parametric feature-based human model as proposed in [21, 22]. The feature-based human

model H by the method of [21] gives a point-to-point correspondence among a set of human models with a same

common topological structure for the defined features. Every human model is a feature-based model, which

contains not only feature vertices and curves but also feature patches. Thus, the cloth pattern template can be

encoded on the different levels of feature entity defined on the human model which include vertices, curves, and

patches (e.g. Fig 2).

(a) parameterized

human body

(b) mesh representation (c) feature curves and

vertices

(d) checkerboard to

verify feature patches

Fig. 2 An example parameterized feature-based human body

As mentioned above, the non-manifold data structure and related operators are utilized in our approach. In

previous literature, B-rep based data structures [23-25] usually assigned respectively the face-use, loop-use,

edge-use, and vertex-use topological entities in association with the face, loop, edge, and vertex entities. A more

recent research on the representation of non-manifold models was the Partial Entity Structure (PES) [26], which

used a compact non-manifold boundary representation. The storage size of the PES is reduced to half of the

radial edge structure (RES). However, incomplete boundaries cannot be represented in this data structure, which

is vital to maintain in a product’s conceptual design. Some other approaches are complex-based representation

 6

[27-29]. Since the complex-based data structure, unlike the afore-mentioned data structure, is based on a simple

incidence graph that has no ordering information, it does not enable easy computation of certain important

properties (orientability, for instance). The data structure adopted here (derived from [30]) is a combination of

the boundary representation and the complex-based representation, which can overcome the above inadequacies.

Many freeform modeling approaches have also been developed. Some of them are related to surface

construction, some are interactive modification methods, and others are deformation techniques. Meyers et al.’s

work [31] was concerned with the problem of reconstructing the surfaces of three-dimensional objects, given a

collection of planar contours representing cross-sections through the objects. Bruyns et al. [32] developed a

method that allows the user to directly sketch the desired cut contour on a three-dimensional surface in a manner

assimilating the steering of scissors through fabric. Teddy system [33] can extrude a mesh to form a new closed

mesh surface, and it can smooth a surrounded area by projecting this area onto a plane, triangulating the

projected area using the constrained Delaunary triangulation algorithm, and finally dragging and pulling the new

vertices in the surrounded area. The freeform modification part of our paper borrows some ideas from above

techniques. Free-form deformations (FFDs) [34] and its variants [35-38] were popular and provide a high level

of geometric control over the deformation. FFDs are useful for coarse-scale deformations but not finer-scale

deformations, even if a very dense lattice or customized lattice shape is defined. Our detail template

encoding/decoding method is indeed a deformation technique. The underlying technique is akin to the most

recent t-FFD approach [39], which adopts the triangles as deformation primitives. Here, the polygonal facets of

human bodies are utilized as deformation drivers.

3. Non-manifold Data Structure and Operators

In order to integrate the representation of geometric abstractions and the incomplete topological

information, a non-manifold data structure for geometric object modeling by polygonal meshes is presented in

this section. This data structure is a more generic version of the non-manifold data structure for triangular

meshes presented in [30]. The proposed data structure is actually a hybrid of the boundary representation data

structure and the complex-based data structure. Fig. 3 depicts the framework of our data structure.

The data structure can globally be considered as a tree with BODY as the root. A BODY has a collection of

PMESHs, each of which contains complexes of a number of PMESHEDGEs, PFACEs, PEDGEs, and PNODEs;

and a BODY also has a collection of PMESHJOINTs, each of which is related to some ordered PMESHEDGEs.

A PFACE has n PEDGEs, and every PEDGE is a line segment ended by two PNODEs. Each PMESHEDGE has

a collection of PEDGEs; and each PEDGE has its own direction flag in the PMESHEDGE. The adjacency

 7

information of PMESHs at some PMESHEDGEs is stored in a new entity – PMESHJOINT. Each

PMESHJOINT has a collection of PMESHEDGEs, which contain the same number of PEDGEs, and the

PEDGEs are one to one connected (as shown in Fig. 4). If a PMESHEDGE is in the same direction with a

PMESHJOINT, it is defined as a positive one in the PMESHJOINT; otherwise, it is defined as a negative one.

The PMESHEDGEs in a PMESHJOINT are stored in a clockwise order by the right-hand rule (as shown in Fig.

4; where M1, M2, and M3 are three PMESHs, E1, E2, and E3 are their related PMESHEDGEs which contain

the same number of PEDGEs, and EO is the PMESHJOINT containing the adjacent information). The detail

description of each entity is shown in Appendix A. Using the data structure, it is easy to carry out any

topological and geometrical manipulation on the manifold or non-manifold polygonal mesh models.

BODY

PMESH

PMESHEDGE

PFACE

PEDGE

PNODE

PMESHJOINT

ATTRIB_EDGE

ATTRIB_FACENODE

ATTRIB_EDGENODE

Complex based

B-rep

BODY entire model complex PMESH mesh surface

PMESHEDGE mesh surface edge PFACE polygonal face

PMESHJOINT mesh surfaces joint PEDGE polygonal face edge

ATTRIB_EDGE curves on mesh surface PNODE polygonal face node

ATTRIB_EDGENODE nodes on polygonal edge ATTRIB_FACENODE nodes on polygonal face

Fig. 3 Non-manifold data structure frame

EO

E3

E2

E1

M1 M3

M2

EO
EO’

E1

E2

E3

M2

M3
M1

EO’

E3

E2

E1

Fig. 4 Clockwise list of PMESHEDGEs in a PMESHJOINT

 8

We define four attributes in our data structures. They include ATTRIB_NODE, ATTRIB_EDGE,

ATTRIB_EDGENODE, and ATTRIB_FACENODE, where ATTRIB_EDGENODE and

ATTRIB_FACENODE are derived from ATTRIB_NODE. ATTRIB_EDGENODE is the attribute node on a

PEDGE, and ATTRIB_FACENODE is the attribute node in a PFACE. Their coordinates depend on the position

of PEDGE’s nodes or the position of PFACE’s nodes. In detail, the coordinate of an ATTRIB_EDGENODE is

represented by a parameter u related to the nodes of a PEDGE; and the coordinate of an ATTRIB_FACENODE

is represented by),(vu – the local coordinate of a PFACE. An ATTRIB_EDGE is an ordered collection of

ATTRIB_NODEs, which can be either ATTRIB_EDGENODEs or ATTRIB_FACENODEs. The detail

description of each attribute is shown in Appendix A.

