
Localized Construction of Curved Surfaces from Polygon Meshes: A

Simple and Practical Approach on GPU

Yuen-Shan Leung Charlie C.L. Wang∗ Yunbo Zhang

Department of Mechanical and Automation Engineering,

The Chinese University of Hong Kong, China

Abstract

We present a method for refining n-sided polygons on a given piecewise linear model by using local
computation, where the curved polygons generated by our method interpolate the positions and
normals of vertices on the input model. Firstly, we construct a Bézier curve for each silhouette
edge. Secondly, we employ a new method to obtain C1 continuous cross-tangent functions that are
constructed on these silhouette curves. An important feature of our method is that the cross tangent
functions are produced solely by their corresponding facet parameters. Gregory patches can there-
fore be locally constructed on every polygons while preserving G1 continuity between neighboring
patches. To provide a flexible shape control, several local schemes are provided to modify the cross-
tangent functions so that the sharp features can be retained on the resultant models. Because of the
localized construction, our method can be easily accelerated by graphics hardware and fully run on
the Graphics Processing Unit (GPU).

Keywords: Curved surface; Localized construction; Hardware acceleration; G1 continuity; Sharp
feature.

1 Introduction

In many applications, polygonal meshes have become an important representation of computer gen-
erated objects for visual effects. They are simple and versatile, but the lack of continuity between
neighboring polygons on the models would be a problem. To improve the visual quality, a common
strategy is to subdivide the input mesh surface into a finer mesh, which however quickly increases
the consumption of memory and transmission time (either through network or from main memory
to the graphics hardware). To overcome this difficulty, an ideal way is that we transmit the rela-
tively coarse mesh during communication, and refine the coarse mesh only when it is about to be
displayed. Specifically, we wish to send a coarse input mesh M0 to the graphics hardware and a
smooth dense mesh M r is then produced in real time through interpolating M0 by using the par-
allel computational power of Graphics Processing Unit (GPU). The input mesh M0 is composed of
n-sided polygons (with n ≥ 3). To accomplish this purpose, the proposed method should satisfy the
following requirements.

• The resultant surface M r interpolates the vertices on M0 as well as their normal vectors.

• M r possesses G1 continuity.

∗Corresponding Author; E-mail: cwang@mae.cuhk.edu.hk

1

Figure 1: An example of our localized construction of curved polygons. The first image (far left)
illustrates an input control mesh. The second image (middle left) shows the silhouette curves gen-
erated on the edges of the input control mesh. The boundaries of Gregory patches are displayed
by grids in the third image (middle right) and the final (far right) image – the surface of curved
polygons generated from the input control mesh.

• The construction procedure must be computed locally on each facet of M0 so that it can employ
the strength of GPUs extensively.

Moreover, unlike the GPU-based subdivision schemes [1, 2, 3] and the visualization based normal
processing [4], we intend to form a continuous parametric patch representation on M r, which is able
to evaluate surfaces at arbitrary parametric points – this is important for those non-visualization
applications (e.g., distance query and evaluation).

In this paper we offer a local construction approach to create Gregory patches on every n-sided
polygon of a coarse mesh M0. These n-sided Gregory patches require vertices and normal vectors
on M0 and maintain G1 with their adjoining patches. To build the surface, Bézier curves are first
substituted for every silhouette edges. Then, we customize C1 continuous cross-tangent functions
that exclusively rely on boundary curves and are independent of the vicinity facets. Therefore, a
Gregory patch can be constructed. Because of this localized scheme, our approach can be processed
and accelerated on graphic hardware. Figure 1 shows an example of curved polygons constructed by
our approach. To extend the basic construction method, we introduce several schemes to produce
sharp features (e.g., the examples shown in Fig.15). The outcome mesh surface M r with sharp
features can be displayed by tessellating the reconstructed Gregory patches on the GPU.

1.1 Related work

The work presented in this paper relates to the existing research in several aspects, including local-
ized parametric patch construction approaches, GPU-based subdivision surface evaluation methods,
surface tessellation schemes on the GPU, and n-sided patches researches. They are reviewed below.

Vlachos et al. presented a method in [5] to construct curved point-normal (PN) triangles based
only on the three vertices and three vertex normals of given flat triangles. The main principle
of their approach is based on substituting the geometry of a three-sided cubic Bézier patch for
the triangles’s flat geometry, and a quadratically varied normal for Gouraud shading. Visually
smooth models can be generated; however, these method does not preserve G1 continuity across
the boundary of neighboring PN triangles. Similar to the PN-triangle approach [5], some work has
been done to improve the appearance of a smooth surface generated from triangles [4, 6]. Again,
neither of these approaches provides the shape of smooth surfaces preserving G1 continuity across
the boundaries. Another limitation is that only triangular meshes are supported. The approach

2

of Volino and Magnenat-Thalmann [7] can generate the substitute smooth geometry for n-sided
polygons, but still cannot preserve tangent continuity across boundaries. The work presented in
this paper also relates to the research of generating surface which interpolate curve networks (e.g.,
[8, 9, 10]). Nevertheless, in order to borrow the parallel computing power on GPUs, a localized
construction approach needs to be exploited.

Subdivision surface provides an effective way to convert an input coarse mesh surface into a fine
surface with high resolution. Although a subdivision surface can be composed of an infinite set of
polynomial patches (especially essential for complex model), more efforts need to be made to evaluate
subdivision surfaces using GPU (ref. [1, 2, 3]). Stam [11] presented a method to exactly evaluate
Catmull-Clark surfaces using the framework provided by Halstead et al. [12], but this method can
only operate on quadrilateral patches with at most one extraordinary vertex. To apply it to surfaces
with triangles or patches with more than one extraordinary vertices, the surface must be subdivided
up to two times to provide sufficiently separate extraordinary vertices. Due to the considerable
resource requirements, many researchers have investigated methods for approximating subdivision
surface. Recently, Loop et al. [13] developed a new method which replaces those irregular patches
with a single rational patch that preserves G1 continuity across the boundary to the surrounding
patches. However, only quad/triangle patches are allowed to be constructed in their approaches. A
more relevant approach by Christoph et al. [14] is to define a triangle patch with its vertex normals
and the three edge neighbor triangles. Although they achieved G1 continuity on GPU efficiently,
the transmitted data still spend a lot of resources on the connectivity information and the surfaces
are limited to triangle patches. On the contrary, we employ n-sided Gregory patch interpolation
[15, 16] to generate parametric surfaces that interpolate the positions and normal vectors on the
vertices of M0. For an n-sided polygon, only 2n vectors are required to perform an evaluation on a
smooth surface – when having sharp edges, at most 4n vectors plus a 2-bit number are needed. This
contributes to a significant improvement in the speed of data transmission.

