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Abstract

We present an approach to accelerate spherical range-search (SRS) for dynamic points that employs the computational power of
many-core GPUs. Unlike finding k approximate nearest neighbours (ANNs), exact SRS is needed in geometry processing and
physical simulation to avoid missing small features. The spatial coherence of query points and the temporal coherence of dynamic
points are exploited in our approach to achieve very efficient range-search on AABB-trees. We test our coherent SRS in several
applications including point-point-set geometry processing, distance-field generation and particle-based simulation, which are best
scenarios to present the spatial and the temporal coherence of spherical queries on dynamic points. On a PC with NVIDIA GTX
660 Ti GPUs, our approach can take 1M queries on 1M dynamic points at a rate of 1600 queries/ms, where 49 neighbours are found
on average within the range of 1/100 of the bounding-box’s diagonal length. We observe an increase of up to 4x compared with
conventional voxel-based GPU searching approaches in the benchmark of particle-based fluid simulation. Moreover, the speedup
can be scaled up to 150x when being applied to highly non-uniform distribution of particles in the simulation.
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1. Introduction

Range-search with a radius r for a query q ∈ <d on a
set of data points P is an operation to find all the neighbours
p ∈ <d within the distance r to q. As the range of search
is a d-dimensional sphere, this is called spherical range-search
(SRS). The technique to conduct SRS efficiently is crucial to the
success of many applications, such as point-set geometry pro-
cessing [1, 2, 3], distance-field generation [4], particle-based
simulation [5, 6, 7] and photon mapping [8, 9]. A straightfor-
ward way to conduct SRS is the brute force algorithm conduct-
ing an exhaustive search among all points in P, which could
be slow even when using the computational power of GPUs
[10]. Various structures for acceleration have been developed
to improve the efficiency of this process. kd-trees are one of the
widely used hierarchical structures for low-dimensional neigh-
bour search (e.g., ANN in [11] and FLANN in [12]). Other
data structures such as BV-trees, trapezoidal maps, range-trees,
and Gh-trees, are alternative choices. A comprehensive lecture
on multidimensional and metric data structures can be found
in the book by Samet [13]. In this paper, we develop ac-
celeration techniques for point based search queries for low-
dimensional dynamic points on GPUs. The main contribution
is a highly parallel approach employing the temporal coherence
of dynamic points and the spatial coherence of query points. .

Temporal Coherence: kd-tree is widely used in low-
dimensional neighbouring search because of its efficiency.
However, the construction time remains prohibitively expen-
sive. The problem becomes more serious when the data

points in P dynamically move during the computation. This
is quite a common scenario in the applications of geometry
processing and physical simulation. For example in Fig. 1(a),
a kd-tree must be constructed again after moving the data
points in P. In literature, many attempts have been made to
speedup the construction of kd-trees either on the multi-cores of
CPUs [14, 15, 16] or on the many-cores of GPUs [17, 18, 19].
However, the speed of rebuilding a kd-tree is still expensive.
Therefore, the voxel-based search is popular in the approaches
of particle-based simulation (e.g., [20]), where the voxels con-
taining dynamic points can be easily rebuilt by using the highly
parallel sorting algorithm [21]. Inspired by the work of [22],
the hierarchy of axis aligned bounding boxes (AABBs) is used
here to conduct efficient SRS on dynamic points. After con-
struction, an AABB-tree can be updated by a highly parallel
bottom-up refitting scheme – i.e., only the shapes of AABBs,
and not the structure of a tree, are modified (see Fig. 1(b)). The
temporal coherence of keeping dynamic points in the same tree-
structure can be employed to reduce the computational cost. We
also investigate a heuristic method to activate the process of tree
rebuilding based on the volume variation of AABB.

Spatial Coherence: In most applications, the queries in SRS
are independent of each other, and are thus able to be performed
in parallel. However, as will be analyzed in Section 3, a large
portion of the queries share the similar patterns of traversal on
the AABB-tree, which results in many redundant traversals on
the tree. In our approach, this spatial coherence is employed
to develop a new querying scheme that increases speed by 2 to
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Figure 1: Comparison of the evolution on (a) kd-tree and (b) AABB-tree for dynamic data points. The topology of a kd-tree has to be changed, while an AABB-tree
can change only its AABBs while keeping the same structure. This is a temporal coherence to be used in an efficient tree update for dynamic points. As a result,
efficient SRS of dynamic points can be conducted on AABB-trees, together with the step of rebuilding when it is necessary.

