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Abstract—This paper presents an algorithm for automatically 

computing the planar patterns of custom-made assistive medical 

braces, which are employed to restrict the motion of the joints 

(such as wrist and knee) that suffer from musculoskeletal 

disorders caused by repetitive strain injuries. An elastic brace is 

manufactured by warping a planar elastic fabric pattern. With a 

specified material, different shapes of planar patterns for 

producing a brace will generate different biomechanical effects on 

the joint. As an assistive medical device, an elastic brace is often 

requested to provide certain normal pressures at certain specific 

locations on the joint. Traditionally the planar pattern of a brace 

respecting the prescribed normal pressure requirement is designed 

through empirical tests by trial-and-error. We develop a woven 

fitting based method in this paper to automate this geometric 

design process. 

 
Index Terms—Geometric modeling, health care, surface 

flattening, woven model, developability. 

1. INTRODUCTION 

EPORTS have shown that more than seven million physician 

office visits per year in the United States are related to 

problems with wrist joints suffering from the repetitive strain 

injury [1]. If other types of joint injury (e.g., sports related) were 

included, the number would become much bigger. The dramatic 

increase in the use of computers and various kinds of automatic 

equipments is, unfortunately, a major contributor to this spate. 

Elastic braces are the most commonly used assistive medical 

devices for joint injuries, whose purpose is to restrict the motion 

of the injured joint so that it will eventually heal by itself. A 

same brace, however, will exert different biomechanical effects 

on different individuals since they have different joint shapes. 

Therefore, for better and faster treatment of an individual 

patient, more and more physicians now request custom-made 

braces specifically designed for the individual patient, rather 

than choosing from off-shelf and mass-produced ones.  

A brace is made of a piece of elastic fabric with certain 

material characteristics. To restrict the motion of the joint, the 

brace should be in a “positive tensile” state – it must be 

stretched so that normal pressure can be generated upon the 
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joint. The design task of a brace is to find a planar 

pattern/geometry of the brace, which is called the “rest or 

relaxed state” as no stretch or compression occurs at this time, 

so that when worn the brace generates the desired normal 

pressure distribution. In most cases (though not every), the 

planar pattern is sewed at two matching seams so to form a 

relaxed closed cylinder-like shape. Figure 1 shows such an 

elbow brace. 

The main component in the design of a brace is to find the 

correct planar pattern of the flattened brace so that, when worn, 

the stretched brace will generate the requested distribution of 

the normal pressure on and near the joint. Currently this 

flattening is determined manually through a tedious and very 

inefficient trial-and-error process: markers are placed on the 

sample points in an initial guess pattern, the corresponding 

brace is then worn by the patient or put on a cast model of the 

joint; normal pressure is then measured at some key sample 

points, and the boundaries of the pattern (the matching seams) 

are adjusted in an ad-hoc manner by looking at the movements 

of the markers and the errors of the normal pressure. The 

research presented in this paper is motivated by this – we 

develop a computer system that can automate this design 

process. Specifically, given the material characteristics of the 

brace, the geometry of the local body shape near the joint where 

the brace is to be worn, and the desired normal pressure at some 

designated points on the joint, the presented computer program 

will output the correct corresponding flattened planar pattern of 

the brace. 

We focus on developing a woven model based fitting and 

flattening algorithm for 3D freeform surfaces, because in the 

majority of cases braces are made of woven-like materials and 

human body near the joints exhibits sculpture nature. Fig.2 

shows an example that illustrates our flattening algorithm. After 

obtaining the scanned 3D triangular mesh model of the surface 

on which the brace is to be put (there exist several commercial 
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Fig. 1.  An elbow brace in its normal state (i.e., when worn) – left, and in the 

rest state – right. 
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products for this data acquisition task, e.g., [2], [3], and [4]), an 

initial 2D pattern of the brace can be determined by the 

well-known mesh parameterization algorithm in [5] (see 

Fig.2(a)). Based on this initial pattern, a woven model is then fit 

onto the 3D mesh surface of the brace (shown in the top-left of 

Fig.2(b)). The next step, which is the main part of the algorithm, 

is to redistribute the woven nodes on the 3D mesh surface 

(including possible insertion and removal of some nodes) so 

that the required normal pressures at the specified points are 

satisfied. To accomplish this, we first establish the relationship 

between the normal pressure and the strains of the woven model 

on the surface, and then convert the node-distribution problem 

into a strain-energy minimization problem and solve it through a 

diffusion process. Figure 2(b) shows several resultant patterns 

of a given 3D brace shape based on different user assigned 

normal pressures.  

The major contributions of our work fall in two aspects: 

• A mathematical model is established that relates the 

woven strains of a brace to the normal pressure that the 

brace generates on a freeform surface.  

• We develop an algorithm which, given the geometry of 

the freeform surface and the prescribed normal pressure, 

computes the corresponding 2D pattern of the brace. No 

such algorithm is found in literature.  

The result of this research will change the current inefficient 

trial-and-error manner in the design and fabrication of 

custom-made assistive medical braces, and provide a useful 

computer-aided design tool for physicians. In addition, the 

methodology developed can also benefit many other industrial 

applications that have similar surface flattening problems, e.g., 

the shoe industry, the apparel industry, and the furniture 

industry, etc. The relevance of applying our current method to 

those applications depends on whether the assumptions given in 

section 3 fulfill the physical characteristics there. 