The construction of a valid geometric model is achieved through the use of a proper set of topological

operators. In geometric modeling, the fundamental topological operators are Euler operators [24, 40] that are

consistent with the Euler-Poincarè formula. Likewise, the extended topological operators for non-manifold

geometric modeling have to satisfy the same formula. Since no volume is included in our approach, only eight

extended Euler operators are utilized (shown in Appendix B), and they are restricted to the polygonal meshes.

When editing a model, often several repeated sequences of the extended Euler operators are used. These

sequences are formulated as high level editing operations. Five of these sequences are formulated as high level

editing operations, these include edge collapse, edge split, edge swap, face split, and face triangulation. These

high level operators are provided to automate the performance of the extended Euler operator sequences and

increase the efficiency of topological operations, and they are frequently used in polygonal mesh processing

algorithms. The detail description of these operators and their sequences of extended Euler operators can be

found in [30].

4. Constructive Design: Profile Template Encoding/Decoding

Based on the non-manifold data structure presented in the above section, and the parameterized feature-

based human model representation described in [21], a constructive design technique is developed in this

section. By this method, we can construct different feature-based garment profile templates, each representing a

different garment product styling, in direct correspondence to feature vertices, curves and patches of a

parameterized feature-based human model by incorporating the easing relationships. Then when applying to

different body shape, by our decoding method, the easing relationships preserving garment product will be

 9

generated. We can also control the final shape on edges through changing the profile curves on the encoded

templates.

Feature-based profile template encoding

When building the feature-based profile template TP for a garment product, two steps of interactivities are

involved. Every feature node in the profile template should first be encoded in relationship to either the feature-

based parameterized human model or other nodes that have already been encoded in TP. After all feature nodes

in the profile template are encoded, the topological graph linking the nodes should be interactively input by

users. The processes of profile template encoding more or less like using the interactive tools to build a coarse

freeform surface.

When encoding a feature node on a parameterized human model H, which is also represented by a feature-

based polygonal mesh, the feature node can be encoded on a vertex, an edge, or a face on the mesh of human

model – they are called reference elements. Every feature node is first created by specifying its (x, y, z)

coordinate. One then can choose the encoding mode: 1) by vertex, 2) by edge, or 2) by face. When the mode is

chosen, one could pick the reference element, which one wants to encode the feature node, on the surface of H.

Then, the relationship between the feature node and a human model is encoded. The relationship is actually the

relative coordinate of the feature nodes on the selected element. A feature node
PTV in TP can be exactly

encoded on a feature node of H in the vertex mode, be encoded on a feature curve of H in the edge mode (since

each feature curve is actually a set of linked edges), and be encoded on a feature patch by a face of the patch.

The detail encoding processes are as follows.

In the vertex-encoding mode, if a vertex bV is selected as the reference element, it is easy to obtain the unit

normal vector
bVn at the vertex; getting the first vertex 1

bV adjacent to bV in its adjacent vertices list, we can

have

bVV nX = ,
bV

bb

bb
V n

VV

VV
Y ×

−

−
=

1

1

, VVV YXZ ×= . (1)

If VY is degenerated, by 01 =− bb VV or
bVbb nVV //)(

1 − , we can replace 1
bV by 2

bV in (1). Thus, when a

feature node
PTV in TP is encoded on bV , the encoded information includes the index of bV on H, and the

scalars of VbTV XVVu
P

⋅−=)(, VbTV YVVv
P

⋅−=)(, and VbTV ZVVw
P

⋅−=)(. In the edge-encoding mode, an

edge bE serves as the reference element; the normal
bEn at bE is usually computed by averaging the normal

 10

vectors of its left and right faces. After determining the nearest point
bEV on bE to

PTV , a local frame at
bEV

can be determined by

bEE nX = ,
bb eeE ttY = , VVE YXZ ×= , (2)

where
bet is the direction vector of edge bE . Since the normals on bE ’s left and right faces are perpendicular to

bev , they form a plane perpendicular to bE ;
bEn is on the plane, so

bEn ⊥
bev . The encoded information in the

edge mode includes the index of bE on H, the parameter t of
bEV on bE (]1,0[∈t), the scalars of

EETE XVVu
bP

⋅−=)(, EETE YVVv
bP

⋅−=)(, and EETE ZVVw
bP

⋅−=)(. In the face-encoding mode, after a

face bF is chosen to be a reference element, its centroid
bFV and its normal

bFn can be easily determined.

Getting the first vertex
1

bFV in the vertices list of bF , the local frame at
bFV is as

bFF nX = ,

bb

bb

FF

FF

F
VV

VV
Y

−

−
=

1

1

, FFF YXZ ×= . (3)

Thus, the encoded information includes the index of bF on H, and the scalars of FFTF XVVu
bP

⋅−=)(,

FFTF YVVv
bP

⋅−=)(, and FFTF ZVVw
bP

⋅−=)(.