Figure 2: Pipeline of our coherent SRS algorithm.

4 times compared with the primary scheme of GPU-based par-
allel SRS. Example applications, including point-set geometry
processing, distance-field generation and particle-based simula-
tion, are used as best candidates to demonstrate the performance
of our method.

Main Results: We address the problem of highly parallel
SRS for dynamic points with the help of AABB-trees. Here
AABB-tree is chosen in our implementation because of the
trade-off between simplicity and tightness in bounding. In our
setup, all the queries are assumed to have the same searching
radius, r; however, it is easy to extend our approach to let dif-
ferent queries have different search radii. To fully exploit the
respective superiorities of CPUs and GPUs, the construction of
the AABB-tree is conducted on the CPU and then copied into
the graphics memory for the highly parallel SRS. In the con-
current search step, query points are first packed into bins by
the leaf-nodes of the AABB-tree. For each leaf-node v contain-

ing a set of query points Qv, its swept volume with a sphere of
radius r is used to conduct overlap detection. All data points
in the overlapped AABBs are potential SRS results of queries
in Qv. After that, distances between the potential results and
the query points are evaluated. Finally, the real SRS results are
picked out by using the scan and sort primitives [23]. When
the data points in an AABB-tree are moved in small distances,
AABBs on the tree are updated in a bottom-up manner by using
the temporal coherence of keeping dynamic points in the same
tree-structure. Meanwhile, the volume variations of AABBs are
evaluated. When the maximal volume change has exceeded a
threshold (e.g., > 10×), the AABB-tree is rebuilt. When data
points are moved at a reasonable speed, this mechanism works
well. The computational pipeline of our approach is shown in
Fig. 2. The effectiveness of our approach will be demonstrated
in the applications of point-set geometry processing, distance-
field generation and particle-based simulation. Note that, there
are other hierarchical structures can be used for dynamic envi-
ronment – such as spherical tree used in [24].

In short, our technical contribution is an integrated frame-
work to borrow the capability of high performance comput-
ing provided by dynamic hierarchical tree traversal/update and
packet query. The framework is implemented on a simple but
effective AABB-tree and demonstrated by a few examples in
geometric modeling and physical simulation, where the queries
are easy to group and cluster. Actually, there are many other
applications in solid and physical modeling sharing the same
nature of point queries (e.g., [25, 26, 27]), which can all be
benefit from this work.

Our approach shows a better performance than the current
state-of-the-art methods. When testing on a PC with NVIDIA
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GTX 660 Ti card, more than 1600 queries/ms can be performed
for 1M queries on a set of 1M dynamic points reporting 49
neighbours/query on average. We observe up to two order per-
formance improvement over the sequential algorithm [11] and
up to a 4× increase in speed over the voxel-based [20] and the
shifted-sorting based search [28] running on GPUs. Unlike the
ANN library in [11] that can report the exact results of SRS1,
a search based on shifted-sorting may miss the real nearest-
neighbours.

The rest of this paper is organized as follows. After review-
ing the related work in Section 2, the construction of AABB-
trees on CPU and a primary hierarchical traversal on GPU are
briefed in Section 3. After analyzing the problem of the primary
scheme in Section 4.1, Section 4.2 presents the coherent SRS
algorithm running on many-core GPUs. Section 4.3 introduces
the parallel algorithm for updating AABBs on a tree. Lastly,
experimental results and the applications of our approach are
presented in Section 5.

2. Related Work

The spherical range-search is a common tool that has a va-
riety of applications in machine learning, database, computer
vision, geometry processing, physical simulation, design and
manufacturing, etc. The problem has been studied for many
years and many related approaches can be found in the litera-
ture where a review can be found in [29, 13]. Giving a compre-
hensive review, where different type of hierarchies and search
queries must be compared and discussed, is beyond the scope
of this paper. In this section, we only review the recently de-
veloped algorithms of low-dimensional range-search and ANN
search that run on GPUs, which are most relevant to our work.

