
 1

Reduce the stretch in surface flattening by finding cutting paths to the

surface boundary

Charlie C. L. Wang
*
 Yu Wang Kai Tang Matthew M. F. Yuen

Department of Mechanical Engineering, Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong

Abstract

This paper presents a method for finding cutting paths on a 3D triangular mesh surface to reduce the stretch in

the flattened surface. The cutting paths link the surface boundary and the nodes where the Gaussian curvature is

high, and their total length is minimized. First, a linear algorithm for computing an approximate boundary

geodesic distance map is introduced; the map encapsulates the undirected geodesic distance from every

triangular node to the surface boundary approximately. This is followed by determining the undirected shortest

paths passing through all the nodes where the Gaussian curvature is larger than a threshold. The cutting paths

walk along the triangular edges of the given surface. Compared with other similar approaches, our method

reaches a faster speed, and can deal with surfaces with widely distributed curvatures.

Keywords: surface flattening, Gaussian curvature, cutting path, shortest path, and geodesic distance.

1. Introduction

Surface flattening plays a prominent role in engineering and manufacturing applications, such as aircraft

design, vehicle design, garment design, etc. Isometric surface development is also a key procedure for texture

mapping in computer graphics. It is known that flattening a 3D surface into a plane introduces surface metric

(angle, distance, areas) stretch unless the surface has zero Gaussian curvature everywhere [1] - Gaussian

curvature is the product of the maximum and minimum normal curvatures at a given point. Thus, the stretch

depends directly on the Gaussian curvature of the given surface. Cutting the surface across points of high

Gaussian curvature will reduce the stretch in the flattened surface. However, since cutting paths modify and

elongate the boundary of a surface, they often introduce additional constraints to the following applications

(e.g., they may lead to discontinuity in texture mapping). Therefore, the length of cutting paths has to be

minimized. Subdividing triangles might lead to difficulties in the following applications after surface flattening

*
 Corresponding Author: wangcl@ust.hk

 2

(e.g., some finite element applications), so our cutting paths walk along the triangular edges of the given

triangular mesh surface.

When introducing our algorithm, the following definitions are necessary.

Definition 1.1 The boundary geodesic distance map is a map that encapsulates the undirected geodesic

distance from every node to the boundary on the given mesh surface.

Definition 1.2 A flipped triangle is a triangle whose normal direction after flattening is along the negative z-

axis while the normal direction of other flattened triangles is along the positive z-axis.

Contribution: This paper describes a method to find the cutting paths on a 3D triangular mesh surface to reduce

the stretch in the flattened surface. The shortest cutting paths connecting all nodes where Gaussian curvature is

larger than a threshold are generated according to our newly defined boundary geodesic distance map. The map

encapsulates the undirected geodesic distance from every triangular node to the surface boundary

approximately, and can be computed in linear time. The cutting paths on surfaces with widely distributed

curvatures can also be found by generating cuts during the flattening process. Compared with other similar

approaches, our method reaches a faster speed while generating an acceptable result; it can deal with surfaces

with widely distributed curvatures.

After reviewing the related work in section 2, the rest of the paper is organized as follows. In section 3, a

linear algorithm is introduced to compute the approximate boundary geodesic distance map of a surface; this is

followed by generating the approximate shortest path from a selected node to the surface boundary by the map.

In section 4, we propose a reduction of the stretch in the flattened surface by adding shortest cutting paths from

high Gaussian curvature nodes to the surface boundary. During the surface flattening process, cutting paths are

also incorporated to prevent flipped triangles. Finally, in section 5, experimental results are shown and

discussed.

2. Related Work

Carmo (1976) [1] defined a developable surface as: for a ruled surface – () () ()tvtvtX βα +=, , it is

developable if β ,
dt

dβ
 and

dt

dα
 are coplanar for all points on X (where ()tα is the base curve and ()tβ is the

director curve of ()vtX ,). The simplest examples of developable surfaces are cylinders and cones, and a simple

and representative example of non-developable surfaces is sphere. Every surface enveloped by a one-parameter

 3

family of planes is a developable surface. Generally, a surface is developable if and only if the Gaussian

curvature of every point on it is zero. It is difficult to satisfy this condition when given a freeform polygonal

mesh surface. Thus, it is important to introduce cutting paths to make the given surface as close as possible to

the developable condition.

Gaussian curvature is the product of the maximum and minimum normal curvatures at a given point [1].