When encoding a feature node
PTV in PT by other nodes in TP, we have 1) one-to-one mode and 2) n-to-

one mode defined. The one-to-one mode encode
PTV on another feature node PT TV

P
∈*

 by storing the

information of
*

PTV ’s index in H and the vector
*

PP TT VV −=δ . The n-to-one mode has more than one feature

nodes in PT to determine the position of
PTV , they are

i
TP

V (i = 1, …, n). We encode them by the indexes of

i
TP

V s, the vectors
i

TTi PP
VV −=δ , and the weights iω corresponding to the ith

i
TP

V . The weights determine the

contribution of every
i

TP
V on the final position of

PTV . It is computed by

3

1

i
TT

i

PP
VV −+

=

ε
ω , (4)

where 810−=ε to avoid the singularity when i
TT PP

VV − =0. After the positions of
i

TP
V s are changed to

i
TP

V
~

, the

new position of
PTV can be determined by

∑

∑ +
=

i
i

i

i
Tii

T

P

P

V
V

ω

δω)
~

(~
. (5)

 11

It is not hard to prove that
PP TT VV =

~
 when

i
T

i
T PP

VV =
~

.

After all the feature nodes in PT are encoded, they need to be linked with edges and faces using interactive

tools (i.e., specifying the topological graph
f

PT of PT interactively). The topological graph is a collection of

PMESHs that are connected by PMESHJOINTs. For example, Fig. 5a shows the topological graph of a PT

stored in a BODY. Since our data structure is complex-based, the incomplete topology information generated by

the construction process is easily stored. Fig. 5b-5h shows some fragments of the construction process of the

topological graph. In Fig. 5b, the feature nodes have been defined around the reference model. An interactive

tool is utilized to connect the feature nodes by edges as shown in Fig. 5c-5d; and Fig. 5e shows the feature

template after creating all edges. Polygonal faces can also be created one by one interactively (Fig. 5f and 5g).

Fig. 5h shows the final result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 An example of topological graph construction process

Using profile curves to control shape

In the above encoded PT , the shape on an edge is not controlled. Here, we use the profile curves to control

the shape of final surfaces. A profile curve is a parametric curve)(uC p on a PEDGE pE in PT , where)0(pC

and)1(pC are coincident to the two ending vertices on pE . Typically, it is represented as a 4
th

 order Bézier

curves in our prototype system. The curve)(uC p can be specified by the traditional 3D curve input methods in

 12

CAD systems or by the sketched-input as shown in [41]. The following profile template decoding process will

persuade the final refined surface interpolating the specified profile curves. Thus, the profile curves are utilized

to control local shape of the final surface. A profile curve)(uC p is encoded on its PEDGE by

)()()(uEuCuep pp −= . (6)

After encoding the polynomial of)(uep , the relationship between)(uC p and pE is stored. When the positions

of the endpoints of pE are adjusted, we can construct a new parametric line segment)(
*

uE p for it. Thus, the

new profile curve can be obtained by

)()()(
**

uEuepuC pp += . (7)

Feature-based profile template decoding

After a feature-based profile template PT has been encoded, it can be applied to any parameterized feature-

based human model H*. This involves the profile template decoding process. A decoding process includes the

steps of relocating the positions of feature nodes, reshaping the profile curves, and surface refinement.

For a feature node
PTV encoded on a vertex, by the encoded vertex index, the vertex *

bV on H* is

determined. A local frame can be established at *
bV as given by the formula in eq.(1). By the stored (uV, vV, wV)

and the reconstructed local frame at *
bV on H*, it is straightforward to determine the new position of

PTV . For a

feature node encoded on an edge, by index and t, the edge *
bE on H* and the vertex

*

bEV on *
bE are easily to be

obtained. After the local frame at
*

bEV is determined by eq.(2), the new position of
PTV is obtained using (uE, vE,

wE). Also, for the feature nodes encoded on faces, we relocate their position in the same way: calculate the

centroid of the face on H*; computer the local frame at the centroid by eq.(3); finally relocate the feature node

by the stored (uF, vF, wF). If a feature node is encoded on another feature node
*

PTV , its new position is
*

PTV+δ

with
*

PTV providing its position on H*. If a feature node
PTV is encode on n other feature nodes in PT , applying

their new positions in eq.(5) gives the decoding result of
PTV . After all feature nodes have been relocated, the

new parametric representation of the profile curves are computed by eq.(7). They and the feature nodes are

interpolated during the following surface refinement.

The surface refinement step of profile template decoding is to provide detail and smooth freeform surfaces

for representing the shape of an apparel product in computer system. The method applied here is from [41] – the

 13

modified variational subdivision scheme, which iteratively applies a topological splitting operator to introduce

new vertices to increase the degrees of freedom, followed by a discrete fairing operator to increase the overall

smoothness. The constructed mesh surfaces interpolate not only the initial vertices but also the specified

profiles. The topological splitting operator inserts new control vertices into the mesh. The split operation is

chosen to be uniform so that all the new vertices are regular (valance is equal to 6, as shown in Fig. 6a). If non-

triangular faces are involved, we just simply triangulate them before refinement. When inserting a new vertex

on a edge, its position is located at the middle of the edge if there is no profile curve attached; if a profile curve

)(uC p is attached on this edge, the inserted vertex is located at)5.0(pC . The curve)(uC p is divided into two

curves and attached on the split two edges (see Fig. 6b). The smoothing operator moves the control vertices

according to the weighted averages of neighboring vertices. The positions of vertices in the refined mesh are

changed to achieve a global energy functional minimization. Here, we implement the 2
nd

 order umbrella

operator as an iterative solver of the problem [42]. In order to guarantee that the resultant fine mesh interpolates

the originally given vertices, the umbrella operator must not be applied to those vertices belonging to the initial

mesh. Also in order to guarantee that the resultant fine mesh interpolates the 3D profiles, the umbrella operator

must not update the positions of the vertices lying on the profiles. As mentioned in [41], collision detection

should also be incorporated to prevent vertices moving inside human models.