To remove the redundant distance calculations and queries in
the brute force k nearest neighbour (k-NN) search [10], Green
partitions the space of query into voxels [20]. For a query
point q, only data points inside the voxel containing q and
the neighbouring voxels are checked instead of checking all
the data points. The voxels containing dynamic points can be
efficiently constructed by using the parallel sorting algorithm.
Therefore, this strategy is popular in particle-based simulations
(e.g., [5, 30]). Recently, an out-of-core SRS algorithm [31]
(also called ε-NN) was proposed in the context of particle sim-
ulation. This also partitions the space of data points uniformly.
The common drawback of a uniform partition based approach
is that the performance of queries degrades rapidly where there
is a non-uniform distribution of data points.

A kd-tree is usually employed in low-dimensional range-
search as a structure adaptive to the distribution of points. To
borrow the computational power provided on GPUs, Zhou et
al. [17] developed the first GPU-based algorithm for kd-tree
construction. Their algorithm exploits the GPU’s streaming ar-
chitecture and can construct kd-trees for moderate sized models
at a very fast speed. However, the kd-trees constructed by their

1In all our comparisons with ANN [11], the exact and comprehensive neigh-
bours are generated by an option provided in the library.

algorithm are not balanced as spatial median splitting is used
for upper-level nodes. Moreover, their algorithm consumes a
large amount of memory so that it cannot be applied to large
models. Qiu et al. [32] developed an ANN search running on
GPUs based on the approach of Arya and Mount [33]. The
kd-tree is built on the CPU and then transferred to the GPU be-
fore running ANN. In their approach, each thread traverses the
tree for one query point. The spatial coherence between query
points has not been exploited to improve efficiency. Moreover,
kd-trees do not work well in the scenario of dynamic points
as the hierarchy has to be reconstructed after each iteration of
point movements.

Bounding volume hierarchies (BVHs) are widely used to
accelerate intersection computations for ray tracing, collision
detection, visibility culling, and other similar applications.
There is an extensive literature on fast computation of BVHs
[34, 35, 36, 37]. Lauterbach et al. proposed a method in [35]
to construct BVHs with the help of Morton codes. After that,
the proximity queries can be undertaken efficiently on GPUs
[38]. However, they did not take advantage of the coherence on
queries to improve the efficiency of searching. To further accel-
erate the algorithms running on GPUs, coherence has recently
been employed in [39] and [40] for the distance-field evalua-
tion and the fast collision culling respectively. There are many
different types of bounding volume primitives can be used to
develop fast query by BVH – such as, spherical tree [24], OBB-
tree [41], k-DOP tree [42], ellipsoid-tree [43], etc. In this pa-
per, we employ the hierarchy of AABB to conduct SRS as it is
easy to construct, fast in traverse and allows quick refitting for
dynamic points. Comparing to other BVHs (e.g., sphere-tree
[24]), AABB-tree is chosen by the trade-off between simplicity
and tightness in bounding. Most recently, Li et al. [28] intro-
duced a GPU-based ANN algorithm based on Morton codes
and shifted sorting. They align query points together with data
points in the shifted sorting to speedup the search of k-ANN.
Unfortunately, such an algorithm for ANN search may miss
some real nearest neighbours. Moreover, the comparison shows
that our method proposed in this paper outperforms ANN based
on shifted sorting [28].

Another thread of research focuses on solving the k-NN
problem in high-dimensional space. Pan et al. [44] use a GPU-
based locality sensitive hashing (LSH) algorithm to perform ap-
proximate k-NN search in high-dimensional spaces. Sundaram
et al. [45] developed a new parallel variant of the LSH algo-
rithm that supports similarity search on massive streaming data
sets across multiple nodes. Nevertheless, the LSH-based al-
gorithms do not perform as well as the hierarchy-based range
search approaches in relatively low-dimensional spaces.

By analyzing the nature of the algorithms, it becomes appar-
ent that hierarchical structure based methods should be faster
than the voxel-based and the LSH-based approaches for range-
search in low-dimensional problems. We observe the same re-
sults in the experimental tests undertaken in Section 5. When
considering the construction time, the kd-tree is slower than
LSH while the most efficient one is the sorting based construc-
tion of voxels. However, we will show that using temporal co-
herence to update an AABB-tree without changing its structure
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is even faster than the voxel-based approach. And our study
shows that, in our applications, trees need to be rebuilt only
after tens of iterations of point movement.