However, since differential geometry analyzes surfaces that are sufficiently differentiable, the equation for

calculating the Gaussian curvature cannot be applied to a mesh surface directly. A discrete Gaussian curvature

computing method is needed. Kobbelt et al. [2] gave the formulas of discrete Gaussian curvature based on the

fact that meshes can be interpreted as approximations of smooth surfaces. The idea of their approach is to

discretize a theorem for defining the Gaussian curvature on a smooth surface derived from a theorem by

Rodrigues [1]. In the same way, Sheffer [3] gave another Gaussian curvature approximation, which is scale

independent. In our approach, we adopt the formula of Kobbelt et al. [2] to compute the Gaussian curvature of

every internal triangular node on a mesh surface.

Insertion of cuts or darts in surface flattening has been studied for a long time. Parida and Mudur (1993) [4]

presented an algorithm to obtain planar development (within acceptable tolerances) of complex surfaces with

cuts and overlaps only in specified orientations. Their algorithm first obtains an approximate planar surface by

flattening triangles, cracks are generated while triangles are flattened one by one; and then, they reorient cracks

and overlap parts in the developed plane to satisfy orientation constraints. Their algorithm might generate many

cracks and calculation errors. Aono et al. [5, 6] introduced a reverse approach to surface flattening, which inserts

darts to fit a woven cloth model to a curved surface. Other approaches are based on local strain energy

minimization technology [7, 8]. The approach of Wang et al. [9] generates the cutting line from the stretch

energy distribution map; however, the length of cutting paths is not considered in their paper. Recently, Sheffer

[3] tried to find the shortest cutting path that passes through the nodes with high Gaussian curvature to reduce

the parameterization distortion of the triangulated surface. Unfortunately, this method is not able to find

protrusions with widely distributed curvatures (e.g., looped cylindrical surfaces); and a modified Dijkstra

algorithm is applied in this method to compute the shortest paths, whose running time is)log(NEΟ , where N

is the number of triangular nodes and E is the number of triangular edges. Our method presented in this paper

can compute the shortest path from a node to the surface boundary in linear time; and the cutting paths on the

surface with widely distributed curvatures are generated while preventing flipped triangles in surface flattening.

 4

The single source shortest path problem (SSSP) is one of the classic problems in algorithmic graph theory

[10]: given a weighted graph with a source vertex, find the shortest path from the source vertex to all other

vertices in the graph. For the shortest path problem on a polygonal surface, approaches based on Dijkstra

algorithm [11] are most popular solutions [3, 12, 13]. Their computing time is non-linear though. Thorup (1997)

[14] presented a method to compute the undirected single source shortest paths in linear time; this is the fastest

solution. Here, our problem is different from SSSP. We need to select a node from candidate nodes where

Gaussian curvature is larger than a threshold. The final selected node should have the shortest geodesic distance

to the surface boundary among the candidate nodes. The algorithm of Thorup cannot be directly applied here

since it cannot give the geodesic distance from multiple points to the surface boundary in linear time. Thus, the

newly defined boundary geodesic distance map is needed, which is different from the weighted graph with a

source vertex in SSSP. After the node is selected, the shortest cutting path from it to the surface boundary

walking along the triangular edges can also be computed in linear time.

3. Approximate Shortest Path to Surface Boundary

In this section, we introduce a method to approximate the shortest path from a selected node to the surface

boundary in linear time. First, a boundary geodesic distance map, which indicates the undirected geodesic

distance from every triangular node to the boundary on the mesh surface, is computed in linear time. After that,

the approximate shortest path is generated from the map, also in linear computing time.

3.1 Boundary geodesic distance map

We generate the boundary geodesic distance map using a boundary advancing method, which progressively

moves the event list vL of the triangular nodes from the boundary to the center of the surface. During the

movement, the geodesic distance between the event list before and after moving is used to update the boundary

geodesic distance of every passed node. The given triangular mesh Μ is stored in a graph),(evG .),(evG is

composed of the vertices and the edges of Μ . Every node has its adjacent nodes and edges stored; and every

edge has its bounding nodes stored. The geodesic distance from every vertex iv to the surface boundary is

stored as a weight factor
ivW . Before moving the event list, the

ivW of every internal vertex is initialized as

+∞ ; the
ivW of every boundary vertex is set to zero; and the length of every edge je is calculated and stored.