⇒

)(1 uC

)(2 uC

⇒

)(1 uC b

)(1 uC f

)(2 uC f

)(2 uC b

(a) without profile interpolation (b) with profile interpolation

Fig. 6 Topological splitting operator

Fig. 7 shows the profile template decoding results on different human models. Fig. 7a and 7e are the new

human models H
1
 and H

2
; Fig. 7b and 7f show the decoding processing with all feature nodes relocated; Fig. 7c

and 7g give the final surface of the garment product on human models generated by the modified variational

subdivision scheme, and Fig. 7d and 7h are related mesh representations. Fig. 8 explains how the profile curves

(blue curves in the figure) control the final shape of refined surfaces. Fig. 8a is a template of pants without

profile curves, and Fig. 8b gives its resultant shape. Fig. 8c and 8d shows the template and final shape with

profile curve control, which has a much smoother surface but with no shrinkage.

 14

(a) H
1
 (b) feature nodes

relocated on H
1

(c) resultant surface on

H
1

(d) mesh representation

(e) H
2
 (f) feature nodes

relocated on H
2

(g) resultant surface on

H
2

(h) mesh representation

Fig. 7 Profile template decoding on different human models

(a) template without

profile curves

(b) resultant shape

without profile control

(c) template with profile

curves

(d) resultant shape with

profile control

Fig. 8 Using profile curves to control final shape

5. Freeform Modification

As mentioned at the beginning of this paper, the freeform surface on the decoding result of profile templates

might need to be further modified. In this section, four most useful freeform surface modification tools for

apparel products are introduced.

Mesh painting

Users can conduct this tool to specify curves on the surface of products by 2D strokes. Our algorithm

creates 3D line segments by projecting each line segment of the input 2D stroke onto the surface meshes of the

 15

model along the view direction. The overall procedure is: for each line segment of the 2D stroke, first determine

a bounding plane containing the projection of the line segment from the viewing position; then the system finds

all intersections between the plane and each polygon of the object, and splices the resulting 3D line segments

together (see Fig. 9). The actual implementation searches for the intersections efficiently using polygon

connectivity information. If a ray from the viewing position crosses multiple polygons, only the polygon nearest

to the viewing position is used for the surface painting. If the resulting 3D segments cannot be sliced together

(e.g., if the stroke crosses a “fold” of the object, as shown in Fig. 10), the algorithm fails. The painted curves are

stored by the ATTRIB_EDGEs in the data structure. There is another kind of painting, called penetrated

painting, in which, all the polygons crossed by the rays are used to compute intersections. A “fold” does not

influence the penetrated painting. The painting result is also stored by the ATTRIB_EDGEs. Both these

paintings are implemented, and examples are shown in Fig. 11.

Fig. 9 Painting illustration Fig. 10 Stroke across a “fold” leads algorithm fail

(a) painting result (b) penetrated painting result

Fig. 11 Examples of painting

Mesh cutting

The mesh cutting is to remove some parts of the given mesh surface by input 2D strokes. Similar to the

Teddy system [33], the cutting tool is based on the painting algorithm. After painting a curve on the surface of a

model, the constrained Delaunay triangulation algorithm [43] makes the painted curves to form the triangle

edges of the model. Removing the triangles on the user-selected side of the painted curve (specified by another

 16

stroke) from the model, the cutting result is obtained (illustrated in Fig. 12). Fig. 13 shows an example for using

the mesh cutting tool to modify an evening dress.

Fig. 12 Mesh cutting illustration Fig. 13 Example of mesh cutting

(a) extrude a ring out (b) the band sleeve

elongated

(c) extrude a curve out (d) a hanging patch

formed

Fig. 14 Mesh extrusion

(a) parting curves are defined on the dress (b) partitioned 3D pieces

Fig. 15 Mesh partitioning

 17

Mesh extrusion

The extrusion operation is applied in our approach to create new polygonal meshes from base surface line

segments (called the base curve) and extruding strokes. The mesh extrusion method implemented here is from

our previous development in [44]. The mesh extrusion method is best illustrated by examples such as that shown

in Fig. 14. In these examples, the given initial model is the freeform surface of a shirt; the mesh extrusion tool

allows the user to sketch 2D input strokes (one stroke on the surface of given mesh, and other strokes depicting

the profile curves of the extruded surface) to extrude a surface from the given mesh. Firstly the user draws a

stroke on the object surface; then rotates the model to bring the stroke sideways and draws silhouette lines to

extrude the surface. A sweep operation is applied to construct the 3D shape by moving the surface base curve,

which is obtained by projecting the first stroke onto the surface of the given mesh, along the skeleton of the

profile curves.

Mesh partitioning

The same as the cutting tool, the partitioning operation is also based on the painting algorithm. After

painting the separating curves on the surface of a model (Fig. 15a), we apply the constrained Delaunay

triangulation algorithm [43] to convert the painted curves into triangle edges of the model. After re-

triangulation, the whole model can be divided to several sets of triangles; each set is a component of the product

model (see Fig. 15b).

6. Detail Template Encoding/Decoding

When the freeform surface of an apparel product is modified, it is impossible to maintain the relationship

between the product and a human model since lots of vertices have been inserted and removed. In this case, we

need to rebuild the relationship between the product and a parameterized human model, so the detail template of

a product’s surface is created. The same as profile template, the detail template is also stored in our BODY data

structure; however, comparing to a profile template, a detail template usually contains much more vertices and

faces, and each vertices is encoded on several polygons of the parameterized human body.