In real-time ray tracing, query-packets are usually employed
to improved the efficiency of computation (ref. [46, 47, 48, 49]).
A common strategy is to first group coherent rays, bound them
within a tight frustum, and then perform the same traversal for
the whole group of rays. In this paper, we extend this idea to
SRS. Besides of this spatial coherence, we also employ the tem-
poral coherence of dynamic points to reduce the computational
cost in our method.

3. Preliminary

This section first presents the method for constructing an
AABB-tree T from a set of data points, P. After that, the pri-
mary scheme of GPU-based SRS on T is introduced.

3.1. Construction of hierarchy
An AABB-tree is a binary tree of AABBs. The construction

of an AABB-tree for a set of data points in <d is similar to
that for a kd-tree. The space spanned by P is recursively sub-
divided into disjointed hyper-rectangular regions in a top-down
manner. When constructing a node v on the tree, the AABB of
points contained by v is first computed. Then, the points are re-
ordered to be split into two children nodes of v by a well-chosen
partitioning plane. The process is continuously performed until
each subset contains not more than a certain number of points
(e.g., 20 in our implementation). This number is called bucket
size.

To fully exploit the respective superiorities of CPUs and
GPUs, we chose to construct an AABB-tree on the CPU and
then copy it into the graphics memory to undertake range-
search. To have an efficient SRS algorithm running on GPUs,
we need to bound the length of the search path on the trees. An
unbalanced tree leads to a longer searching path and also re-
sults in highly unbalanced workload among different threads.
We chose to construct a balanced AABB-tree to solve these
problems. Specifically, when splitting the data points of a tree-
node v to generate v’s children, the median plane is searched to
partition n points into two subsets with bn/2c and dn/2e points
respectively. This guarantees that we can obtain an optimally
balanced tree with a bound of depth as dlog2 ne. Our implemen-
tation of tree construction follows the algorithm of ANN library
[11], where the Hoare’s selection algorithm [50] is used to find
the splitting plane with the complexity of O(n log n) in the best
case and O(n2) in the worst case.

After constructing a balanced AABB-tree T , all the nodes
of T are stored into a 1D array Θ according to the order of
breath-first traversal (BFT) of the tree. As T is a balanced
binary tree, the index of a node in Θ can be used to find out the
locations of its parent and children nodes easily. Θ is copied to
the global memory of GPUs to undertake the spherical range-
search in parallel. Note that, as nodes are stored in the order
of BFT, the nodes at the same level of T are stored together in
Θ. This arrangement benefits the step of hierarchical update in
Section 4.3.

Figure 3: An illustration of the AABB-tree traversal for spherical range search-
ing: For a given query q, the leaf-node ‘D’ containing q is first found by DFS
(the path is shown in red). Then, a back-traverse is taken to check all the data
points in the leaf-nodes that intersect the sphere centered at q, where the path
of back-traverse is shown in blue. In this example, p5, p10, p13, p14, p15 and
p16 are extracted as q’s neighbors.

3.2. Hierarchical search: a primary scheme

Among the variety of range-search algorithms, the approach
of Arya and Mount [33] is widely employed as it is more effi-
cient than the conventional top-down BFS [29]. When running
on a balanced binary tree, the size of stack is bounded by the
tree’s depth. It is an important property of having a constant
memory consumption to fit the architecture of GPUs. Taking
the same strategy as [33], we develop a primary scheme to con-
duct the SRS queries in parallel on an AABB-tree (instead of a
kd-tree in [33]).

Data points in the leaf-nodes whose AABB extents intersect
the querying sphere centered at q (with the radius r) are found
to check their distances to q. Therefore, the key is how to find
these leaf-nodes efficiently. For a query point q ∈ Q, a depth-
first search (DFS) can be used to locate the leaf-node which
contains q. However, it is possible to have a query point out-
side all AABBs meanwhile having data points covered by its
spherical range. To overcome this problem, a weak form of
containing is defined as touching.

Definition 1 A query point q with searching radius r is defined
as touching a node v on a tree T when d(v.aabb,q) ≤ r.