The paper is organized as follows. The next section reviews 

the related works in literature. In Section 3, we introduce the 

woven mesh mode. In Section 4, we first present the 

methodology about how to relate the normal pressure to the 

strains of a woven mesh model, followed by the general idea of 

the corresponding flattening algorithm. The implementation 

detail of the algorithm is provided in Section 5. Finally, we 

show several numerical computation results in Section 6, and 

then conclude the paper. 

 

2. LITERATURE REVIEW 

The related works done by others are reviewed below in 

several integral subjects. A recent work directly pertinent to 

design of braces was given in [6]. In that work, the authors 

employed a strain energy density function to compute the 

stiffness that could be generated by an elastic brace during the 

deflection of human joints. Different from theirs, which is 

forward analysis, the objective of our research is to seek a 

solution to the reverse problem (i.e., the backward synthesis): 

given some biomechanical parameters (i.e., the strain 

distribution or the desired normal pressures at some sample 

points), compute the planar pattern of the brace which will 

generate that strain distribution on the specific individual. 

As to be detailed in the methodology section, the core part of 

our proposed approach is a delicate algorithm that flattens a 

freeform surface with a prescribed tensile strain distribution into 

its corresponding relaxed planar pattern. The amount of work 

that has been done in this general area of surface flattening is 

immense. It is usually formulated as the surface development 

problem in design/manufacturing applications and the mesh 

parameterization problem in computational geometry and 

computer graphics community. Regardless of the targeted 

applications, all the past works in surface flattening share a 

common goal: establish a mapping between a given surface and 

a planar region with minimum area and angular distortion. An 

excellent survey of recent advance in mesh parameterization is 

given in [7]. Floater [8] introduced a graph-theory based 

parameterization for tessellated surfaces for the purpose of 

smooth surface fitting; his parameterization (actually a planar 

triangulation) is the solution to a linear system based on convex 

combination. A quasi-conformal parameterization method 

based on a least-squares approximation of the Cauchy-Riemann 

equations was given in [9], where the objective of minimization 

is angle deformation. Desbrun et al. [5] developed an efficient 

parameterization algorithm for minimizing the distortion of 

different intrinsic measures of the original mesh. In all the above 

works, however, pre-existing linear stretch on the original 

surface is not considered. 

 

Fig. 2.  Geometric design of a customized assistive medical brace: (a) the 3D 

mesh surface of the brace is acquired from a scanned human model, and the 

initial planar pattern is obtained by a parameterization algorithm [5]; (b) 

different planar patterns are computed by fitting a woven model on the 3D 

brace surface while satisfying different user specified normal pressure 

requirements – different colors on the 3D brace represent different strain 

levels with blue denoting zero and red the highest value (=0.25). The places 

pointed by arrows are with large normal pressures specified. 
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In the realm of texture mapping which is a special application 

of surface flattening, Sheffer and de Sturler [10, 11] gave a 

texture mapping algorithm that incurs low mapping distortion. 

In [12], a texture stretch metric was introduced to minimize the 

linear distortion via non-linear optimization. Since non-linear 

numerical optimization is conducted in both, these approaches 

are time consuming. More recently, in [13], a fast and simple 

method for generating a low-stretch mesh parameterization was 

presented. It starts from any other parameterization (e.g., the 

intrinsic parameterization [5]) and then improves the 

parameterization gradually by a diffusion process using the 

stretch metric of [12]. It can significantly lower the stretch in a 

mesh parameterization. However, since the boundary vertices 

are not moved, the 2D boundary profile depends on the initial 

parameterization. Since in [5] the stretch is not minimized, the 

resultant 2D profiles of [13] are seldom satisfied in the length or 

area requirement. 

There are also some other energy-minimization based 

flattening algorithms [14-19]. All these algorithms though share 

a common “backward” strategy: the energy minimization 

scheme is applied to the 2D pattern. In other words, they assume 

that the original 3D surface has zero energy, i.e., without 

compression or stretch, while the 2D pattern is sought that 

minimizes the deformation energy. On the contrary, most 

physical processes are just opposite, such as in our case where 

the original 3D surface is the shape of the brace in normal state 

which is required to have a non-zero stretch distribution. 

In the majority of situations, braces are made of woven 

materials. Woven fabrics consist of a series of vertical threads 

(weft) that cross with a series of horizontal threads (warp). (The 

two though can intersect at a non-right angle.) In this sense, our 

proposed method relates to the work presented in [20-22], 

where Aono et al. proposed a geometrical approach for 

flattening a woven ply. We recently presented a flattening 

algorithm in [23] for woven fabrics. Our algorithm adopts a 

strain-energy releasing process and employs the idea of 

geodesic path, which partially solved the problems encountered 

by Aono et al.’s methods [20-22]. However, as aforementioned, 

none of the above approaches consider the prescribed normal 

pressures or tensile strain distributions when flattening freeform 

surfaces. This is the problem to be solved in this paper. 

 

3. WOVEN MODEL FOR ELASTIC BRACE 

The geometric design of a user-customized elastic medical 

brace is in fact based on the simulation of stretching a woven 

model onto a freeform polygonal mesh surface Μ  which 

represents the 3D shape of the joint. Therefore, we need first to 

define the woven model. 

A brace can be regarded as a ply of woven fabric composed 

of horizontal and vertical threads interwoven in a specific 

fashion (e.g., the one shown in Fig.3(a)). From the study of 

materials [24], we can adopt the following definitions and 

assumptions on the ply for an elastic brace: 

Assumption 1 All the weft threads are fabricated with a same 

type of material, and hence with a constant tensile stiffness 

coefficient. The same is true for all the warp threads. 