The basic problem of encoding/decoding a detail template is actually how to parameterize a vertex on a

freeform surface M by the polygons of a human model H. After the parameters of each vertex on M are

determined, the detail template M can be deformed with the shape change of H by a mapping. This is similar to

the manner of Free-Form Deformation (FFD) [34]. Nevertheless, as mentioned in [39], the parameterization

method of FFD, which uses volumetric lattice to control a deformation, cannot be directly applied when using

 18

polygonal surfaces to control a deformation. Using FFD usually needs high computational cost to solve non-

linear equations. Here, we adopt a method to blend linear mapped points given in the axial deformation methods

[45-47]. This gives a very efficient and effective parameterization of vertices in M on a given H. Each vertex in

M is parameterized and weighed by a number of polygons of a human model H. These values are stored and

used for mapping to the new position when the shape of H is changed.

When parameterizing a vertex ∈q M, the following problems should be solved in the process: 1) what are

the polygons on H should q be encoded on; 2) what are the parameters of q on a polygon ∈iP H; 3) how to

determine the weights for mapping the position of q by the new shape of H.

(a) detail template to be encoded (b) result of single p-polygon

encoding/decoding

(c) result of multiple p-polygons

encoding/decoding

Fig. 16 Encoding/decoding with single p-polygon vs. multiple p-polygons

(a) single p-polygon mode (b) multiple p-polygons mode

Fig. 17 Encoding/decoding of a vertex with single p-polygon vs. multiple p-polygons manners

Once a point q on M is given, a fixed number of polygons on H are utilized to determine its new position

when the shape of H is changed, they are called p-polygons. Why not just simply use the nearest polygon on H

as the p-polygon? It is because that, as proposed in [39, 47], this simple solution gives significant ramps and

bumps (as shown in Fig. 16, especially the circled regions). The blending result of multiple p-polygons blurs the

above effects. The blending of multiple p-polygon mappings also preserves symmetry. As shown in Fig. 17, the

encoding/decoding in single p-polygon mode did not maintain the vertex on the centerline of H, but it is

 19

centered in the multiple p-polygons mode. By observation, in single p-polygon mode, the vertex is encoded on a

polygon on the left leg of H (the green color region shows the related p-polygons). When the legs on another

human body spreading out more, the vertex will be dragged to the left part. This is the cause of asymmetric

occurrences.

During our tests, we found that choosing Nq = ROUND(NH / 100) p-polygons usually gives good results,

where NH is the total number of polygons on H. We adopt the Nq nearest polygons on H to parameterize q. The

nearest here does not mean the distance from q to a polygon’s plane, but the distance from q to the centroid of a

polygon. A voxel-based algorithm is developed to determine the p-polygons. The space around H is divided into

LNM ×× boxes; each box kjiB ,, contains a list of polygons whose centroid falls in the region of kjiB ,, . Then,

the following algorithm using a minimum heap Ψ is adopted to determine the p-polygons, where Ψ uses the

distance from q to the centroid of a polygon as the measurement parameter.

Algorithm determine_p-polygons()

1. φ←Ψ and 1←h ;

2. Determine the box
000 ,, kjiB containing q;

3. Insert all polygons in
000 ,, kjiB into Ψ ;

4. Set the checked flag of
000 ,, kjiB as true;

5. for (di= -h; di<=h; di++)

6. for (dj= -h; dj<=h; dj++)

7. for (dk= -h; dk<=h; dk++)

8. if (the checked flag of dkkdjjdiiB +++ 000 ,, is false) {

9. Insert all polygons in dkkdjjdiiB +++ 000 ,, into Ψ ;

10. Set the checked flag of dkkdjjdiiB +++ 000 ,, as true;

11. }

12. if (the number of polygons in Ψ < Nq) {

13. 1+← hh ;

14. Go back step 5;

15. }

16. return the top Nq polygons in Ψ ;

The voxel-based technique greatly reduces the time of skipping all polygons on H to determine the Nq nearest p-

polygons. After the p-polygons are determined, we need to consider about the parameterization method of each

polygon.

 20

For a polygon >=< ni pppP L21 on H, a linear local coordinate system iΓ is formed at the centroid cp

of iP (Fig. 18). Axis vectors of iΓ are given by the following formulas:

ii PP nX = ,
c

c
P

pp

pp
Y

i −

−
=

1

1 ,
iii PPP YXZ ×= , (8).

where
iPn is the normal of iP . If iP is degenerated as a line segment or a point, it is simply ignored for the

parameterization. Thus, the local coordinate (ui, vi, wi) of a point ∈q M is

iPci Xpqu ⋅−=)(,
iPci Ypqv ⋅−=)(,

iPci Zpqw ⋅−=)(. (9)

Besides (ui, vi, wi), a weight iϖ of iP should also be determined for the mapping process. The weight iϖ has a

meaning of relative “strength” of iΓ against other jΓ s, and is calculated by an effect function. Without loss of

general, the value of an effect function should be non-negative and decrease monotonously according to the

distance between q and iP . Also, the distance we adopted is the Euclidean distance between q and the centroid

of iP , pc. The effect function conducted in our approach is

3

1

c

i

pq −+
=

ε
ϖ (10)

with 810−=ε is utilized to avoid the singularity when cpq − =0. In summary, the encoded information of a

vertex ∈q M is Nq indexes of the related p-polygons on H and the),,,(iiii wvu ϖ s of each p-polygon.

p1

p2

pn

…

…

ipX

ipY

ipZ

q

pc

Fig. 18 Local frame iΓ on iP

iP jP

q

iP
~

jP
~

q~
iq

jq

iϖ jϖ

Fig. 19 Blending of mappings

 21

The mechanism of blending the Nq mapping of p-polygons is shown in Fig. 19. After a human model Η
~

different from H is applied for decoding. The geometry of each polygon iP is changed to iP
~