Here d(v.aabb,q) defines the Euclidean distance between q and
the AABB of v. A query point can touch more than one leaf-
nodes, in which case the first detected node will be used in DFS.
After taking a DFS to find a leaf-node touching q, all the nodes
on the path of this DFS and their subtrees are checked to see
if their AABB extents intersect the querying sphere. This can
be realized by a back-traversal with the help of a stack with its
size bounded by the tree’s depth. All the leaf-nodes on a subtree
overlapping the querying sphere can be found by a DFS. Lastly,
distances between q and the points in these overlapped leaf-
nodes are evaluated to get the real results of SRS. An illustra-
tion is given in Fig.3, and a pseudo-code of this primary scheme
of GPU-based SRS is given in Algorithm PrimaryGPUBased-
SRS. A stack is allocated for each querying thread with its max-
imal size the same as T ’s depth. The final searching results are
stored in an array with the help of atomic operators on GPUs.
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Algorithm 1: PrimaryGPUBasedSRS
Input: AABB-tree T , query set Q, radius r
Output: neighbours within radius for each q ∈ Q

1 foreach q ∈ Q in parallel do
2 Find a leaf node v that touches q by DFS;
3 Check all points in v to find the real neighbors of q;
4 Set cur = v;
5 while cur.parent , ∅ do
6 parent = cur.parent;
7 Find the brother node srt of cur by parent;
8 if d(srt.aabb,q) ≤ r then
9 Apply DFS on a subtree rooted at srt to find

out all neighbours of q;
10 end
11 cur = parent;
12 end
13 end

4. Coherent Searching and Updating

This section analyzes the problem of primary scheme and
proposes a coherent searching algorithm that can achieve a 2
to 4 times increase in speed. After that, an efficient algorithm
is presented to update the AABB-tree by using the temporal
coherence of dynamic data points. The criterion on rebuilding
a tree is also studied.

4.1. Problem of primary scheme

The primary scheme for GPU-based SRS is easy to imple-
ment. However, it has not taken full advantage of the high par-
allelism in the architecture of modern graphics hardware for the
following reasons.

• First, the searches of every query point are running inde-
pendently, where each thread needs a stack to store the
intermediate information of traversal. The size of the
graphics memory on consumer-level hardware is limited
(i.e., usually less than 4GB). For the cases with a massive
number of query points, the hierarchical traversals have to
be subdivided into many segments to be run in different
rounds.

• Second, different threads traversing the tree with different
paths could have tremendous variation in lengths. Accord-
ing to our observation, the maximal length of a path could
be more than three times the average length. This leads to
significantly unbalanced workload among the many-cores
of GPUs.

To improve the situation of unbalanced workload on different
threads, a lightweight algorithm akin to [38] is developed for
dynamic workload balancing. After implementing this strat-
egy, we observe about a 20% performance improvement on the
primary scheme when taking 1M queries on a set of 1M data
points.

More importantly, the SRS algorithm can be more efficient
if the number of stack-based traversals can be reduced. In the
following subsection, the coherence of paths in back-traverse
are considered to merge similar paths so that we can reduce the
number of traversals.

4.2. Coherent SRS

The coherent spherical range-search introduced below con-
sists of three phases: 1) packing of queries, 2) common back-
traversal and 3) result extraction. Basically, the first phase
merges queries with similar traversal patterns, the second phase
finds all potential neighbours, and the last phase figures out the
real neighbours of every query point. A pseudo-code of our
coherent SRS can be found in Algorithm CoherentGPUBased-
SRS.

4.2.1. Packing of queries
Our investigation finds that the query points falling in the

same leaf-node of T have very similar traversal patterns for
SRS (see Fig.4 for an example). Statistics show that, when
query points are well aligned with data points stored in T , up
to 99% of the tree traversals can be merged into 1% common
traversals by packing the query points according to this spa-
tial coherence. In practice, we first apply the depth-first search
(DFS) to each query point, q, to find the leaf-node, vq, contain-
ing (or touching) q. After that, a highly parallel sort using the
IDs of leaf-nodes as keys is applied to align the query points in
the same leaf-nodes together [23]. Pseudo-code for the query
packing can be found in lines 1-8 of Algorithm CoherentG-
PUBasedSRS. Note that, the set of data points P can also be
the set of query points Q (i.e., P ≡ Q). In these cases, we can
bypass the DFS step in line 4 to further speedup the computa-
tion.

4.2.2. Common back-traverse with swept volume
For all query points in a leaf-node vq, a common back-

traverse is applied to find candidates for the result of SRS. For
all the query points in vq, the candidates of SRS results must
fall in a swept volume around the AABB of vq by a sphere with
radius r (as also illustrated in Fig.5).