Another relevant research line is the adaptive tessellation method on GPU [17, 18, 19, 20]. Dyken
et al. [17] presented an algorithm for detecting and extracting the silhouette edges of a triangle
mesh in real time using GPU. The smooth silhouette is reconstructed through a continuous blend
between Bézier patches with varying level of details. Their recent work in [20] introduced an adaptive
tessellation scheme for surfaces consisting of parametric patches. However, different from ours (for n-
sided polygons), their approaches only work on triangular mesh surfaces. The method of Boubekeur
and Schlick [18] was only for mesh refinement on triangles too. The recent work of Schwarz and
Stamminger [19] provides a new framework for performing on-the-fly crack-free adaptive tessellation
of surface primitives completely on the GPU. Their implementation is based on CUDA of nVIDIA
whereas the surface reconstructed in our approach is generated by GL shading language, which can
be supported by graphics hardware with Shader Model 4.0 in a variety of brands.

Regarding to the study on n-sided surfaces, many researchers have put much effort to this area
for many years. Piegl et al. [21] presented an algorithm to fill an n-sided region with Gk contin-
uous NURBS patches, whereas Wang et al. [22] used Varady patches to fit an arbitrary n-sided
region. Other approaches [23, 24] described techniques to insert a region with multiple patches. The
smoothness of the filled patches along the shared edges requires some special treatment. Basically,
the computations involved in the methods of [21, 22, 23, 24] used iterative algorithms or constrained
optimization, which are too computational expensive to fit in the pipeline of shader programs running
on the graphics hardware. Our method aims at improving visual quality with as less transmitted
data as possible. Therefore we provide an algorithm which is able to tackle the twist incompatibility
and boundary incompatibility in a local manner and result in G1 continuous surfaces.

Prior to this work, we presented a Gregory patch based smooth force rendering method in [25].
The approach presented in this paper is extended from that algorithm by 1) providing a formal
proof and analysis about the correctness of the basic local construction scheme, 2) investigating the

3

Figure 2: Gregory patch interpolation: (left) the parametric domain ΓG of a Gregory Patch with
five sides, and (right) the Gregory patch defined by the boundary silhouette curves Ci and the cross
tangent functions TCi

on Cis.

extended schemes for the flexible shape control and 3) developing a GPU-based algorithm.

1.2 Gregory patch interpolation

To construct G1 continuous surfaces for input polygons, we first construct a Gregory corner
interpolator function for every corner of an n-sided polygon. Second, the final surface of this polygon
is blended as a weighted sum of the n functions (ref.[15, 16]).

Let P(u)(0 ≤ u ≤ 1) and Q(v)(0 ≤ v ≤ 1) be two regular curves in ℜ3 with P(0) = Q(0), and
TP (u)(0 ≤ u ≤ 1) and TQ(v)(0 ≤ v ≤ 1) be two C1 continuous vector functions associated with
the curves satisfying TP (0) = Q′(0) and TQ(0) = P′(0), the Gregory corner interpolator of the four
functions, P(u), Q(v), TP (u) and TQ(v), is a surface in ℜ3 defined by

r(u, v) = −P(0) − vTP (0) − uTQ(0) + P(u) + vTP (u)
+Q(v) + uTQ(v) − uv(vT′

P (0) + uT′
Q(0))/(u + v)

(1)

The Gregory corner interpolator function r(u, v) agrees with P(u) and Q(v) along the two sides (i.e.
r(u, 0) = P(u) and r(0, v) = Q(v)). Also, its partial derivatives with respect to u and v agree with
TP (u) and TQ(v) along the respective sides as ru(u, 0) = TP (u) and rv(0, v) = TQ(v).

The parametric domain of a Gregory Patch with n sides is defined as a unit length regular n-gon
in the ξ − η domain (as shown in Fig.2). We define the domain of a Gregory patch as ΓG, where
each sub-patch Γk

G contains a corner Xk (k = 0, 1, ..., n − 1) and the corners of ΓG are placed in
the anti-clockwise order. Given a point (ξ, η) in the parametric space, when computing its position
defined by the k-th Gregory corner rk(uk, vk), the parameters (uk, vk) of the point are defined as

(uk, vk) =

(

dk−1

dk−1 + dk+1
,

dk

dk−2 + dk

)

(2)

with dk being the perpendicular distance from (ξ, η) to the edge XkXk+1. The final position of (ξ, η)
on the Gregory patch is obtained by blending its positions defined by all the corner interpolators as

G(ξ, η) =

m−1
∑

k=0

wk(ξ, η)rk (uk(ξ, η), vk(ξ, η)) (3)

where the weight function is

wk(ξ, η) =
∏

j 6=k−1,k

d2
j/

m−1
∑

l=0

∏

j 6=l−1,l

d2
j . (4)

4

The Gregory patch defined in this way interpolates all the boundary curves and the cross-tangent
functions defined on them. The difficulty left is how to construct the boundary curves and the
cross-tangent functions in a local manner so that G1 continuity can be preserved between adjacent
patches. We solve this in the section 2.1.

1.3 Main features

The main features of our proposed method in this paper are as follows.

• A localized construction method to generate smooth parametric surface patches interpolating
(instead of approximating) the vertices and the normal vectors of an input coarse mesh. The
constructed Gregory patches preserve G1 continuity between neighboring patches. The tech-
nical novelty here comes from the localized construction of silhouette curves and cross-tangent
functions for preserving G1 continuity. More than that, the basic scheme can be extended to
provide flexible control on the cross-tangent functions, so that sharp features can be retained
and the shape of the reconstructed surface patches can be edited.