Assumption 2 The ply generally has strong tensile-strain 

resistance in the thread direction and a much weaker 

shear-strain resistance. 

Assumption 3 No slippage occurs at the crossing of a weft 

(vertical) and a warp (horizontal) thread. 

Assumption 4 To simplify the physical model, the frictions – 

both the friction between threads and the friction between the 

woven fabric and the surface wearing the brace – are ignored. 

Based on the above, in our approach, the woven fabric is 

modeled by a spring mesh Γ . An example spring mesh model is 

shown in Fig.3(b). There are three components in this model, 

i.e., weft (vertical) springs, warp (horizontal) springs, and 

diagonal springs. For real woven fabric, there is no diagonal 

thread in general. The reason for adding diagonal springs is to 

simulate the shear deformation resistance. Each of the three 

types of the springs has its own initial length at which the spring 

attains zero energy. A woven node is an intersection between 

springs whose position determines the deformation of the 

springs connected to that node. Each node is indexed by jiV , , 

where i, j are integers representing the indexes of row and 

column, respectively. For a mesh node jiV , , its valence is the 

number of springs connecting to it. If the valence is eight, jiV ,  

is an internal node; otherwise, jiV ,  is called a boundary node. 

For a mesh node jiV , , if there is another mesh node bjaiV ++ ,  

satisfying: 1) }1,0,1{, −∈ba  and 2) 0>+ ba , bjaiV ++ ,  is 

called a neighboring node of jiV , . For a woven mesh in 2D, all 

the weft springs are aligned in one direction and all the warp 

springs are aligned in another direction. In our model, their 

TABLE 1    NOMENCLATURE 

Symbol MEANING 

Μ  A given polygonal mesh surface 

Γ  A spring mesh to model the woven 

models 

VP  Normal pressure at a woven node V 

Hκ  Mean curvature at a surface point 

σ  Stress 

ε  Strain 

SL  The length of a spring S 

warpk , weftk , diagk  The stiffness coefficients of warp, weft 

and diagonal springs 

jiV ,  Woven node with index (i, j) 

λ  A damping factor in diffusion-based 

energy minimization 

SSDE  The squared strain difference 
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directions are orthogonal to each other, although they don’t 

have to. If the initial length of the weft spring and the warp 

spring are weftL  and warpL  respectively, the initial length of the 

diagonal spring diagr  is given by 

22
warpweftdiag LLL += . 

Lemma 1 Anisotropic material properties can be achieved by 

assigning different spring stiffness coefficients weftk , warpk  

and diagk  to the weft, the warp, and the diagonal springs. 

Note that by Assumption 1, all weft springs should have the 

same stiffness coefficient. The same are the warp and the 

diagonal springs. Also, by Assumption 2, we have Lemma 2 

below. 

Lemma 2 In general, weftdiag kk <<  and warpdiag kk << . 

Since no slippage occurs at a woven node (by Assumption 3) 

and the frictions are neglected (by Assumption 4), the forces 

generated at the two warp springs linked to a particular woven 

node should be equal to each other – this is also true for the weft 

springs. Since, due to Lemma 2, the forces contributed by 

diagonal springs are extremely small, they can be ignored in our 

model when formulating the relationship between normal 

pressures and tensile strains. However, the function of diagonal 

springs cannot be ignored when releasing elastic energy on the 

woven model (will be introduced in section 4.3), where they 

prevent the woven mesh from being overlapped. We thus have 

the following lemma. 

Lemma 3 When in equilibrium, the strain on a single weft or 

warp thread is a constant. 

The planar woven mesh Γ  can be easily fitted onto the 3D 

freeform surface Μ , if we have determined a planar 

parameterization Ω  of Μ . For a woven node Γ∈jiV , , suppose 

it falls in a triangle Μ∈kT  on Ω . We compute the barycentric 

coordinate of jiV ,  in kT  on Ω . After applying the same 

barycentric coordinate on the same triangle kT  in 3D, we have 

mapped jiV ,  onto the 3D freeform surface Μ . By this mapping 

method, every woven node is on the freeform surface precisely. 

However, the directions and lengths of different kinds of springs 

may not be preserved as compared to their 2D counterparts. 

This leads to strains – so that normal pressure is generated on 

Μ . The objective is to find a correct Ω  that satisfies the 

prescribed normal pressures at some specified points. 

 

4. METHODOLOGY 

In this section, we present the main methodology for 

computing the planar pattern of a brace that satisfies prescribed 

normal pressures at certain specified points. 

4.1. Normal pressure and tensile strain 

The purpose of an assistive medical brace is to exert normal 

pressure on the joint. This is jointly accomplished by the tensile 

strain (stretch) of the brace and the curvature of the 

joint-surface
1
. To a physician, only the normal pressure is 

meaningful, which though must be converted to tensile strain for 

our use. The general relationship between the two has not been 

explored before. However, motivated by the theories of solid 

mechanics [25], we stipulate that it can be reasonably modeled 

as 

( )( ) ( ) )(
2

0∫ ⋅=
π

θθσθκ dgfPn  

where both )(Lf  and )(Lg  are some positive and monotone 

scalar functions, )(θκ  represents the normal curvature in 

direction θ  on the tangent plane at the surface point, and )(θσ  

denotes the normal stress in θ . Without loss of generality, the 

value of the normal pressure at a woven node V on Μ  can be 

computed by the formula 

θθσθκ
π

dsP nV ∫=
2

0
)()(  

where s is a coefficient related to the thickness and the material 

of fabrics of the brace that can be determined through some 

material tests. Since the material tests exceed the scope of our 

paper, we simply set s to one in all our numerical tests. We then 

further simplify the equation to 

θθσκ
π

dsP HV ∫≈
2

0
)(                               (1) 

by replacing )(θκ n  with the mean curvature Hκ  at this surface 

point on Μ . The mean curvature at a point on the polygonal 

mesh surface can be computed by the method in [26]. 