Definition 2a The swept volume of a leaf-node vq for SRS is
defined as

vq.swp = {p | ∃v ∈ vq.aabb, ‖p − v‖ ≤ vq.r} (1)

where vq.r = r represents the radius of the sweeping sphere and
vq.aabb denotes the AABB of vq.

For a leaf-node vq, if it is touched by a query point q not
contained by vq.aabb, p ∈ <d can only be excluded when
‖p − q‖ > 2r. Therefore, its swept volume needs to be en-
larged. It is important to note that bound of the swept volume
introduced here based on AABB is much tighter than spherical
primitives in sphere tree (see the volume of node C in Fig.5 for
an example).
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Figure 4: Query points touched by the same leaf-node of a tree usually have similar traversal patterns on the tree. Here, red paths are the traversal to find the
leaf-node touching a query, and blue curves illustrate the paths of back-traverse. As these four queries share similar traversal patterns, they can be packed into one
common back-traverse. AABBs of the leaf-nodes displayed in red intersect the spherical ranges of query points, and the data points in these nodes are the candidates
of search results.

Figure 5: An illustration for the common back-traverse with swept volume. The
swept volume of a sphere with radius r along the AABB of the leaf-node D is
employed to detect the leaf-nodes containing candidates of SRS results – data
points in the nodes D and F are obtained as candidates in this case. The blue
curve shown on the tree is the path of back-traverse.

Definition 2b For a leaf-node vq touched by any query point
that is not in vq.aabb, its swept volume vq.swp is defined by
Eq.(1) but with

vq.r = 2r. (2)

By this, candidates for the result of SRS must be in the leaf-
nodes that intersect with vq.swp. Overlap between any leaf-
node vi and the swept volume vq.swp can be conservatively de-
tected by the overlap between their AABBs.

Remark 1 For any leaf-node vi, if its AABB has no overlap
with the AABB of a swept volume vq.swp, vi and vq.swp have
no overlap.

Figure 6: An illustration for the result extraction step of our coherent SRS al-
gorithm – the number of threads allocated is according to the number of entries
in the intermediate list S .

According to this remark, our back-traverse takes a DFS to
find all the leaf-nodes, vis, that have (srt.aabb∩vq.swp.aabb) ,
∅ with the AABB of vq.swp denoted by vq.swp.aabb. Data
points in the overlapped leaf-nodes are the candidates of SRS
results. The common back-traverses for all leaf-nodes that con-
tain query points are run in parallel. Pseudo-code for the back-
traverse can be found in lines 10-22 of Algorithm CoherentG-
PUBasedSRS.

All the data points in the leaf-nodes, vis, overlapped with
vq.swp.aabb are copied into a 1D array S to be further refined
to find the real SRS results. Note that, as the candidate points
for different vqs obtained on different GPU cores can be added
into S at the same time, the atomic operator provided by mod-
ern GPUs is employed to solve the read-modify-write (RMW)
problem. The data points are stored in S together with an ID
key indicating from which querying leaf-node vq they are gen-
erated (in line 18 of Algorithm CoherentGPUBasedSRS).

4.2.3. Result extraction
In this final phase of coherent SRS, the real results within

the querying range r of points in Q will be extracted. For a
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Algorithm 2: CoherentGPUBasedSRS
Input: AABB-tree T , query set Q, radius r
Output: neighbors within radius for each q ∈ Q

1 // Phase I: Packing of Queries
2 Initialize two empty lists, I and F;
3 foreach qi ∈ Q in parallel do
4 Find the leaf-node v that touches q by DFS;
5 I ← i and F ← v.id;
6 end
7 Sort I keyed by F to group the queries in the same

leaf-node together;
8 Compact F into a reduced list F̃ by removing the repeated

entries;
9 // Phase II: Back-traversal with swept volume

10 foreach fq ∈ F̃ in parallel do
11 Get the leaf-node vq according to the ID, fq;
12 Add all points in vq into a list S as the candidates of

SRS results;
13 Set cur = vq;
14 while cur.parent , ∅ do
15 Find the brother node srt of cur;
16 if (srt.aabb ∩ vq.swp.aabb) , ∅ then
17 Apply DFS on the subtree of srt to find all the

leaf-nodes vi that have
(vi.aabb ∩ vq.swp.aabb) , ∅;