• The amount of information needs to be sent is less than other relevant approaches in literature.
For an n-sided polygon, only 2n vectors are required to perform evaluation on a smooth surface.
When having sharp edges, at most 4n vectors plus a 2-bit number are needed.

• Our method works on n-sided polygons while most of the existing local construction approaches
in literature are designed for quadrangles and/or triangles.

These main features result in a highly parallel algorithm that suits the production of curved polygons
on graphics hardware.

The rest of the paper is organized as follows. The local scheme of constructing curved polygons is
introduced in section 2, and the important properties of the method are studied. The algorithm to
convert a triangular mesh surface into a polygonal model with less number of facets is also developed
in section 2. The method to reconstruct sharp features on the curved polygons is presented in section
3. Section 4 describes the implementation details of our method on the GPU, section 5 gives the
experimental results, and lastly our paper ends with the conclusion section.

2 Local Construction of Curved Polygon

2.1 Basic construction scheme

The construction of curved polygons consists of two steps. Firstly, we construct the silhouette curve
for each edge on the given polygon according to the positions and normals at vertices. Secondly, we
develop a new method to obtain C1 continuous cross-tangent functions on these silhouette curves.

2.1.1 Silhouette curve interpolation

Different from [25] that uses Hermite curves, cubic Bézier curve is employed here to build the
silhouette edges on a given n-sided polygon P = {pi} with (i = 0, · · · , n − 1). This is because the
evaluation of a Bézier curve can be conducted by the famous de Casteljau linear interpolation, which
is much more efficient than the polynomial computation on a Hermite curve (ref. [26]). Every vertex
pi is equipped with a vertex normal vector ni, which also defines a surface tangent plane at pi. For
two neighboring vertices pi and pi+1 on P , the silhouette curve C(t) is defined by the cubic Bézier
curve with four control points {pi,qi,qi+1,pi+1}. To generate a surface patch GP preserving G1

continuity across the boundary, any curve on GP passing through pi must have the curve tangent

5

Figure 3: The illustration of the construction of cross tangent functions.

at pi in the surface tangent plane (p − pi) · ni = 0. Assume that ti and ti+1 are tangent vectors of
C(t) at pi and pi+1, they must satisfy the criteria that ti · ni = 0 and ti+1 · ni+1 = 0. According to
the first derivative on the cubic Bézier curve that ti = 3(qi − pi), we have that

qi = pi +
1

3
‖pipi+1‖

ni × ((pipi+1) × ne)

‖ni × ((pipi+1) × ne)‖
(5)

where ne = 1
2(ni + ni+1) is the average normal vector. Similarly, qi+1 is defined by

qi+1 = pi+1 −
1

3
‖pipi+1‖

ni+1 × ((pipi+1) × ne)

‖ni+1 × ((pipi+1) × ne)‖
(6)

2.1.2 Cross-tangent function

While Bézier curves define the boundaries of a patch, the cross tangent function TC(t) on a
boundary curve C(t) tells the developing direction of the patch across the edge pipi+1 (i.e., C(t)).
We construct the cross-tangent functions by using the following method as illustrated in Fig.3.

Firstly, we equip a normal function nc(t) onto the silhouette curve C(t) as

nc(t) = C′(t) × (((1 − t)ni + tni+1) × pipi+1), (7)

which also satisfies nc(0) = ni and nc(1) = ni+1. As will be proved later, if the tangent function
TC(t) has TC(t) ·nc(t) ≡ 0 (∀t ∈ [0, 1]) been satisfied on both sides of C(t), G1 continuous geometry
is generated.

Making TC(t) perpendicular to nc(t) is easy. A more difficult task is to make TC(0) = C′
pre(1)

and TC(1) = C′
nex(0), where Cpre(t) and Cnex(t) are the silhouette curves defined on pi−1pi and

pi+1pi+2 respectively. As shown in Fig.4, if the vector function TP (u) and TQ(u) are not correctly
defined, the constructed Gregory patches will NOT preserve G1 continuity across the boundary. We
first construct an interpolation function related to the vertex normal vectors and the face normal
vector of the polygon P . We can employ a linear interpolation function

nL
int(t) =

(1 − t)

2
(ni−1 + ni) +

t

2
(ni+1 + ni+2) (8)

or a quadratic interpolation function

n
Q
int(t) = (2t − 1)(t − 1)

ni−1 + ni

2
+ 4t(1 − t)αnf + t(2t − 1)

ni+1 + ni+2

2
(9)

6

Figure 4: The vector functions TP (u) and TQ(u) are important for preparing G1 continuity across
the boundary: (left) with incorrect cross-tangent functions TP (u) and TQ(u); (right) with functions
defined in Eq.(11) – G1 continuity is guaranteed.

with nf being the face normal of the polygon and α being a shape factor to control the distribution
of TC(t). The strategy of selecting α is discussed later. The major drawback of nL

int(t) is that it

degenerates when
∑i+2

j=i−1 nj = 0. By Eq.(9), we have n
Q
int(0) = 1

2(ni−1 + ni), n
Q
int(

1
2) = αnf and

n
Q
int(1) = 1

2(ni+1 + ni+2). The direction of the tangent function is then defined by

tc(t) = nint(t) × ((1 − t)pi−1 + tpi+2 − C(t)) ×
nc(t)

‖nc(t)‖
. (10)

After considering the magnitude, the final cross tangent function defined on C(t) is

TC(t) = ‖(1 − t)pi−1 + tpi+2 − C(t)‖
tc(t)

‖tc(t)‖
. (11)

It is easy to prove that TC(t) and C′(t) are perpendicular to nc(t), and we have TC(0) = C′
pre(1)

and TC(1) = C′
nex(0). Also, the function TC(t) constructed in this way is a C1 continuous function.

2.2 Property analysis

Several properties of the basic construction scheme of curved polygon will be analyzed in this section.

Property 1 The silhouette curve defined by a cubic Bézier curve C(t) using the control polygon
{pi,qi,qi+1,pi+1} is a planar curve.