Our algorithm repeatedly moves vL from the boundary to the center of Μ ; during the movement, the
ivW of

 5

the nodes adjacent to vL are updated. The pseudo-code for the boundary geodesic distance map generation is

given as follows.

Algorithm MapGeneration(G)

Input: A graph),(evG of the given mesh surface Μ .

Output: The updated weight factor
ivW of every triangular node.

1. for every node Gvi ∈ {

2. +∞←
ivW ;

3. Set the passed flag of iv –
ivfp to false;

4. if (iv on the boundary)

5. Add iv to vL , 0←
ivW , and set the passed flag of iv –

ivfp to true;

6. }

7. Calculate the length
jel of every edge Ge j ∈ ;

8. φ←′vL ;

9. do{

10. for every node vk Lv ∈ {

11. for every node jv adjacent to kv {

12. if ((
kvW + the length of edge kjvv) <

jvW), then
kj vv WW ← + the length of edge kjvv ;

13. if (
jvfp is false), then add jv to vL′ and set

jvfp to be true;

14. }

15. }

16. Replace vL by vL′ and empty vL′ ;

17. }while(φ≠vL);

After running MapGeneration(G), the weight factor
ivW of every node indicates the approximate geodesic

distance from the node iv to the boundary of Μ . The complex of
ivW , called W , and the graph),(evG

comprise the approximate boundary geodesic distance map GW +=Β . The visualization for the isohypses

generated from Β to the surface given in Fig. 1a is shown in Fig. 1c. From Fig. 1c, we find that our boundary

geodesic distance map approximately indicates the geodesic distance from every surface point to the boundary.

(a) given surface (b) mesh representation (c) isohypse of Β

Fig. 1 Boundary geodesic distance map

 6

(a) surface with non-uniform

edge lengths

(b) result generated by

MapGeneration(G)

(c) result generated by

AdaptiveMapGeneration(G)

Fig. 2 Approximation error generated by non-uniform edge lengths

In Algorithm MapGeneration(G), we assume that the lengths of edges are close to each other; so the

weight difference between the nodes of vL and vL′ is a constant. However, when the edges in Μ do not have

the same length, an approximation error will be generated by Algorithm MapGeneration(G) since the weight

difference between the nodes of vL and vL′ is no longer a constant. For example, in the surface shown in Fig. 2a

which has the same 3D shape as the one in Fig. 1a, the lengths of some edges are much longer than others; the

isohypses of Β generated by Algorithm MapGeneration(G) are shown in Fig. 2b, which are apparently

distorted. To reduce this error, when selecting a node to add to vL′ , the weight difference between the nodes of

vL and vL′ should be controlled. Only nodes that make the weight difference less than some threshold value

will be added into vL′ . We use the length of the shortest triangular edge as the incremental step of the threshold

in our modified algorithm. Also, the node in vL should also be added to vL′ if the event list has not passed any

of its adjacent nodes before. The modified algorithm is adaptive with the length of triangular edges. It is

outlined below as Algorithm AdaptiveMapGeneration (G).

Algorithm AdaptiveMapGeneration(G)

Input: A graph),(evG of the given mesh surface Μ .

Output: The updated weight number
ivW of every triangular node.

1. for every node Gvi ∈ {

2. +∞←
ivW ;

3. Set the passed flag of iv –
ivfp to false;

4. if (iv on the boundary)

5. Add iv to vL , 0←
ivW , and set the passed flag of iv –

ivfp to true;

6. }

7. Calculate the length
jel of every edge Ge j ∈ , and store the minimum edge length as minl ;

8. φ←′vL ;

 7

9. minl←λ ;

10. do{

11. for every node vk Lv ∈ {

12. for every node jv adjacent to kv {

13. if ((
kvW + the length of edge kjvv) <

jvW), then
kj vv WW ← + the length of edge kjvv ;

14. if ((
jvfp is false) and (

jvW < λ)), then add jv to vL′ and set
jvfp to true;

15. }

16. }

17. for every node vk Lv ∈

18. if any
ivfp of its adjacent node jv is false, then add kv to vL′ ;

19. Replace vL by vL′ and make vL′ empty;

20. minl+← λλ ;

21. }while(φ=vL);

After applying Algorithm AdaptiveMapGeneration (G) to the mesh surface given in Fig. 2a, the isohypses

of the result are shown in Fig. 2c. Fig. 3a shows the weight factor of nodes in Fig. 2b; Fig. 3b shows the weight

factor of nodes in Fig. 2c; and Fig. 3c shows the weight factor of nodes in Fig. 1c. Comparing them, it is easy to

find that the lengths of triangular edges have less influence on the result of Algorithm AdaptiveMapGeneration

(G). Thus, the isohypses in Fig. 1c and 2c are the same except in the area where there is no any triangular node.