18 All points in the these nodes are added into S
together with the ID of vq;

19 end
20 cur = parent;
21 end
22 end
23 // Phase III: Result extraction
24 foreach data point pi ∈ S in parallel do
25 Get the querying leaf-node vq of pi;
26 foreach query point q j ∈ vq do
27 if ‖pi − q j‖ ≤ r then
28 R← pi and I ← q j.id;
29 end
30 end
31 end
32 Sort the list R keyed by the list I;
33 Compact I by removing the repeated entries to build the

offset table T for accessing R;
34 Return R and T ;

point pi in the intermediate list S , we can easily obtain its cor-
responding querying leaf-node vq by the ID key stored with it
(details can be found above). We then check the distance be-
tween pi and all query points q j ∈ vq. When ‖pi − q j‖ ≤ r,
pi is added into a resultant list R and q j’s ID is added into a
querying index list I in the same order as q j in R. After that,
the points in R are sorted by using the entries of I as the keys.
Now all the resultant data points of SRS are listed in R in the
order of querying points’ IDs. Finally, the offset table can be
constructed by removing repeated entries in the sorted I so that
the results in R can be accessed according to the ID of query-
ing points. Pseudo-code for the result compaction can be found
in lines 23-34 of Algorithm CoherentGPUBasedSRS (see also
Fig.6 for an illustration). Note that each intermediate resultant
point is allocated with an independent thread in this phase to
build the unsorted list of resultant points, R. As a result, each
thread (according to an entry in S ) takes a smaller amount of
work than allocating threads according to the leaf-nodes con-
taining query points. This leads to better balanced workloads
between different threads.

Extension for independent radii: Our coherent SRS can
be extended to support independent searching radii r j on each
query q j. When this is required for an application, we can first
replace r in Eq.(1) (or Eq.(2)) by the maximal radius of all query
points contained (or touched) by the leaf-node vq. Then, in the
step of result extraction, pi is added into R only when ‖pi−q j‖ ≤

r j. By this extension, different query points are allowed to have
different searching radii.

4.3. Hierarchical updating

The structures of AABB trees make them easy to use in the
scenarios of dynamic models where the positions of primitives
change over time [22]. Instead of rebuilding the AABB tree
after every modification of data points, the temporal coherence
of data points can be employed to update the tree by only refit-
ting the AABBs. Specifically, the new extents of AABBs on the
leaf-nodes are first updated by the new positions of data points.
Then, the AABBs of non-leaf-nodes are updated level by level
in bottom-up order. For any node v on the i-th level of an AABB
tree, the AABB of v can be obtained directly from the AABBs
of its two children by min and max comparisons. Note that,
the update of a node’s AABB will not affect the AABBs of any
other nodes located at the same level of the tree. They are inde-
pendent of each other, a feature which makes them ideal for a
highly parallel implementation. We can update the AABBs of
the nodes at the same level in parallel without the RMW prob-
lem.

All the nodes of a tree T are stored in a 1D array, Θ. As the
nodes of T are packed in Θ by the order of BFT, nodes at the
same level have been aligned together in Θ. With the help of an
offset table that can be generated during the construction of Θ,
the AABB refitting kernel (by min and max comparisons) can
be efficiently applied to the nodes at the same level of T . When
the nodes are randomly aligned in Θ, the refitting kernel takes
a lot of redundant effort to extract the nodes on the same level.
A comparison on the efficiency has been given in Fig.7.
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Figure 7: Well-aligned tree nodes by placing together the nodes on the same
level can significantly improve the efficiency of hierarchical updating.

Figure 8: After moving the red point p4 to a new position (see right), the orig-
inal AABB-tree on the left is updated to the one on the right where the AABB
of the node F and its parents, C and A, are recomputed accordingly. For the
same SRS query centered at q, three more nodes C, F and G need to be visited
in the back-traverse phase of query.

4.4. Rebuilding AABB-tree

Due to the position change of data points, the AABBs in a
tree updated by the above method may have a large volume
of overlap. An extension of overlap on AABBs can lead to
more visits of nodes during the back-traverse (see Fig.8 for an
illustration).