Stimulated by the quadratic polynomial 
22),( fyexydxcybyayxz +++++=  

which is widely used in discrete differential geometry and 

geometry processing for interpolating/approximating certain 

characteristics (e.g., surface normal, curvatures) at a surface 

point, here we adopt a similar form to represent )(θσ  but 

replace ),( yx  by )sin,(cos θθ  since )(θσ  is only in terms of 

an angle θ  between the direction and the warp thread on the 

tangent plane. Thus, the function )(θσ  is represented in the 

form 

 
1 Notice that no normal pressure can be generated upon a flat surface no matter 

how stretched the brace is. 

 

Fig. 3.  Woven model: (a) a piece of real woven fabric; (b) our spring mesh 

representation of a piece of woven fabric. 
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θθθθθσ 22 sincossincos)( dcba +++= . 

For a woven node jiVV ,= , the stress function is assumed to 

interpolate the four stresses shown on its adjacent warp and weft 

springs (see Fig.4), i.e.  

1)0( σσ = , 2)
2

( σ
π

σ = , 3)( σπσ = , 4)
2

3
( σ

π
σ = . 

This interpolation simplification is valid if the density of woven 

grid is high, which is assumed in our case. By Lemma 2, here we 

simply neglect the diagonal springs, since their stiffness is 

generally much smaller than that of warp and weft springs. 

Therefore, we have 

2

31 σσ −
=a , 

2

42 σσ −
=b , 

2

31 σσ +
=c ,  

2

42 σσ +
=d  

which yields 

)(
2

)( 4321

2

0
σσσσ

πκ
θθσκ

π
+++=≈ ∫ H

HV

s
dsP . 

Since  

11 εσ warpk= , 22 εσ weftk= , 33 εσ warpk= , 44 εσ weftk= , 

the normal surface pressure at V can be expressed as 

))()((
2

4231 εεεε
πκ

+++≈ weftwarp
H

V kk
s

P          (2) 

with  

warp

warpjiji

L

LVV −
=

+1,,

1ε , 
weft

weftjiji

L

LVV −
=

+ ,1,

2ε , 

warp

warpjiji

L

LVV −
=

−1,,

3ε , 
weft

weftjiji

L

LVV −
=

− ,1,

4ε . 

As mentioned above, weftL  and warpL  are the initial (relaxed) 

length of the weft springs and the warp springs respectively. 

4.2. Strains on threads 

We have formulated the relationship between the normal 

pressure and the tensile strength. The next step is to further 

relate them to the tensile strains on woven springs, since they 

directly relate to the positions of nodes on the surface. As the 

woven fitting result must be in an equilibrium state, by Lemma 

3, we have warpεεε == 31  and weftεεε == 42 . Thus, Eq.(2) 

becomes 

)( weftweftwarpwarpHV kksP εεπκ +≈  

For a given VP , if weftε  is known, the above equation gives the 

required tensile strain on the warp springs at V. From 

preliminary physical experiments, we find that the weft strains 

on medical assistive braces are usually extremely small. Limited 

by the geometry of various medical assistive braces, the strains 

on weft threads are mainly generated by the friction between a 

brace and the human skin. Since the friction is neglected (due to 

Assumption 4), we have the following Lemma. 

Lemma 4 When in equilibrium, the strains on all the weft 

springs are assumed to be a near-zero constant, 0≈weftε . 

For any row of woven warp springs on Γ , if there are in total 

m constraints (normal pressures) assigned on this thread, the 

desired tensile strain warpε  can be determined by the 

least-squares fitting with the objective function 

∑
=

−+=
m

V

VweftweftwarpwarpH PkksJ
Vwarp

1

20 ))(( εεπκε . 

Letting 0≡∂∂ warpwarp
J εε , we have 

∑∑
==

−=
m

V

warpH

m

V

weftweftHHVwarp ksksP
VVV

1

2

1

20 )()( πκεπκκε (3) 

where 
VHκ  is the mean curvature of the surface Μ  at the 

position of the woven node V, and 0
VP  is the user specified 

normal pressure. 

There are two critical issues here. First, Eq. (3) works only 

when the positions on Μ  of all the nodes of the warp thread are 

known. Second, if a warp thread does not pass through any point 

on M with a prescribed normal pressure, we still need to 

calculate its tensile strain warpε . For the first, we will perform a 

strain-energy minimization to place all the warp threads on Μ . 

For the second, we introduce a smooth curve )(tε , called the 

warp strain distribution function, to interpolate those tensile 

warp strains determined by Eq.(3), where t is the parameter in 

the range [0, 1] corresponding to the row indices of the threads. 

The warp strains on those threads without normal pressure 

constraints are given by )(tε . Besides meeting the prescribed 

normal pressure requirement, function )(tε  should also satisfy 

certain endpoint constrains (e.g., 0)0( =′ε  and 0)1( =′ε ). 