Analysis It is easy to find from Eqs.(5) and (6) that all the control points are on the plane Ω
defined by sweeping the vector pipi+1 along the direction of ne. As any point C(t0) (t0 ∈ [0, 1])
on the Bézier curve can be obtained by a sequence of the linear interpolations of the control points,
C(t0) must be a point on the plane Ω. Thus, C(t) is a planar curve.

According to Eqs.(5) and (6), when the criterion (pipi+1 · ni)(pi+1pi · ni+1) > 0 is satisfied, two
points qi and qi+1 must be located at the same side of the line pipi+1. This seldom gives a Bézier
curve with S-shape. Moreover, As the magnitude of two end tangent Ċ(0) and Ċ(1) on the Bézier
curve are

Ċ(0) = 3(qi − pi) and Ċ(1) = 3(pi+1 − qi+1),

the magnitude of these endpoint tangents, |Ċ(0)| = |Ċ(1)| = ‖pipi+1‖, will not let the curve generate
self-intersection. More discussion about the effects of the magnitudes of endpoint tangents on the
shape of a cubic polynomial curve can be found in [27].

7

Proposition 1 G1 continuity is preserved around a vertex by the basic construction scheme of
silhouette curves and Gregory patches.

Proof First of all, for the silhouette curve C(t) adjacent to the vertex pi, its tangent vector Ċ(0)
at pi is 3piqi. By Eq.(5), qi is located on the tangent plane (p − pi) · ni = 0. Thus, the tangent
vector Ċ(0) is also on the tangent plane.

Now we need to figure out the following issue – how about those non-boundary curves on GP

passing through pi? From Eqs.(2-4), it is not difficult to know that, for the surface point at pi, its
surface is only defined by the corner interpolator at Xi (i.e., Eq.(1)). If there is a non-boundary
curve D(t) on this corner patch with D(0) = P(0), Ḋ(0) should lie on the tangent plane at P(0)
defined by the tangent vectors Ṗ(0) and Q̇(0). With the boundary curve C(t) defined by our method
stated above, this tangent plane is the same as the tangent plane defined by the vertex normal ni at
pi. Therefore, G1 continuity at the corner vertices is maintained.

Q.E.D.

Proposition 2 G1 continuity is preserved cross the boundary of two neighboring patches that are
constructed separately by the basic construction scheme.

Proof Considering about two Gregory patches that are constructed separately but sharing the
same edge pipi+1, G0 continuity is preserved between them as the silhouette curve since pipi+1 is
constructed only by the positions of pi and pi+1 as well as the predefined normal vectors on them. In
other words, the separately constructed curves will have the same set of control points (see Eqs.(5)
and (6)).

From Eq.(11), we know that the directions of cross-tangent vectors interpolated by the Gregory
patch on a boundary curve C(t) is defined by Eq.(10), which keeps perpendicular to the normal
function nc(t) defined in Eq.(7). Similar to the silhouette curve function C(t), nc(t) is solely defined
by the Hermite data points (pi,ni) and (pi+1,ni+1). Therefore, these two Gregory patches sharing
the edge pipi+1 will have a consistent normal function define on the silhouette curve. Since the
cross-tangent functions keep perpendicular to the normal function, the cross tangents on two sides
of C(t) are coplanar with Ċ(t). In other word, a condition similar to G1 continuity preservation on
assembled parametric surfaces [28] is satisfied. Thus, we prove that G1 continuity is preserved cross
the boundary of two neighboring patches constructed by the basic construction scheme separately.

Q.E.D.

Property 2 The construction of a Gregory patch for a n-sided polygon needs only an input with
2n vectors.

Analysis The construction of a Gregory patch for a given n-sided polygon in this way only needs
to locally access the vertices on the polygon and the normal vectors assigned on them, which avoids
visiting the neighboring polygons. This makes parallel implementation easy. When computing on
the GPU, only 2n vectors (n positions plus n normal vectors) are communicated between the main
memory and the graphics hardware which is the bottleneck for data transmission. In fact, the amount
of communicated data can be further reduced as only a unit vector is required for normal, which
means that we can transfer only two components of a normal vector plus the sign for the third
component. To the best of our knowledge, this is an approach requesting the minimal amount of
data communication comparing to prior works.

By the localized construction scheme presented in this section, we can generate G1 continuous
Gregory patches that interpolate the positions and normals of vertices on a given polygonal mesh
surface (see the frog model in Fig.1). However, in some applications, sharp features should be

8

Figure 5: An example for the curved polygon constructed on a non-planar polygon, where we may
wish to generate a surface folded in a different direction (as specified by the dash lines).

reserved at some places. After analyzing some important properties of our method in section 2.3, we
will introduce methods in section 3 to extend our basic construction scheme to acquire this function.
Several shape control methods are presented.

2.3 Discussions

Basically, the aforementioned construction scheme of curved polygons works well on a mesh model
consists of n-sided polygons. However, poor results may be generated on some special cases, which
will be discussed below. We also provide a solution to generate a mesh model that rarely presents
such cases leading to poor results.

First of all, the basic construction scheme assumes that all the polygons on the given model
are nearly planar. When using quadratic interpolation function n

Q
int(t) in Eq.(9) to construct the

direction of the tangent function tc(t) in Eq.(10), the face normal nf of the polygon is needed. For
a polygon with n vertices, we compute the face normal (not normalized) by

n∗
f =

1

n

∑

i

qiqi+1 × qiqi−1

‖qiqi+1 × qiqi−1‖
. (12)

Then, nf is obtained by n∗
f/‖n∗

f‖. When the positions of vertices are far from planar, although we
can still obtain the face normal nf by the above method, it however introduces a lot of uncertainty
on the final resultant surface – i.e., the resultant surface may be quite different to what you wish to
have (see Fig.5 for an example).