Computing time analysis: For Algorithm MapGeneration(G), the running time of step 1-6 is)(NΟ , where

N is the number of triangular nodes; the running time of step 7 is)(EΟ , where E is the number of triangular

edges; and during step 9-17, since every node visits its adjacent nodes once – in other words, every edge is

passed twice, the running time is)(EΟ . Therefore, the running time of Algorithm MapGeneration(G) is

)(EN +Ο . For Algorithm AdaptiveMapGeneration(G), the running time of step 1-6 is also)(NΟ ; and the

running time of step 7 is)(EΟ . For the running time of step 11-16, every node visits its adjacent nodes

)(minlvvINT kj times, where)(KINT denotes the function to round a number down to the nearest integer.

Thus, the running time in the worst case is)(TEΟ , where)(minmax llINTT = , and maxl and minl denote the

maximum and minimum edge length on the given surface Μ . The running time of step 17-18 is)(EΟ since

every node visits its adjacent nodes once. In summary, the running time of Algorithm

AdaptiveMapGeneration(G) is))1((ETN ++Ο . Generally, T is a small number (e.g., from 1 to 100).

Therefore, the running time of the Algorithm AdaptiveMapGeneration(G) is also linear in N and E .

 8

(a) weight factor of nodes in Fig. 2b

(b) weight factor of nodes in Fig. 2c

(c) weight factor of nodes in Fig. 1c

Fig. 3 Boundary geodesic distance map by weight factors

 9

Fig. 4 Path generated from the boundary geodesic distance map

3.2 Generate approximate shortest path

We generate the approximate shortest path from a select node sv to the surface boundary by the steepest

descent method [15] according to the boundary geodesic distance map. For any selected triangular node Gvi ∈ ,

all its adjacent nodes are candidates for forming the path. We choose the node jv , whose descent function

),(jid vvf has the maximum value among all the adjacent nodes of iv . The definition of),(jid vvf is

jivvjid vvwwvvf
ji
)(),(−= . (1)

Starting from node sv , after searching for the adjacent nodes with the maximum),(jid vvf one by one, the

final path is generated. For example, in Fig. 4, the circled node is sv , and the bolded edges are the final path.

The pseudo-codes of the path generation algorithm are given below as Algorithm PathGeneration (sv , Β).

Algorithm PathGeneration (sv , Β)

Input: Boundary geodesic distance map Β of the given mesh surface Μ .

Output: The cutting path Ρ , consisting of triangular edges.

1. φ←Ρ ;

2. while(0≠
svW){

3. ←maxv any node adjacent to sv ;

4. for every node jv adjacent to sv

5. if (),(jsd vvf >),(maxvvf sd), then jvv ←max ;

6. Add the edge maxvvs into Ρ ;

7. maxvvs ← ;

8. }

9. return Ρ ;

 10

In the worst case, every node on the given mesh surface Μ visits its adjacent node once; so the computing time

is)(EΟ . In summary, we can generate the approximate shortest path from a selected node to the surface

boundary in linear time.

4. Reduce Stretch in Surface Flattening

Using the technique of approximating the shortest path to the boundary, we develop a method to determine

the cutting paths passing through all the nodes where the Gaussian curvature is higher than some given value.

After that, cutting paths may also be incorporated in surface flattening to prevent flipped triangles.

4.1 Node selection

As alluded earlier, the stretch in the flattened surface depends directly on the Gaussian curvature of the

given surface. Cutting the surface across points with a high Gaussian curvature can thus reduce the stretch in

surface flattening. Gaussian curvature is not well defined mathematically on a polygonal mesh surface, so a

discrete approximation is needed. Here, we conduct the approximation of Kobbelt et al. [2] on every internal

triangular node iv . The formula of [2] is

∑

∑−
=

j
j

j
j

v

A
i

3

1

2 θπ
κ , (2)

where jθ are the inner angles adjacent to iv and jA are the corresponding triangle areas.