4.3. Elastic energy due to strains 

Based on Eq. (2) and (3), we now must place warp threads 

properly on Μ  so that the prescribed normal pressure can be 

achieved. We model this in the framework of elastic energy 

minimization. For a given woven model Γ , the embedded 

elastic energy is formulated as 

( )∑
Γ∈

−=
S

SaSE LVVkJ
2

2

1
β                     (4) 

where αV  and βV  are the woven nodes for a spring Γ∈S . The 

constant Sk  is one of the spring constants warpk , weftk , or 

diagk , depending on the type of spring S , and SL  is  the rest 

length of S .  The value of EJ  depends on the position of 

woven nodes on Μ ; when randomly moving a woven node on 

the given surface Μ , EJ  will be changed. When EJ =0, it 

jiV ,

jiV ,1+

jiV ,1−

1, +jiV

1, −jiV

1σ

2σ

3σ

4σ
3ε

4ε
1ε

2ε

jiV ,

jiV ,1+

jiV ,1−

1, +jiV

1, −jiV

1σ

2σ

3σ

4σ
3ε

4ε
1ε

2ε

 

Fig. 4.  Stresses and strains on woven springs around a woven node. 
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means that every spring Γ∈S  now satisfies its rest length SL . 

However, due to some constraints (e.g., the given geometry 

shape), zero EJ  usually cannot be achieved. Therefore, a EJ  

with minimal value is desired. As aforementioned, the initial 3D 

fitting of the woven model Γ  on Μ  can be obtained by any 

mesh parameterization (e.g. that of [8]) of the given 3D mesh 

surface Μ . In general, the lengths of springs on Μ will not be 

the same as its rest length in 2D (i.e., weftL , warpL , or diagL ). 

Therefore, EJ  can be minimized by moving the woven nodes 

on Μ , through a diffusion process (the detail will be given in 

Section 5. The upper-left figure in Fig.2(b) shows such an 

example of stretch-free energy minimization.  

However, it is imperative to note that, when warpS LL = , 

weftL  or diagL , minimizing the elastic energy EJ  will not yield 

a woven fitting preserving the desired strains per Eq. (3). 

Therefore, we need to modify the energy function. For a spring 

S with a prescribed tensile strain Sε , the desired length of S on  

Μ  is changed to 

warpSS LL )1( ε+=                               (5) 

for a warp spring, and 

weftSS LL )1( ε+=                               (6) 

for a weft spring. For a diagonal spring linking two warp springs 

and two weft springs, the expected 3D length of the diagonal 

spring is computed by 
2/122

)))1(())1((( weftweftwarpwarpS LLL εε +++=        (7) 

where warpε  is the average of the strains on the two warp 

springs, and weftε  is the average of the strains on the two weft 

springs. Substituting Eqs. (5-7) into Eq. (4), the minimization of 

EJ  then will give rise to the distribution of the woven nodes on 

Μ  satisfying the spring strains that will respect the prescribed 

normal pressure. 

4.4. Surface-plane mapping 

The result of the minimization of EJ  (Eq. (4)) is a mapping 

between the nodes on surface Μ and their counterparts in the 

plane. This mapping is discrete since only nodes are mapped. 

We however need a continuous mapping between Μ  and its 

corresponding planar pattern. The discrete mapping thus needs 

to be interpolated so that it becomes continuous – every point on 

Μ  has its counterpart defined in the plane.  

Our interpolation scheme is akin to the vertex mapping 

method employed in [23] (but with some necessary 

modifications). Briefly, for any vertex Μ∈iX , we determine 

its closest woven node jiV ,  on Γ  by a local searching. The 

local searching can be finished in a very short time since in the  

data-structure of every polygonal face there is a pointer linking 

to the woven nodes lying on the face (see [23]). After that, a 

weft unit vector weftt  is formed by either jiji VV ,,1+  or jiji VV ,,1−  

– choosing jiji VV ,,1+  or jiji VV ,,1−  depends on the sign of the 

projection of jiiVX ,  on jiji VV ,,1+  (i.e., jiji VV ,,1+  if it is 

positive, and  jiji VV ,,1−  for negative). In a similar manner, a unit 

warp vector warpt  is formed by either jiji VV ,1, +  or jiji VV ,1, − . In 

case jiV ,  is a boundary woven node, some of jiji VV ,,1±  and 

jiji VV ,1, ±  might not exist; then, the existing one will be taken as 

the row or column vector. In the worst case, jiV ,  has neither 

jiji VV ,,1+  nor jiji VV ,,1−  neighbor, or neither jiji VV ,1, +  nor 

jiji VV ,1, −  neighbor, then we have to use other woven node to 

perform the vertex mapping. The projections of jiiVX ,  on 

warpt  and weftt  are warpjii tVX ,,  and weftjii tVX ,, . 

Therefore, by keeping the same ratio of their lengths on 3D and 

2D, the planar coordinate of iX  can be determined by  

[ ]1,,, , ±±= jijiwarpjiiwarpi VVtVXjLx              (8) 

[ ]jijiweftjiiwefti VVtVXiLy ,1,, , ±±=                (9) 

where the sign ±  is determined by the direction of jiiVX , . An 

illustration of this interpolation is shown in Fig.5.  