Secondly, we always wish the polygons be convex when they are nearly planar. If the concave
shape is shown at a vertex pi, it means that (pipi+1 ×pipi−1) ·ni < 0 or (pipi+1 ×pipi−1) ·nf < 0.
The defect of having such a concave vertex is twofold. On one side, this will lead to an inverse
contribution to the face normal comparing to other convex vertices (i.e., the cross-product at pi in
Eq.(12) points to an inverse direction). On the other aspect, this will make some parts of tc(t) point
outward (i.e., leaving the boundary of the surface patch). This wrong direction of the cross-tangent
vector will generate an inversely folded surface (e.g., see Fig.6).

Thirdly, the shape of triangular surface constructed by Gregory patch sometimes have some
unwanted bump generated in the middle of the surface patch. The bump shape is more significant

9

Figure 6: An example for the curved polygon constructed on a non-convex polygon, where the surface
patch is inversely folded at the concave vertex.

Figure 7: An example for the curved polygon constructed on a triangle, where the surface patch
holds an unwanted bump in the middle.

when the normal vectors at three vertices of the triangle are much different from each other (see
Fig.7). The reason for generating such bump shape is that the directions of cross-tangent function
(defined in Eq.(10)) on neighboring silhouette curves are coupled since there is only three vertices
on a polygon.

Lastly, there is a case which will turn down our method to construct the silhouette curve. In
Eqs.(5) and (6), when ne = 1

2 (ni + ni+1) = 0, the silhouette curve would fail to build. To solve this
problem, we will use different weights on two normal vectors when 1

2(ni + ni+1) = 0.

ne = βni + (1 − β)ni+1 (13)

The optimal value of β is chosen to have a small perturbation around 1
2 so that will not make ne

vanished. Under this definition, Eqs.(8) and (9) need to be redefined using the same weight as

nL
int(t) = (1 − t)(βni−1 + (1 − β)ni) + t(βni+1 + (1 − β)ni+2) (14)

and

n
Q
int(t) = (2t − 1)(t − 1)(βni−1 + (1 − β)ni) + 4t(1 − t)αnf + t(2t − 1)(βni+1 + (1 − β)ni+2). (15)

10

Figure 8: An example of using VSA algorithm [29] to generate the simplified polygonal model from
a given freeform object represented by triangular meshes: (a) the given triangular mesh model, (b)
the segmentation result of VSA, (c) the polygons generated by VSA segmentation, (d) the concave
vertices are eliminated by repeatedly applying the splitting operation, and (e) the reconstructed
freeform model by using curved polygons proposed in this paper.

2.4 Algorithm for generating n-sided polygons

A majority of freeform objects are represented by triangular mesh surfaces. We have developed
an algorithm to simplify a triangular mesh surface MT into a polygonal mesh model MP that can
have a good shape reconstructed by our curved polygon approach. As analyzed in above subsection,
the polygonal mesh model MP is expected to have 1) nearly planar polygons, 2) convex polygons
and 3) polygons with more than three edges.

To satisfy the requirements of polygons on the resultant model, we first apply the Variational
Shape Approximation (VSA) approach [29] to convert MT into a model MV with user specified
number of nearly planar polygons. Then, the polygons on MV are checked one by one to see if there
is a concave vertex. When a concave vertex v is found, it will be eliminated by adding an edge
from v to its closest non-neighboring vertex to split the polygon. Repeatedly applying this simple
splitting algorithm will result in a polygonal model consists of nearly planar convex polygons. An
example about how to generate such polygonal models is shown in Fig.8.

3 Flexible Shape Control

We provide several ways to flexibly adjust the appearance of models. The shape control schemes
introduced here are rather simple and competent, which merely involve some minor changes of the
basic construction scheme introduced above. The extended construction schemes are detailed below.

11

Figure 9: The plane holding the silhouette curve can be reoriented by assigning a new edge normal
(extended scheme 1).

The shape modification is based on the way how we construct the silhouette curve and the cross
tangent function.

3.1 Possibility of extending the basic scheme

In the basic construction scheme, the silhouette curve generated by the Bézier curve interpolating
pi, pi+1 and preserving G1 continuity at them is a curve in the plane defined by pipi+1 and the
sweeping vector ne, which is an average of ni and ni+1. This is the first factor that can be adjusted
below for the flexible shape control.

After that, the cross tangent function is constructed by retaining the tangent vector tc(t0) (that
is perpendicular to nc(t0)) in the plane defined by sweeping the line segment (pv − C(t0)) along
nint(t0), where pv is a virtual vertex obtained by the linear interpolation between pi−1 and pi+2.
See Fig.3 for the illustration. The direction of the cross-tangent function is the second factor that
can be adjusted for the flexible shape control.

3.2 Reorienting silhouette curve (extended scheme 1)

In the basic scheme, the silhouette curve C(t) on pipi+1 is defined in the plane swept from pipi+1

along the vector ne = 1
2(ni +ni+1) (see Fig.9). The orientation of C(t) can be adjusted by assigning

a new edge normal nnew to replace ne in Eqs.(5) and (6). The rest of the steps in the basic scheme
remain unchanged. By this modification, G1 continuity is still preserved. However, the amount of
data to be communicated is increased from 2n vectors to 3n vectors if edge normals are assigned to
all the edges of input polygons.

3.3 Straight silhouette (extended scheme 2)

There are several methods to generate a straight silhouette on an edge pipi+1 of a given n-sided
polygon. The simplest way is to let ni = ni+1 = nv (see Fig.10) when using Eqs.(5) and (6) to
compute the control points of the silhouette curve. When using the same normal, same tangent
vectors are generated so that the Bézier curve is a straight line segment. When computing the cross
tangent function TC(t) across this edge, if G1 continuity is expected, the original vertex normals ni

and ni+1 are employed in Eqs.(7)-(11). Note that, at the two endpoints of the straight silhouette,
only G0 continuity is achieved. When they are replaced by nv for generating TC(t), a straight crease
is produced on the resultant surface.

3.4 Crease (extended scheme 3)

A crease can be generated on the edge pipi+1 without changing the shape of the silhouette curve
C(t) defined by the basic scheme. The basic idea is to break the condition for G1 continuity across
the silhouette curve C(t). To do that, we replace ni and ni+1 employed in Eq.(7) by (see Fig.11)

mi = (1 − γs)ni + γspipi−1, (16)

12

Figure 10: Generation of straight silhouette (extended scheme 2).