. The new centroid

cp~ and axes
iPX

~
,

iPY
~

,
iPZ

~
 of iP

~
 are computed by the same method described in eq. (9). Then, q is mapped to

iq with iP
~

 as

iii PiPiPici ZwYvXupq
~~~~ +++=                                                          (11) 

The new position qj of q mapped by jP
~

 can be calculated in the same way. Since ),,( iii wvu  represents the 

relative position of q to the polygon iP , generally, iq  and jq  are not coincident. The final mapped point q~  is 

calculated by the following formula, which blends the points iq  with the weights iϖ : 

∑

∑
=

i
i

i
iiq

q
ϖ

ϖ
~ .                                                                        (12) 

By changing the position of each ∈q M as q~ , the deformed mesh Μ
~

 is determined. The decoding process of a 

detail template is finished. 

Examples of using detail template for the design automation of customized apparel products are shown in 

Fig. 20 and Fig. 21, where the customized apparel products are designed on the body of H, after the detail 

template encoding and decoding, the fitted products for different body shapes – H
1
, H

2
, and H

3
 are generated. 

 

7. Patterns for Manufacturing 
 

The garment manufacturing industry needs 2D patterns to be used in the manufacturing processes. The 

energy-based surface-flattening algorithm presented in [48] is integrated to generate the corresponding 2D 

patterns of a 3D apparel model by using a spring-mass model. This procedure consists of triangles flattening and 

planar mesh deformation. During the triangles flattening phase, triangles are flattened one by one; and a partial 

spring-mass system containing flattened triangles is deformed to release the strain energy during the flattening. 

After all the triangles are flattened, the spring-mass system will have all the triangles of the given surface. The 

planar triangular mesh deformation process is directed by the energy function of the spring-mass system. By 

releasing the energy function, we can obtain the 2D pattern related to the given 3D mesh surface. Fig. 22 shows 

an example of the corresponding 2D patterns of the dress shown in Fig. 15. 



 22

    
On H On H

1
 

    
On H

2
 On H

3
 

Fig. 20    Example I of detail template encoding/decoding: design automation of a trimmed dress 



 23

    
On H On H

1
 

    
On H

2
 On H

3
 

Fig. 21    Example II of detail template encoding/decoding: a set of shirt and pants 

 



 24

 

Fig. 22    2D patterns for the 3D dress previously shown in Fig. 16 

 

8. Conclusion and Discussion 
 

This paper provides three-dimensional solution techniques to achieve the automatic made-to-measure 

(AMM) scheme for apparel products. With the help of AMM, the fitting guaranteed three-dimensional clothes 

of a same style can be automatically generated around the human bodies with different shapes in the computer 

system. This can greatly improve the efficiency of pattern generation in apparel industry. To overcome the 

limitation of solving fitting and grading in 2D, we develop our AMM in 3D. Compared to other cloth simulation 

based approaches, our solution solves the problem in a reverse way – directly design product in 3D space. 

Different styles of clothes are represented by different 3D feature templates which are well encoded on the 

parameterized human bodies. The easing relationships between the feature template and the parameterized 

human body are encoded and stored in the template of clothes. When clothes on different human bodies are 

required, a decoding process is performed to reconstruct the 3D cloth patterns preserving easing relationships 

around human bodies. Based on the constructive design result, we can modify its freeform surfaces to achieve 

more complex style. By detail template encoding/decoding, the modified result can also be applied 

automatically on different body shapes. In summary,  

• an integrated solution is presented for achieving the automatic made-to-measure (AMM) for apparel 

products, where the products designed on one human body can be automatically regenerated on 

different bodies according to their own morphology; 

• to represent the complex surface and the uncompleted model of an apparel product during design, a 

non-manifold data structure, that is a hybrid of the B-rep and the complex-based ones, is given; 



 25

• a constructive design approach by profile templates encoding/decoding is presented for the design of a 

new product (i.e., start from none); 

• after giving four intuitive freeform modification tools, a novel detail template encoding/decoding 

technique is developed to implement the AMM of an apparel product with detail freeform surfaces. 

In one word, our approach gives an integrated solution for the design automation of customized apparel 

products. 

The modified variation subdivision scheme applied in the profile template decoding has the shrinkage effect 

that influences the final shape of a constructive product. Although the profile curves can more or less resist 

shrinkages, we are still seeking other better surface interpolation techniques to take place of the modified 

variation subdivision scheme. More freeform modification tools are still under research for generating 

decorative elements on the surface of an apparel product (e.g., wrinkles, laces, and plies). Another possible 