 

5. ALGORITHMIC DETAILS 

As alluded, the exact placement of the warp threads on Μ is 

obtained through an energy diffusion process that minimizes the 

energy EJ  of Eq. (4), with Eqs. (5-7) incorporated. The overall 

algorithm consists of three steps:  

1. Compute the initial planar shape Ω  of the given mesh Μ  

by the intrinsic parameterization [5], which gives the 

initial fitting of the woven model Γ ; 

Do { 

2. Determine the expected strain of every weft and warp 

spring on Γ ; 

3. Move the woven nodes on the surface of Μ  through 

energy diffusion;  

} WHILE (the terminal condition has Not been reached); 

The details are given next. 

5.1. Strain distribution fitting 

The normal pressure assigned by a physician is specified only 

at some discrete points on the mesh surface Μ , which may not 

coincide exactly with the woven nodes during the diffusion. At 

the beginning of Step 2, for every point with a prescribed 
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Surface-plane 
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jiV ,
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Fig. 5.  Interpolated surface-plane mapping. 
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normal pressure we locate its closest woven node on Μ  and 

assign that normal pressure to the located woven node. Then, 

Eq.(3) is invoked to calculate the strains on all the warp threads 

which have at least one such located node. The remaining issue 

in strain calculation is to obtain the warp strain distribution 

function )(tε  that will interpolate for those warp threads not 

containing any such located nodes. The function )(tε should be 

smooth and flat at the two ends (i.e., 0)0( =′ε  and 0)1( =′ε ). 

In addition, we only want to have tensile strains; that is, 

0)( ≥tε for all t∈[0,1]. This is a typical curve interpolation 

problem. For the given data points jε  at their corresponding 

parameters jt  ( lj ,,1 L= ), a B-spline interpolation is 

∑
−

=
=

1

0
3, )()(

n

i
ii tNQtε                           (10) 

which interpolates all the jε s together with the constraints 

0)0( =′ε  and 0)1( =′ε , where iQ s are the control points and 

)(3, tN i s are the B-spline basis functions of degree 3. Details in 

B-splines can be found in [27] or any texts on B-spline curves. 

To ensure that 0)( ≥tε  for all t, we instead use 

∑
−

=
=

1

0
3,

2
)()(

n

i
ii tNQtε                          (11) 

which guarantees 0)( ≥tε  since 0)(3, ≥tN i  and 02 ≥iQ . 

Note that when 1>l , we adopt 2+= ln  control points; when 

1=l , we use four control points 1ε≡iQ  ( 3,,0 L=i ). 

However, it may happen (though rarely) that the curve in the 

form of Eq.(11) is unable to interpolate all the given data points. 

In such a case, we use Eq.(10) and simply floor the negative 

function values by zero. 

5.2. Diffusion of elastic energy 

The movement of woven nodes at Step 3 is governed by the 

elastic energy function defined in Eq. (4), together with 

Eqs.(5-7). To minimize EJ , one should let every node V in the 

woven model Γ  satisfy 

( ) 0

)(

=−=
∂

∂
∑

∈ VNj

Sj

j

j

j
E

j
LVV

VV

VV
k

V

J
          (12) 

where N(V) represents the 1-ring neighbors of V, i.e. those with 

a spring linked to V. A diffusion process similar to that of [28] is 

used to solve Eq.(12). Taking the current VJ E ∂∂  as a force in 

a spring-mass system, the new position of V is computed by 

V

J
VV

new

∂

∂
−= λ                               (13) 

where λ  is a damping factor to control the movement of V in 

every iteration. This diffusion process is similar to the 

quasi-Newton type numerical optimization scheme. Here the 

movement of woven node V is along the geodesic path 

determined by VJ E ∂∂  with distance VJ E ∂∂λ . Choosing a 

smaller λ  will lead to more accurate results but at the cost of a 

slower diffusion speed, while using a large λ  may make the 

system become unstable. We use },max{/125.0 weftwarp kk=λ  

in all our tests and find it to work well. We adopt the method 

introduced in [29] to compute the discrete geodesic path 

following a given direction vector t0 on a given mesh surface at a 

point p0. The algorithm is in fact a local incremental approach. 

At every point pi on the mesh, the geodesic path is locally 

coincident to the intersection curve the plane formed by pi, ti and 

ni, where ni is the mesh surface normal at pi and ti is the tangent 

of the geodesic path at this point. 

In the diffusion process, the overall orientation of the woven 

threads on Μ  may become twisted in some sense. This is 

undesirable from a physician’s point of view. As a solution to 

this problem, in the beginning of the diffusion we ask the user to 

specify two points on Μ  as two orientation markers. After 

every iteration of Step 2 & 3, we check the corresponding planar 

mapping points of the two markers. If the two do not lie on a 

vertical line, we will rotate all the planar vertices to align the 

two corresponding points to a vertical line.  

Also, during the diffusion, some nodes may move beyond the 

boundary of Μ ; if so, these nodes together with the springs 

linked to them are removed from Γ . On the other hand, new 

nodes will often need to be inserted into Μ , if some gap 

emerges near the boundary of Μ . 

Another issue related to the diffusion of elastic energy is the 

selection of initial values. Similar to most other numerical 

optimization techniques, the result of our energy diffusion relies 

heavily on the given initial values. From our investigation, we 

find that, similarly to other spring systems, it is easier for our 

system to converge when the springs are deformed from the 

tensile state back to the rest state, as compared to the opposite, 

i.e., from the compressed state to the rest state. Therefore, at 

Step 1 of the overall algorithm, after obtaining the intrinsic 

parameterization (which is close to a stretch-free state), we scale 

down the planar coordinates of all the vertices with some ratio r 

≤ 1, in both vertical and horizontal directions. As a result, most 

springs in the woven model after Step 1 are in the tensile state. 