Figure 11: Generation of crease on the silhouette curve (extended scheme 3).

and
mi+1 = (1 − γe)ni+1 + γepi+1pi+2, (17)

where γs and γe are two factors to control the sharpness of this crease. Similar adjustment should
be given to the Gregory patch on the other side of this edge as well. Therefore, two patches sharing
the same silhouette curve will not have coplanar cross-tangent vectors, which makes a crease at the
silhouette curve.

3.5 Silhouette adjacent to crease (extended scheme 4)

When a silhouette has one vertex on crease (the silhouette itself is NOT a crease), some mod-
ifications must be given to generate a satisfactory shape. For example, as shown in Fig.12, if the
vertex pi+1 is on a crease, the new edge vector ns is employed in Eq.(6) to replace ni+1 when con-
structing the silhouette curve C(t). Letting ns be the average of the left and right polygons’ normal
vectors along the edge pipi+1 is a good choice. When building the cross tangent function TC(t) in
Eqs.(7)-(11), ns is also adopted to replace ni+1.

3.6 Smooth patch bulging (extended scheme 5)

As mentioned before, it is optional to utilize quadratic interpolation to compute the leading
vector nint(t) for generating the plane holding the cross tangent vector tc. When choosing n

Q
int(t),

we define a shape factor α which scales nf during the interpolation. Using different values for α, the
reconstructed Gregory patch results in different shapes. Figure 13 shows some resultant shapes of
using different α for the top patch of the model. When α ≤ 0, the shape of surface is degenerated.

Figure 12: Modifying the silhouette curve that has one vertex on the crease (extended scheme 4).

13

Figure 13: Smooth patch bulging – using different shape factors α for the top patch of the model
(extended scheme 5). The last row shows the result by using the linear interpolation nL

int(t).

Figure 14: Cross tangent function for flat surfaces (extended scheme 6).

Moreover, during our studies we also find that the influence of this α coefficient on the shape of
patch is most significant when applying on a quadrilateral patch.

3.7 Flat surface (extended scheme 6)

In some circumstances, flat surface is preferred. We obtain such a result by replacing tc(t) defined
in Eq.(10) and (11) with

TC(t) = (1 − t)pi−1 + tpi+2 − C(t). (18)

See Fig.14 for the illustration. For this case, the compatibility condition TC(0) = Ċpre(1) and
TC(1) = Ċnex(0) must also be preserved. This is satisfied when pi−1, pi, pi+1 and pi+2 are coplanar
and ni−1 = ni = ni+1 = ni+2.

For the same input model M0, when applying different combinations of the above modification
schemes, different shapes can be generated. Figure 15 gives such an example with a simple torus
polygonal mesh input.

4 Implementation on the GPU

We have implemented the approach presented above using the OpenGL Shading Language running
on the GPU. The surface generation consists of two major steps: refinement and position mapping
(see Fig.16 for the illustration).

14

Figure 15: For a single polygonal torus model, a variety of shapes can be generated by our method:
(a) the basic scheme, (b) make the top and bottom flat by using extended schemes 1, 2 and 6, (c) use
extended scheme 1 to adjust the orientation of silhouette curves, (d) a torus with conical surfaces,
(e) the top and bottom are flat and another crease is added in the middle, and (f) with the crease
only in the middle.

4.1 Refinement

In the refinement step, an n-sided polygon is refined into nk2 quadrangles, where each edge on the
polygon is subdivided into 2k segments and the sub-patch corresponding to a corner interpolation
becomes k × k grids. The refinement procedure is implemented in a geometry shader program
exploring the new extension of OpenGL, transform feedback, which records elected vertex attributes
for each primitive processed. For each patch on a coarse mesh, the n vertices equipped with indices
(0, 0) are uploaded to the Vertex Buffer Object (VBO). For each vertex, the geometry shader generates
four vertices. For a vertex with indices (i, j), the emitted vertices are with indices: 1) (i, j), 2)
(i + 1, j), 3) (i, j + 1) and 4) (i + 1, j + 1), which are then written into another VBO and employed
as the source of the geometry shader in the next round of feedback. The feedbacks is repeated for k
times. However, simply emitting four vertices from a vertex will creates a large number of duplicated
vertices. Therefore, for a vertex with (i, j), we emit vertices with indices

• (i, j) only when i = j = 0;

• (i + 1, j) only when j = 0;

• (i, j + 1) only when i = 0;

15

Figure 16: The implementation on the GPU consists of two steps: refinement and position mapping.

• (i + 1, j + 1) for all i, j.

By these rules, the vertices passed to VBO can be reduced from n4k+1 to n(k + 1)2.

4.2 Position mapping

For each patch, vertices are exclusively influenced by local information. The positions of refined
vertices generated by the geometry shader are computed by fetching textures. Three textures are
generated according to the input polygonal model. The first texture contains vertex positions, and
the second texture stores vertex normals which align in the same way as the vertex positions on the
first texture do. The third texture records the additional data that is required for generating sharp
features. For each vertex, two float values are passed to VBO as stated in section 4.1, which actually
encoded the following information 1) i and j, 2) where to access the information from the textures,
3) the number of sides of the polygon holding this vertex, and 4) its index in the polygon, etc.

4.3 Normal computation for shading

Normal vectors at newly generated vertices play an important role when visually displaying the
reconstructed Gregory patches. Similar to other parametric surfaces, the normal vector of a particular
point (ξ0, η0) on the surface G(ξ, η) can be evaluated by

∂G(ξ,η)
∂ξ

× ∂G(ξ,η)
∂η

|(ξ0,η0).

However, the computation involved in this method is even more complex than the evaluation of a
surface point. We therefore find a simpler method to compute normal vectors, which are obtained
by

• replacing P(u) and Q(u) in Eq.(1) with the function nc(t) in Eq.(7),

• and using nv (the normal vector of the corner vertex v) for P(0) in Eq.(1).