The Gaussian curvature
ivκ of the nodes on the boundary of the given surface is zero since its adjacent

triangles are not closed. All the triangular nodes, whose εκ >
iv , are candidates. In different cases, a different

ε can be chosen. A larger ε leads to shorter cutting paths, and a smaller ε always leads to longer cutting

paths. In our testing examples, we usually choose max8.0 κε = , where maxκ is the maximum Gaussian

curvature among all the interior nodes on the given mesh surface.

4.2 Add cutting path

After the nodes whose Gaussian curvatures are higher than ε are determined and stored in a candidate

notes list cL , the shortest path connecting these nodes and the surface boundary is determined by an incremental

method. First, we compute the boundary geodesic distance map Β of the surface; secondly, we remove a node

cv from cL whose weight factor
cvw is a minimum in cL ; thirdly, we use Algorithm PathGeneration (cv , Β)

to generate a cutting path from cv to the surface boundary. After that, we add the newly generated path into the

 11

surface boundary, and go back to the first step to compute the new boundary geodesic distance map. We

determine the cutting path through all the candidate nodes by repeating the above steps until the candidate notes

list cL becomes empty.

In order to construct a fast algorithm, we store the candidate nodes list in a minimum heap cH ; so the

computing time of any operation on a single node in cH is)(log cNΟ , where cN is the number of nodes in

cH . After computing the boundary geodesic distance map of the given surface in linear time, it only takes a

time of)log(cc NNΟ to update the minimum heap cH and a time of)(log cNΟ to remove any node cv from

cH . Therefore, the total computing time of our algorithm is)log))1(((cc NNETN ++Ο . The pseudo-codes of

our algorithm are shown as Algorithm DetermineCuttingPathReducingStretch (Μ). Two examples of cutting

path generation are shown in Fig. 5 and 6, where the bolded curves are the determined cutting paths.

(a) given surface (b) mesh presentation (c) with cutting path generated

Fig. 5 Example I – umbrella surface

(a) given surface (b) mesh presentation (c) with cutting path generated

Fig. 6 Example II – bottle surface

Algorithm DetermineCuttingPathReducingStretch (Μ)

Input: The given mesh surface Μ with boundary ΜB .

Output: The cutting path *Ρ connecting ΜB and nodes with high Gaussian curvature.

1. φ←Ρ* ;

2. Call AdaptiveMapGeneration (G) to generate the boundary geodesic distance map Β of Μ ;

 12

3. for every internal nodes Μ∈iv

4. Compute the Gaussian curvature
ivκ of iv by eq.(2);

5. for every boundary node Μ∈ Bvb

6. 0←
bvκ ;

7. for every node Μ∈iv

8. if (εκ >
iv), then add iv into the minimum heap cH by the value of

ivw ;

9. while(φ≠cH){

10. Remove the top node cv from cH ;

11. Call PathGeneration (cv , Β) to generate the cutting path Ρ ;

12. Add Ρ into *Ρ ;

13. Add every triangular edge in Ρ into ΜB ;

14. Call AdaptiveMapGeneration (G) to generate the updated Β by the updated boundary ΜB ;

15. Update cH by the new
ivw of every node ci Hv ∈ ;

16. }

17. return *Ρ ;

4.3 Surface flattening

After the surface cutting path is determined, a spring-mass model based on the energy function is used to

flatten the 3D mesh surface into its corresponding 2D pattern [9]. This procedure consists of triangles flattening

and planar mesh deformation. During the triangles flattening phase, triangles are flattened one by one; and a

partial spring-mass system containing flattened triangles is deformed to release the strain energy during the

flattening. After all the triangles are flattened, the spring-mass system will have all the triangles of the given

surface. The planar triangular mesh deformation process is directed by the energy function of the spring-mass

system. One example of a spring-mass system is shown in Fig. 7. In this example, nodes iP are masses that

correspond to the vertex Μ∈iv ; and the links between masses iP and jP are springs. During deformation, if

the distance between iP and jP on the planar surface is larger than the distance between them on the original

spatial surface, we apply an attraction force between them (e.g., the force between 0P and 1P); otherwise there

will be a repellent force between them (e.g., 0P and 3P).