further research relates to the detail template decoding. The detail template decoding process may take the 

adaptive subdivision scheme into consideration so the surfaces with better qualities could be generated at the 

place with high curvatures. 

 

 

References 

[1] Gerber. http://www.gerbertechnology.com. 

[2] Lectra. http://www.lectra.com.  

[3] DressingSim. http://www.dressingsim.com. 

[4] Volino P., Courchesne M., and Thalmann N.M., Versatile and efficient technique for simulating cloth and 

other deformation objects, SIGGRAPH 95 Proceeding, ACM., 1995, pp.137-144, New York, USA. 

[5] Fan J., Wang Q.F., Chen S.F., Yuen M.M.F., and Chan C.C., A spring-mass model-based approach for 

warping cloth patterns on 3D objects, The Journal of Visualization and Computer Animation, Vol. 9, No. 

4, October/December 1998, pp. 215-227. 

[6] Baraff D., and Witkin A., Large steps in cloth simulation, Proceedings of SIGGRAPH 98, pp.43–54, 

1998. 

[7] Choi K.J., and Ko H.S., Stable but responsive cloth, Proceedings of SIGGRAPH 2002, pp.604–611, 2002  

[8] Zhang D.L., and Yuen M.M.F., Cloth simulation using multilevel meshes, Computers & Graphics, 

vol.25, no.3, pp.383-389, 2001. 



 26

[9] Bridson R., Fedkiw R.P., and Anderson J., Robust treatment of collisions, contact, and friction for cloth 

animation, Proceedings of SIGGRAPH 2002, pp.594–603, 2002. 

[10] Bridson R., Marino S., and Fedkiw R., Simulation of clothing with folds and wrinkles, 

Eurographics/SIGGRAPH Symposium on Computer Animation 2003, pp.28-36, 2003.  

[11] Cordier F., Seo H., and Thalmann N.M., Made-to-measure technologies for an online clothing store. 

IEEE Computer Graphics and Applications, vol.23, no.1, pp.38–48, January 2003. 

[12] Terzopoulos D., Platt J., Barr A., and Fleischer K., Elastically deformable models, In Proceedings of the 

14th Annual Conference on Computer Graphics and Interactive Techniques, pp.205–214, 1987. 

[13] Scheepers F., Parent R.E., Carlson W.E., and May S.F., Anatomy-based modeling of the human 

musculature, Computer Graphics Proceedings, SIGGRAPH 97. ACM. 1997, pp.163-172. New York, NY, 

USA. 

[14] Wilhelms J., and Van Gelder A., Anatomically based modeling, Computer Graphics Proceedings, 

SIGGRAPH 97. ACM. 1997, pp.173-180. New York, NY, USA. 

[15] Wang C.C.L., Cheng T.K.K., and Yuen M.M.F., From laser-scanned data to feature human model: a 

system based on fuzzy logic concept, Computer-Aided Design, vol.35, no.3, pp.241-253, 2003. 

[16] Wang C.C.L., Wang Y., Cheng T.K.K., and Yuen M.M.F., Virtual human modeling from photographs for 

garment industry, Computer-Aided Design, vol.35, no.6, pp.577-589, 2003. 

[17] Dekker L., 3D human body modeling from range data, Ph.D. Thesis, University College London, 2000. 

[18] Hilton A., Beresford D., Gentils T., Smith R., Sun W., and Illingworth J., Whole-body modelling of 

people from multiview images to populate virtual worlds, Visual Computer, vol.16, no.7, 2000, pp.411-

436. 

[19] Lee W.S., Gu J., and Magnenat-Thalmann N., Generating animatable 3D virtual humans from 

photographs, Computer Graphics Forum, vol.19, no.3, 2000, pp.1-10. 

[20] Allen B., Curless B., and Popović Z, The space of human body shapes: reconstruction and 

parameterization from range scans, ACM Transactions on Graphics, vol.22, no.3, pp.587-594. 

[21] Wang C.C.L., Parameterization and parametric design of mannequins, Computer-Aided Design, 

accepted. 

[22] Au C.K., and Yuen M.M.F., A semantic feature language for sculptured object modeling, Computer-

Aided Design, vol.32, no.1, pp. 63-74, 2000.  



 27

[23] Weiler K., The radial edge structure: a topological representation for non-manifold geometric boundary 

modeling, edited by Wozny M. J., McLaughlin H. W., and Encarnacao J. L., Geometric modeling for 

CAD applications, North-Holland, pp.3-36, 1986. 

[24] Choi Y., Vertex-based boundary representation of non-manifold geometric models, PhD. Thesis, 

Carnegie Mellon University, 1989. 

[25] Gursoz E.L., Choi Y., and Prinz F.B., Vertex-based boundary representation of non-manifold boundaries, 

edited by Wozny M. J., Turner J. U., and Preiss K., Geometric Modeling for Product Engineering, North-

Holland, pp.107-130, 1990. 

[26] Lee S.H., and Lee K., Partial entity structure: a compact non-manifold boundary representation based on 

partial topological entities, Proceedings of the 6
th

 ACM Symposium on Solid Modeling and Applications, 

Ann Arbor, Michigan, pp.159-170. 2001. 

[27] Rossignac J., and O’Conner M. A., SGC: a dimensional–independent model for pointsets with internal 

structures and incomplete boundaries, edited by Wozny M. J., Turner J. U., and Preiss K., Geometric 

Modeling for Product Engineering, North-Holland, pp.145-180, 1990. 

[28] Lienhardt P., Topological models for boundary representation: a comparison with n-dimensional 

generalized maps, Computer-Aided Design, vol.23, no.1, pp.59-82, 1991. 

[29] Hubeli A., and Gross M., Multiresolution methods for nonmanifold models, IEEE Transactions on 

Visualization and Computer Graphics, vol.7, no.3, pp.207-221, 2001. 

[30] Wang C.C.L., Wang Y., and Yuen M.M.F., Feature-based 3D non-manifold freeform object construction, 

Engineering with Computers, vol.19, no.2-3, pp.174-190, 2003. 

[31] Meyers D., Skinner S., and Sloan K., Surface from Contours, ACM Transaction on Graphics, vol. 11, no. 

3, pp.228-258, 1992. 