16

Table 1: Computational Statistics in Construction Time

Polygon Vertex Shape Time* (ms)
Model Fig. Number Number Feature k = 3 k = 5

Frog 1 1,776 7,054 No 125 184
Torus 15 36 144 No 79 80

Yes 197 202
Monkey 17 500 1,968 No 87 111
Mushroom 18 20 84 No 81 79

Yes 199 201
Chessman 19 90 368 No 85 87

Yes 205 212
Armadillo 20 2,384 12,206 No 191 325
Head 21 1,360 5,358 No 115 159
Rabbit 22 2,451 12,474 No 192 331
Vase 23 1,119 5,792 Yes 294 384
Dinosaur 24 2,382 12,146 No 193 327

*The patches are constructed with k × k quad-grids for each corner.

When sharp features are involved, P(u) and Q(u) in Eq.(1) are changed to the normal functions
defined by sharp features. Normal vectors evaluated in this way can well capture the shape and
shading on the curved polygons.

5 Results and Comparison

The test results of our implementation using GLSL on a PC with Intel Core 2 Quad CPU Q6600
2.4GHz + 4GB RAM and GeForce GTX295 graphics card are very encouraging. On the models with
a moderate level of complexity (e.g., around 1,000 polygons), the construction of Gregory patches
takes about 100ms only. When sharp features are involved, performance becomes worse but still can
achieve interactive response speed. This slowdown is because the work loadings on different patches
(with and without sharp features) are not well balanced. Computational statistics in terms of time
are listed in Table 1. Besides, we also study the required number of arithmetic operations when
evaluating the position of a point on the local reconstructed Gregory patch. Both the best and the
worst cases are calculated and shown in Table 2, where the best scenario happens with the basic
construction scheme and the worst case is with sharp features on the silhouette curves. Although
this is more complex than the prior method (e.g., vertex normal shading and PN-triangle [5]), it still
can be performed at an interactive speed on the modern graphics hardware (see Table 1).

We show several examples in this section. Our method can construct curved Gregory patches on
surfaces entirely composed of quads like the example in Fig.21, surfaces composed of both quads and
triangles (e.g., the examples in Figs.1, 17 and 21), and models composed of n-sided polygons (e.g.,
those shown in Figs.18-20 and 22-24). The reconstructed Gregory patches interpolate the vertices
of the input coarse mesh. By setting different combinations of the shape controlling cases, different
shapes can be generated as shown by the examples in Figs.15, 18 and 19.

To compare the quality of our results with the prior methods, we implement the vertex normal
based standard shading in OpenGL as well as the PN-triangle based shading [5]. As only triangular
mesh models are supported by the PN-triangle approach, we need to triangulate the general polygonal

17

Table 2: Number of Arithmetic Operations for Point Evaluation

Curved Polygon with n sides

Operation + − × /

Best Case 349n + 7 239n + 4 4n2 + 758n + 22 61n + 6
Worst Case 541n + 7 386n + 4 4n2 + 1159n + 22 130n + 9

PN-triangle [5]

Operation + − × /

PN-triangle 117 41 219 35

Figure 17: A monkey model with 500 polygons. Top row - from the left: the input coarse mesh,
the coarse mesh with silhouette curves, and the model produced by our curved polygon method.
Note that the model is composed of both quads and triangles. Bottom row - from the left: the
vertex normal based shading by OpenGL, the refined triangular model, and the shading result of PN
triangle [5]. From the zoom-views, we can find that the resultant model of our approach outperforms
the PN triangle approach.

models into triangular ones before rendering. If this is conducted at the CPU side, the amount of
data communication between the main memory and the graphics hardware is more than double of our
curved polygon approach. If the triangulation is performed at the GPU side, two geometry shader
programs must be developed and switched from one to another where the first one is for triangulation
and the second takes care of the refinement according to the PN-triangles. More seriously, the results
of PN-triangle approach does not preserve the G1 continuity across the boundary of patches. As
shown in Fig.17, the silhouette of the monkey’s ear generated by PN-triangle is not as smooth as
ours. In this example, the result of standard vertex normal shading is also shown, which is too coarse.
Another comparison of our result to the PN-triangle approach is shown on the Dinosaur model in
Fig.24, where unwanted creases and folds are generated by the PN-triangle approach. These are
prevented by our method.

18

Figure 18: An example of a mushroom model – (top row): the smooth model without sharp features,
and (bottom row): with sharp features reconstructed.

6 Conclusions

The approach proposed in this paper aims at providing a localized n-sided polygon refinement scheme
using Gregory patch interpolation associated with a customized cross-tangent function. This method
provides a smoother silhouette and more organic shape for polygonal models at a minimal cost
for model preparation and rendering performance, which is proved by the comparisons with the
standard smooth shading based on vertex normals and the results from PN-triangle [5] (see Figs.17
and 24). Its localization attribute enables our algorithm to be supported by the architecture of GPUs.
Additionally, we introduce several schemes to control the shape and sharp features on the curved
models. The experimental results shown in the paper verify the effectiveness and the efficiency of
our approach.

Acknowledgments

The research presented in this paper is partially supported by the Hong Kong Research Grants
Council (RGC) General Research Fund (GRF): CUHK/417508 and CUHK/417109.

References

[1] J. Bolz, P. Schröder, Rapid evaluation of Catmull-Clark subdivision surfaces, in: Web3D ’02: Proceedings
of the seventh international conference on 3D Web technology, ACM, New York, NY, USA, 2002, pp.
11–17.

[2] L.-J. Shiue, I. Jones, J. Peters, A realtime GPU subdivision kernel, ACM Trans. Graph. 24 (3) (2005)
1010–1015.

[3] A. Myles, Y. I. Yeo, J. Peters, GPU conversion of quad meshes to smooth surfaces, in: SPM ’08:
Proceedings of the 2008 ACM symposium on Solid and physical modeling, ACM, New York, NY, USA,
2008, pp. 321–326.

[4] M. Alexa, T. Boubekeur, Subdivision shading, ACM Trans. Graph. 27 (5) (2008) 1–4.

[5] A. Vlachos, J. Peters, C. Boyd, J. L. Mitchell, Curved PN triangles, in: I3D ’01: Proceedings of the 2001
symposium on Interactive 3D graphics, ACM, New York, NY, USA, 2001, pp. 159–166.