1P
2P

3P

4P 5P

0P

6P

Fig. 7 Example of a node in a spring-mass system

 13

The energy function on one single mass iP to be minimized is

()∑
=

−=
n

j

jjii dPPCPE

1

2

2

1
)((3)

where C is the spring constant, ji PP is the current distance between iP and jP on the planar surface, and jd

is the geodesic distance between iv and jv on the given mesh surface Μ . The energy function for the whole

surface patch is

∑
=

=Μ
N

i

iPEE

1

)()(. (4)

By releasing the energy function, we can obtain the 2D pattern corresponding to the given 3D mesh surface. The

surface flattening results of example I (Fig. 5) and II (Fig. 6) are shown in Fig. 8.

(a) result of example I without cutting paths (b) result of example II without cutting paths

(c) result of example I with cutting paths (d) result of example II with cutting paths

Fig. 8 Surface flattening results without vs. with cutting paths

 14

(a) given surface

(b) with cutting path (c) surface flattening result

Fig. 9 Example III – hemisphere

4.4 More cuts generation

The Algorithm DetermineCuttingPathReducingStretch (Μ) cannot give efficient cutting paths to the

surfaces with widely distributed curvatures (e.g., a cylindrical surface or a hemisphere). Alternative methods are

introduced in this section to reduce stretch in these cases.

For the case of a surface patch with widely distributed curvatures, if the surface has only one boundary

loop, we incorporate the cutting path from the flipped triangles to the surface boundary. The procedure consists

of 4 steps: step 1, flatten the given mesh Μ by the method given in section 4.3; step 2, check the orientation of

every triangle and find the flipped triangles; step 3, find the node mv with the minimum weight factor
mvw in

the flipped triangles; step 4, incorporate the cutting path by calling Algorithm PathGeneration (mv , Β); then go

back to step 1 until no flipped triangle is found. The cutting path determined by this method on a hemisphere

and its flattening result is shown in Fig. 9.

If a surface patch with widely distributed curvatures has multiple boundary loops, we incorporate the

cutting path to connect these loops. We can determine the shortest path connecting the two loops – 1B and 2B

from a modified geodesic distance map Β′ . To determine Β′ , when using Algorithm AdaptiveMapGeneration

(G) to compute the geodesic distance map, in step 3-4, only the vertices on 1B are set to be of zero weight and

are passed. After determining Β′ , the vertex cv on 2B with the minimum weight factor can be found. Calling

this Algorithm PathGeneration (cv , Β′), we obtain the shortest path connecting the two boundary loops. The

cutting path determined by this method on a cylindrical surface and its corresponding flattening result are shown

in Fig. 10.

 15

(a) given surface (b) with cutting path (c) surface flattening result

Fig. 10 Example IV – cylindrical surface

(a) given mesh surface (b) inite added

(c) cutting path (d) cutting path profile (e) surface flattening result

Fig. 11 Example V – closed surface

When a given mesh surface M is closed, Algorithm DetermineCuttingPathReducingStretch(Μ) will fail, as

there is no boundary to work on. With reference to [16], we only need to add an initial cutting edge inite passing

through the vertex maxv , which has the maximum Gaussian curvature on Μ . inite is the shortest adjacent

triangular edge of maxv . After inite is given, we determine the final cutting path by calling Algorithm

DetermineCuttingPathReducingStretch(Μ). A closed surface example, a cube, is shown in Fig. 11.

 16

(a) given mesh surface (b) with cutting lines (c) profile of cutting lines in (b)

(d) more cutting lines

(e) profile of cutting lines in (d) (f) surface flattening result

Fig. 12 Example VI – cow

5. Experimental Results

In general, we can determine the cutting path to reduce the stretch in surface flattening by passing through

the nodes with high Gaussian curvatures. In example I, the given mesh surface has 774 triangles; when we

choose max8.0 κε = as the threshold, 23 cutting edges passing through 7 high curvature nodes are computed in

less than one second. In example II, the given mesh surface has 21122 triangles; when we choose max8.0 κε =

as the threshold, 268 cutting edges passing through 200 high curvature nodes are determined in 93 seconds.

In order to compare our method with the others that are based on the similar idea of using cutting paths, we

select a same example as [3] – the cow (shown in Fig. 12a), which has 5804 triangles. When we choose

max8.0 κε = as the threshold, 478 cutting edges passing through 279 high curvature nodes (shown in Fig. 12b

and 12c) are computed in 47 seconds. This compares favorably to the computing time reported in [3] which is

close to two minutes when 326 cutting edges passing through 98 nodes are incorporated. Since the cow is a

surface with widely distributed curvatures, more cutting edges should be introduced to reduce the stretch by the

method of section 4.4. Fig. 12d and 12e show the final cutting edges, and Fig. 12f shows its corresponding

surface flattening result. All tests in this paper were conducted on a PIII 600 MHz PC with 128MB RAM.