[32] Bruyns C. D., and Senger S., Interactive cutting of 3D surface meshes, Computers & Graphics, vol.25, 

pp.635-642, 2001. 

[33] Igarashi T., Tanaka H., and Matsuoka S., Teddy: a sketching interface for 3D freeform design, 

SIGGRAPH 1999 Conference Proceedings, 1999 

[34] Sederberg T. and Parry S., Free-form deformations of solid geometric models, Computer Graphics, 20: 

151-160, 1986. 

[35] Coquillart S., Extended free-form deformations: A sculpting tool for 3D geometric modeling, Computer 

Graphics, 24(4): 187-196, 1990. 



 28

[36] Chang Y. K. and Rockwood A. P., A generalized de Casteljau approach to 3D free-form deformation, 

Computer Graphics, 28(4): 257-260, 1994. 

[37] Hsu W., Hughes J., and Kaufmann H., Direct manipulations of free-form deformations, Computer 

Graphics, 26(2): 177-184, 1992. 

[38] MacCracken R. and Joy K., Free-form deformations with lattices of arbitrary topology, Computer 

Graphics, 181-189, 1996. 

[39] Kobayashi K.G., and Ootsubo K., t-FFD: freeform deformation by using triangular mesh, ACM 

Symposium on Solid Modeling and Application 2003, pp.226-234, 2003. 

[40] Masuda H., Topological operators and Boolean operations for complex-based non-manifold geometric 

models, Computer-Aided Design, vol.25, no.2. 1993. 

[41] Wang C.C.L., Wang Y., and Yuen M.M.F., Feature based 3D garment design through 2D sketches, 

Computer-Aided Design, vol.35, no.7, pp.659-672, 2003. 

[42] Kobbelt L., Discrete fairing and variational subdivision for freeform surface design, The Visual 

Computer, vol.16, no.3/4, pp.142-158, 2000. 

[43] de Floriani L., and Puppo E., An online algorithm for constrained delaunay triangulation, CVGIP-

Graphical Models & Image Processing, vol.54, no.4, pp.290-300, USA. 

[44] Wang C.C.L., and Yuen M.M.F., Freeform extrusion by sketched input, Computers & Graphics, vol.27, 

no.2, pp.255-263, 2003. 

[45] Lazarus F., Coquillart S., and Jancene P., Axial deformations: an intuitive deformation technique, 

Computer-Aided Design, vol.26, no.8, pp.607-613, 1994. 

[46] Singh K. and Fiume E., Wires: a geometric deformation technique, SIGGRAPH 98 Conference 

Proceedings, pp.405-414, 1998. 

[47] Wang C.C.L., and Yuen M.M.F., View-dependent deformation with sketching input, 2001 ASME 

DETC/CIE, 27th Design Automation Conference, Pittsburgh, Pennsylvania, September, 2001. 

[48] Wang C.C.L., Smith S.S.F., and Yuen M.M.F., Surface flattening based on energy model, Computer-

Aided Design, vol.34, no.11, pp.823-833, 2002. 

 

 

 

 



 29

Appendix A    Entities and Attributes 
 

The detail descriptions of each entity and attribute in our data structure are listed below. 

Table A-1    Representational Entities 

Entity Representation Description 

BODY Complex of PMESHs and 

PMESHJOINTs 

Highest level entity in a model. 

PMESH Complex of PMESHEDGEs, 

PFACEs, PEDGEs, and PNODEs 

A portion of BODY’s surface. It defines the 

shape of BODY, and is represented by many 

polygons. 

PMESHJOINT Complex of PMESHEDGEs Assembly information of PMESHs. 

PMESHEDGE Complex of PEDGEs A collection of PEDGES, every PEDGE has 

its own direction flag. 

PFACE Complex of n PEDGEs Portion of a PMESH. 

PEDGE Complex of two PNODEs Boundary of a PFACE, holds the model 

together with adjacency information. (+ve, 

clockwise; -ve, anti-clockwise) 

PNODE A point Boundary of a PEDGE. 

 

Table A-2    Representational Attributes 

Attribute Representation Description 

ATTRIB_NODE A point An attribute point on the surface of a 

PMESH. 

ATTRIB_EDGE Complex of ATTRIB_NODEs An attribute curve lying on the surface of a 

PMESH. It is a list of ATTRIB_NODEs, 

and passes polygonal faces of the PMESH 

ATTRIB_EDGENODE A point An attribute point on a polygonal edge. Its 

position depends on the positions of the two 

endpoints of the edge. 

ATTRIB_FACENODE A point An attribute point in a polygonal face. Its 

position depends on the positions of the 

nodes of the face. 

 

Appendix B    Extended Euler Operators 

The eight extended Euler operators are listed in Table B-1 and Fig. B-1. Reverse operators are enclosed in 

brackets, and Chole denotes a hole in a complex. 



 30

  
make[kill]_vertex_complex Make[kill]_face_kill[make]_Chole 

  
Make[kill]_vertex_edge make[kill]_vertex_ring 

  
make[kill]_edge_Chole make[kill]_edge_kill[make]_ring 

  
make[kill]_edge_kill[make]_complex split[merge]_edge 

Fig. B-1    Extended Euler operators 

Table B-1    Function Description of Extended Euler Operators 

Operator Function of operator 

make[kill]_vertex_complex Create a single vertex complex 

make[kill]_vertex_edge Create a vertex and an edge connecting to an existed vertex (the 

operator can be carried out freely or inside a face) 

make[kill]_edge_Chole Connect two vertex by a new edge to form a hole in a complex 

make[kill]_edge_kill[make]_complex Connect two vertex complexes by a new edge  (since the two complexes 

are connected, one complex should be removed) 

make[kill]_face_kill[make]_Chole Create a new face on a complex hole and remove the hole 

make[kill]_vertex_ring Create a stand-alone vertex on a face (the single vertex forms a ring) 

make[kill]_edge_kill[make]_ring Connect two stand-alone vertices by a new edge on a face (two rings are 

merged into one ring, thus one ring should be removed) 

Split[merge]_edge Split one edge into two edges by adding a new vertex on the original 

edge 

 

 