[6] T. Boubekeur, M. Alexa, Phong tessellation, ACM Trans. Graph. 27 (5) (2008) 1–5.

19

Figure 19: An example of a chessman model – (top row): the smooth model without sharp features,
and (bottom row): with sharp features reconstructed.

[7] P. Volino, N. Magnenat-Thalmann, The SPHERIGON: A simple polygon patch for smoothing quickly
your polygonal meshes, in: CA ’98: Proceedings of the Computer Animation, IEEE Computer Society,
Washington, DC, USA, 1998, p. 72.

[8] J. Gregory, n-sided surface patches, in: Mathematics of Surfaces, Clarendon Press, Oxford, UK, 1986,
pp. 217–232.

[9] L. Huang, J. Zhen, X. Zhu, L. Yi, A surface interpolating method for 3d curves-nets, in: Technical Report:
HZ-TMSurf-Huang02, Beihang University, 1996.

[10] T. Hermann, J. Peters, T. Strotman, A geometric criterion for smooth interpolation of curve networks,
in: SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, ACM, New York,
NY, USA, 2009, pp. 169–173.

[11] J. Stam, Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values, in: SIG-
GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, 1998, pp. 395–404.

[12] M. Halstead, M. Kass, T. DeRose, Efficient, fair interpolation using catmull-clark surfaces, in: SIG-
GRAPH ’93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques,
ACM, New York, NY, USA, 1993, pp. 35–44.

[13] C. Loop, S. Schaefer, T. Ni, I. Casta no, Approximating subdivision surfaces with Gregory patches for
hardware tessellation, in: SIGGRAPH Asia ’09: ACM SIGGRAPH Asia 2009 papers, ACM, New York,
NY, USA, 2009, pp. 1–9.

[14] C. Fünfzig, K. Müller, D. Hansford, G. Farin, PNG1 triangles for tangent plane continuous surfaces on
the GPU, in: GI ’08: Proceedings of graphics interface 2008, Canadian Information Processing Society,
Toronto, Ont., Canada, Canada, 2008, pp. 219–226.

[15] J. Gregory, P. Yuen, An arbitrary mesh network scheme using rational splines, in: Mathematical Methods
in Computer Aided Geometric Design II - Lyche T. and Schumaker L.L. (eds.), Academic Press, Inc.,
1992, pp. 321–329.

[16] R. Hall, G. Mullineux, Shape modification of Gregory patches, in: The Mathematics of Surfaces VII -
Goodman T. and Martin R. (eds.), Information Geometers, 1997, pp. 393–408.

20

Figure 20: An example of the Armadillo model with 2,384 polygons and 12,206 vertices.

Figure 21: An example of a head model with 1,360 polygons and 5,358 vertices.

[17] C. Dyken, M. Reimers, J. Seland, Real-time GPU silhouette refinement using adaptively blended bézier
patches, Comput. Graph. Forum 27 (1) (2008) 1–12.

[18] T. Boubekeur, C. Schlick, A flexible kernel for adaptive mesh refinement on GPU, Comput. Graph.
Forum 27 (1) (2008) 102–113.

[19] M. Schwarz, M. Stamminger, Fast GPU-based adaptive tessellation with CUDA, Comput. Graph. Forum
28 (2) (2009) 365–374.

[20] C. Dyken, M. Reimers, J. Seland, Semi-uniform adaptive patch tessellation, Comput. Graph. Forum
28 (8) (2009) 2255–2263.

[21] L. A. Piegl, W. Tiller, Filling n-sided regions with NURBS patches, The Visual Computer 15 (2) (1999)
77–89.

[22] X. Wang, F. Cheng, B. A. Barsky, Blending, smoothing and interpolation of irregular meshes using
n-sided Varady patches, in: Symposium on Solid Modeling and Applications, 1999, pp. 212–222.

[23] D. J. T. Storry, A. A. Ball, Design of an n-sided surface patch from Hermite boundary data, Comput.
Aided Geom. Des. 6 (2) (1989) 111–120.

21

Figure 22: The rabbit model with 2,451 polygons and 12,474 vertices.

Figure 23: A vase model with 1,119 polygons and 5,792 vertices.

Figure 24: A dinosaur model with 2,382 polygons and 12,146 vertices, where in the zoom-views our
results (left) are compared with the PN triangles (right). The unwanted creases shown on the PN
triangle model do not appear on our result.

22

[24] N. Pla-Garcia, M. Vigo-Anglada, J. Cotrina-Navau, N-sided patches with B-spline boundaries, Comput.
& Graph. 30 (6) (2006) 959–970.

[25] J. Wu, Y.-S. Leung, C. Wang, D. Wang, Y. Zhang, Smooth force rendering on coarse polygonal meshes,
Computer Animation and Virtual Worlds 21 (3–4) (2010) 235–244.

[26] G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Morgan Kaufmann Publishers, 2002.

[27] M. Mortenson, Geometric Modeling, Chapter 3.4, Wiley Computer Publishing, 1997.

[28] H. Chiyokura, F. Kimura, Design of solids with free-form surfaces, SIGGRAPH Comput. Graph. 17 (3)
(1983) 289–298.

[29] D. Cohen-Steiner, P. Alliez, M. Desbrun, Variational shape approximation, in: SIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, ACM, New York, NY, USA, 2004, pp. 905–914.

23

	Introduction
	Related work
	Gregory patch interpolation
	Main features

	Local Construction of Curved Polygon
	Basic construction scheme
	Silhouette curve interpolation
	Cross-tangent function

	Property analysis
	Discussions
	Algorithm for generating n-sided polygons

	Flexible Shape Control
	Possibility of extending the basic scheme
	Reorienting silhouette curve (extended scheme 1)
	Straight silhouette (extended scheme 2)
	Crease (extended scheme 3)
	Silhouette adjacent to crease (extended scheme 4)
	Smooth patch bulging (extended scheme 5)
	Flat surface (extended scheme 6)

	Implementation on the GPU
	Refinement
	Position mapping
	Normal computation for shading

	Results and Comparison
	Conclusions