 17

6. Conclusion

In this paper, we develop a method for finding the cutting paths on a 3D triangular mesh surface to reduce

the stretch on the flattened surface. The length of cutting paths is minimized. First, a linear algorithm to compute

an approximate boundary geodesic distance map is developed. The algorithm is adaptive to different lengths of

triangular edges. After that, the undirected shortest path from a selected node to the surface boundary can be

generated according to the map; the geodesic distance from the selected node to the surface boundary is the

shortest among all the nodes whose Gaussian curvature is higher than a threshold. Using this idea, we can

reduce the stretch in the flattened surface by adding shortest cutting paths from high Gaussian curvature nodes

to the surface boundary one by one. The cutting paths walk along the triangular edges of the given surface. By

generating more cuts from flipped triangles during flattening, even closed surfaces or surfaces with widely

distributed curvatures can be cut and flattened.

As a new technique for enhancing the existing surface flattening techniques, our method has the following

two advantages compared with other methods based on similar ideas of using cutting paths:

1. our method reaches a faster speed while generating an acceptable result;

2. our method can deal with surfaces with widely distributed curvatures.

Industrial applications of surface flattening impose more requirements on the cutting paths. For example,

the direction of the cutting path, or the distribution of the cutting paths may be constrained. Further research can

focus on how to incorporate these constraints into the surface flattening technique.

7. References

[1] Carmo M.P.D., Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ,

U.S.A, 1976.

[2] Kobbelt L.P., Bischoff S., Botsch M., Kähler K., Rössl C., Schneider R., and Vorsatz J., “Geometric

modeling based on polygonal meshes”, EUROGRAPHICS 2000 Tutorial.

[3] Sheffer A., “Spanning tree seams for reducing parameterization distortion of triangulated surface”, SMI

2002: International Conference on Shape Modelling and Applications.

[4] Parida L., Mudur S.P., “Constraint-satisfying planar development of complex surfaces”, Computer-Aided

Design, vol.25, no.4, pp225-232, 1993.

[5] Aono M., Denti P., Breen D.E., and Wozny M.J., “Fitting a woven cloth model to a curved surface: dart

insertion”, IEEE Computer Graphics & Applications, vol.16, no.5, pp.60-70., 1996.

 18

[6] Aona M., Breen D.E., and Wozny M.J., “Modeling methods for the design of 3D broadcloth composite

parts”, Computer-Aided Design, vol.33, no.13, pp.989-1007, 2001.

[7] McCartney J., Hinds B.K., and Seow B.L., “The flattening of triangulated surfaces incorporating darts

and gussets”, Computer-Aided Design, vol.31, no.4, pp.249-260, 1999.

[8] Kim S.M., Kang T.J., “Garment pattern generation from body scan data”, Computer-Aided Design, to

appear.

[9] Wang C.C.L., Smith S.S.F., and Yuen M.M.F., “Surface flattening based on energy model”, Computer-

Aided Design, vol.34, no.11, pp.823-833, 2002.

[10] Cormen T.H., Lieseron C.E., Rivest R.L., Introduction to Algorithms, MIT Press, Cambridge, 2000.

[11] Dijkstra E.W., “A note on two problems in connection with graphs”, Numerische Mathematik, vol.1,

pp.269-271, 1959.

[12] Lanthier M.A., Maheshwari A., and Sack J.-R., “Approximating weighted shortest paths on polyhedral

surfaces”, Proceedings of 13
th

 ACM Symposium on Computational Geometry, pp.274-283, 1997.

[13] Kanai T., Suzuki H., “Approximate shortest path on a polyhedral surface and its applications”, Computer-

Aided Design, vol.33, no.11, pp.801-811, 2001.

[14] Thorup M., “Undirected single source shortest paths in linear time”, Proceedings of 38
th

 IEEE

Symposium on Foundations of Computer Science, pp.12-21, 1997.

[15] Press W.H., Numerical recipes in C: the art of scientific computing, Cambridge University Press, 1992.

[16] Gu X., Gortler S.J., Hoppe H., “Geometry Images”, SIGGRAPH 2002 Conference Proceedings, 2002.