In our implementation, we set r to 0.75 in the warp direction, 

and 1 in the weft direction (i.e., the woven threads in weft 

direction are unaffected). 

5.3. Error measurement and terminal condition 

The iterative diffusion algorithm needs certain error 

measurement to evaluate the convergence of the iteration. In our 

approach, we measure the squared strain difference (SSD) on 

the fitted woven model. For all warp and weft springs (we 

exclude diagonal springs as their contribution to the normal 

-0.05
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0.2

0.25

Fixed Strain Values

Strain Func by Eq.(10)

Strain Func by Eq.(11)

 

Fig. 6.  An example of strain distribution function with three fixed warp 

strains. 
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pressure is ignored due to Lemma 2), the SSD is defined as 

∑ −=
S

SSSSDE 20 )( εε                          (14) 

where Sε  is either warpε  or weftε  depending on the type of  the 

spring and 0
Sε  is the desired strain on the spring. An empirical 

threshold 0
SSDE  is used to determine the termination of the 

iteration: the diffusion will continue if SSDE  > 0
SSDE , unless a 

pre-set maximum number of iterations is reached. 

6. NUMERICAL RESULTS 

A prototype of the proposed woven fitting algorithm has been 

implemented using C++. Several examples are tested and given 

below to demonstrate the proposed method. 

The first example is the one that has been previously shown in 

Fig.2 – this is a medical assistive brace for elbow. Based on the 

triangular mesh and its initial intrinsic parameterization (see 

Fig.2(a)), we use our approach to generate the planar patterns 

for four different normal pressure configurations:  

• Configuration A) – no normal pressure is assigned and 

the fitting result minimizes the stretch (see top-left in 

Fig.2(b)); often this is called stretch-free although it is 

not really “stretch-free” in general. 

• Configuration B) – large normal pressure is specified in 

the middle of the brace while a very small normal 

pressure is assigned at the two ends of the brace; the 

result pattern leads to a tighter stretch in the middle of the 

brace (see top-right in Fig.2(b)). 

• Configuration C) – large normal pressure is assign at one 

end of the brace while a very small one is specified at the 

other end; the final brace has large stretch on one side 

while almost stretch free on the other (see bottom-left in 

Fig.2(b)). 

• Configuration D) – large normal pressure is assigned at 

two ends of the brace; the result is depicted in the 

bottom-right part in Fig.2(b), which shows almost no 

stretch in the middle part of the brace. 

The strain distribution function for warp springs generated by 

the last three configurations is given in Fig.7, where the strains 

determined by user-specified normal pressures are represented 

by bar-charts. The strain distribution function curve is 

computed by interpolating these strain values. Fig.8 shows the 

ESSD as a function of iterations during the diffusion for the four 

configurations. The spring stiffness coefficients adopted in this 

test are kwarp=0.5, kweft=0.5, and kdiag=0.05, which simulate a 

woven fabric with similar strengths in both directions. 

The second example also simulates the woven fitting of an 

elbow brace, but with anisotropic material this time. By 

observation, owing to the fact that the geometry of a human joint 

is more or less cylindrical with a large disparity between the 

curvatures in the “radial” (warp) and “axial” (weft) directions, 

in most cases it is much harder to stretch along the weft direction 

than the warp direction (i.e., warpweft kk >> )
2
. To reflect this 

nature, we choose kwarp=0.5, kweft=5.0, and kdiag=0.05. The 

second test example conducts the similar normal pressure 

configurations but with different amplitudes. The obtained 

fitting results and their corresponding planar patterns are shown 

in Fig. 9, and Fig. 10 displays the corresponding ESSD during the 

diffusion process. Comparing Fig. 8 and Fig. 10, it is noted that 

the diffusion process converges faster in the “isotropic” case 

( warpweft kk ≈ ) than in the “anisotropic” case 

( warpweft kk >> ). This is not unexpected, since stiff weft 

threads (when warpweft kk >> ) reduce the degree of 

 
2 In the case of elbow or ankle braces, this is purposely designed as no 

shrinkage is wanted in the “axial” (weft) direction. 
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Fig. 7.  The strains (in bar-chart) determined from prescribed normal pressures 

and the strain distribution function curve interpolating the strains  for three 

different normal pressure configurations (B, C and D) on the elbow brace 

example shown in Fig.2. As no normal pressure is assigned for the 

configuration A, its warp strain function is a constant zero. 
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Fig. 8.  The ESSD curve of the elbow brace with four different normal pressure 

configurations in test example 1. 

 

 

Fig. 9.  The flattened planar patterns of an elastic elbow brace corresponding 

to  four different normal pressure configurations, with drastically different 

warp and weft stiffness. The places pointed by arrows are with large normal 

pressures specified. 

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration Steps (x100)

Config. A

Config. B

Config. C

Config. D

 
Fig. 10.  The ESSD curve of the elbow brace in test example 2 shown in Fig. 9. 
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move-ability of nodes on Μ .  

Our third example is a medical assistive brace for a knee 

joint. Similar to example 1 and 2, the geometry of the knee joint 

is acquired via 3D laser scanning on a human model. After 

constructing the 3D triangular mesh for the knee brace, we 

apply the intrinsic parameterization [5] to determine the initial 

shape of the planar pattern (see Fig.11(a)). Then, we fit the 

woven model on the 3D mesh surface with (Fig.11(c)) and 

without (Fig.11(b)) normal pressure constraints. The normal 

pressure constraints are given at four sample points, with 

assigned values 0.06, 3.18, 2.29, and 0.26 respectively (see 

Fig.11(c)). Anisotropic material is chosen for the brace with 

kwarp=0.5, kweft=5.0, and kdiag=0.05. From the results in 

Fig.11(c), we find that it is impossible to realize the two 

drastically different normal pressures at two points (i.e., the 

point with pressure 2.29 and the point with 0.06) which have 

similar curvature and are close in the weft direction (though they 

are far from each other in the warp direction). Fig.12 displays 

the corresponding ESSD curves. 

The last test example is one with more complex geometry – a 

wrist brace (see Fig.13). The presented woven fitting algorithm 

is tested for both cases with and without normal pressure 

constraints, with a material setting of kwarp=0.75, kweft=0.5, and 

kdiag=0.05. For the case with normal pressure assignment, high 

normal pressure is specified near the bottom of the thumb. As 

seen in the colored strain distribution figure in Fig. 13(a), the 

initial fitting incurs very high distortion (twice that of previous 

examples). Fig. 13(b) shows the fitting result for the case 

without normal pressure assignment, with a much lowered strain 

distribution; and that with the prescribed normal pressure is 

depicted in Fig. 13(c). The corresponding ESSD curves for both 

cases are given in Fig. 14.  

 

7. SUMMARY AND DISCUSSION 

This paper presents a novel method for the geometric design 

of customized elastic medical braces that preserve prescribed 

normal pressures. The core of the method is a woven fitting 

algorithm that finds a suitable mapping between the 3D surface 

of the brace and its relaxed 2D pattern, with the prescribed 

normal pressure constraints respected. The normal pressure 

constraints are first converted into a corresponding strain 

distribution, and an elastic energy diffusion process is then used 

to determine the positions of woven nodes on the 3D surface, 

with the minimum state of the energy system corresponding to 

the best fitting respecting the required strain distribution. 

Finally, through an interpolation scheme, the obtained 

node-only discrete surface-plane mapping is extended to a 

continuum mapping. In summary, our work bears several key 

points: 

• No similar work has been found in the literature about the 

computer-aided geometric design of elastic medical 

braces. Our analytical and algorithmic work provides a 

needed effort in addressing this important problem.  

• Preliminary experiments of our implemented system 

show positive results, indicating that it offers to be a 

useful and practical tool for automating the design task, 

 

Fig. 11.  Geometric design of a knee brace: (a) the 3D geometry of the knee 

joint obtained by laser scanning, and the initial pattern determined by the 

intrinsic parameterization [5]; (b) the computed woven fitting and its 

corresponding planar pattern without prescribed normal pressure; (c) the 

result with normal pressures specified at four points. 
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Fig. 12.  The ESSD curve of the knee brace with and without normal pressure 

constraints. 

 

 

Fig. 13.  The geometric design for a wrist brace: (a) the 3D mesh surface of the 

wrist, the initial woven fitting of the wrist, and the corresponding strain 

distribution of the brace; (b) the fitting result without normal pressure 

constraints; (c) the fitting result with normal pressure constraints. 
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Fig. 14.  The ESSD curves of the wrist brace with and without normal pressure 

constraints. 
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which is currently carried out in an ad-hoc and 

trial-and-error manner.    

• The methodology developed by us can also benefit other 

industrial applications that have similar surface flatting 

requirement, e.g., the garment industry, the design of 

footwear, and the design and manufacturing of furniture.  

However, this is only an initial study. Many issues and 

questions remain, of which we are particularly interested in the 

following and plan to further our study in them: 

• In the current implementation, we use simplified 

formulae, Eq. (1) & (2), to locally relate the normal 

pressure to the tensile strains. More investigation, in both 

theoretical study and physical experiments, is required to 

validate our formulation.  

• From our preliminary experiments, in the form of both 

computer simulation and physical experiments, we found 

that the distribution of normal pressure on the joint by a 

brace heavily depends on the geometry of the joint – the 

curvature of the surface plays a crucial role in normal 

pressure distribution. When the geometry of the joint is 

simple with little curvature variation, it appears that the 

freedom of achieving diverse normal pressure 

distributions is severely limited, no matter what the 2D 

pattern is (e.g., example in Fig. 11(c)). Systematic study 

is needed in understanding the global relationship 

between the two.  

• The friction between the brace and the surface of the joint 

is completely ignored in our model. This simplification 

leads to our assertion that the strain in any warp thread is 

a constant, which in turn helps tremendously reduce the 

complexity of the formulation. While this assumption 

seems to agree with our observation of braces – the 

fitting configuration of the brace due to the friction is 

extremely unstable and the final stable fitting of the brace 

appears to be always in a minimum strain energy state, 

we need to look into situations when this supposition 

might no longer be valid, such as the case of very large 

normal pressure. 

• Some material related coefficients (e.g., s in Eq.(1)) need 

to be determined by experimental tests, where certain 

specialized equipments like Kawabata System [30] need 

to be developed. 

• The research in this paper concentrates on that different 

braces may have various effects under the same bending 

situation on the same person. A possible dynamic 

research can extend the current work to analysis the 

effects of different braces have different forces on body 

surface when they are bent in different angles.  

Finally, it is necessary to note that our method applies only to 

woven-like materials. For isotropic materials, different 

geometric formulations have to be established and new 

surface flattening algorithm needs to be developed. 
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