Among all the applications tested in this paper, the particle-
based simulation is an application where the data points can
move promptly. As a result, the AABBs may change signif-
icantly so that the issue of overlap between AABBs becomes
serious enough to affect the performance of SRS. The volume
of an AABB can be up to 150 times its original AABB after
400 steps of iteration. Study has been undertaken of such a
scenario with prompt point movement. For parallel computing
on GPUs, the performance of the whole algorithm is usually
determined by the slowest thread. Therefore, we measure the
maximum volume variation ratio (MVVR) versus the change
of updating rate in frames per second (FPS) during the simu-
lation. As shown in Fig.9, the value of FPS does not change
significantly when MVVR increases at the very beginning of
simulation. However, when MVVR becomes larger and larger,
FPS starts to drop steeply. The AABB-tree then needs to be
rebuilt by the CPU-based construction algorithm. We rebuild
the AABB-tree when MVVR is greater than a threshold µ. In
our implementation, µ = 10 is used. This GPU/CPU hybrid

Figure 9: Study is undertaken of the scenario with prompt point movement –
particle simulation. The changes of MVVR and FPS during the simulation are
plotted with the vertical axis presenting log10 values.

approach gives a very good result in practice (see the experi-
mental tests and comparisons in Section 5). Our approach can
be observed to deliver an increase in speed of up to 5.6× over
the state-of-the-art method (see the table in Fig.18).

The variations of AABBs in other applications (e.g., point-set
geometry processing) are much smaller than that in the particle
simulation. Therefore, overlap between AABBs is trivial and
we rarely rebuild the AABB-tree.

5. Results and Discussion

We have implemented the coherent SRS using C++ together
with the NVIDIA CUDA library. The performance of our ap-
proach is tested on a PC equipped with 3.4GHz CPU + 8GB
RAM and a NVIDIA GeForce GTX 660 Ti graphics card with
3GB memory. In our implementations, the kernels are called
by using 32 blocks and 256 threads/block. Structure of Arrays
(SoA) instead of Array of Structures (AoS) is employed to get
optimal GPU cache performance.

5.1. Experimental Tests

Experimental tests have been conducted to verify the per-
formance of our coherent SRS, comparing it with a variety of
prior approaches. In these tests, both the data points in P and
the query points in Q are randomly drawn in <3 in the range
[−1.0, 1.0]. The bucket size for both the CPU-based kd-tree
construction in [11] and our AABB-tree construction is set to
20. The parameter for activating the tree rebuilding is set as
µ = 10 in all our tests. Our coherent SRS is compared with the
state-of-the-art method in different aspects below.

Querying time
To simulate dynamic data points, we randomly move all

points along three axes within a fixed range after each itera-
tion. In each test, the iteration of random movement followed
by SRS is taken in 50 steps, and the average querying time is
measured by using the total time divided by 50. This actually
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r/L̄ = 0.005 r/L̄ = 0.010 r/L̄ = 0.015

Movement Range of Dynamic Points: [−0.001, 0.001]

Movement Range of Dynamic Points: [−0.005, 0.005]

Movement Range of Dynamic Points: [−0.010, 0.010]

Movement Range of Dynamic Points: [−0.020, 0.020]

Figure 10: Statistics of the querying time on different approaches for SRS on dynamic points in different ranges of movements and different search radii r (w.r.t. the
diagonal length L̄ of all points’ bounding box), where our coherent approach is compared with the LSH approach [44], the shifted-sorting [28] and the voxel-based
search [20]. All are running on GPUs.
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includes the time of tree-updating and tree-rebuilding in our co-
herent SRS. P and Q have the same number of points in these
tests. Tests are undertaken on different ranges of movement and
different radii of SRS.

The querying time of our coherent SRS is compared with
that of the other approaches running on GPU. Data sets with
different number of points ranging from 100k to 1M are tested.
Statistics are illustrated in Fig.10. It can be seen that our ap-
proach outperforms others in relative smaller range of point
movement – the first three rows in Fig.10. In these scenar-
ios, only tree-updating is needed in most steps. When different
searching radii are used, all methods become slower. However,
our method is less affected by large searching radii than other
approaches. When the points are moved in tremendous speeds
(e.g., as shown in the last row of Fig.10), AABB-tree used in
our approach needs to be rebuilt in every step. The performance
could become worse than one of the other three approaches in
some cases. Nevertheless, considering about the efficiency in
all cases, our method still outperforms others as a whole. The
coherent SRS method has been observed up to 6.72× faster than
the voxel-based approach [20], up to 6.69× faster than shift-
sort [28] and up to 13.2× faster than locality sensitivity hashing
(LSH) [44]. When comparing with the CPU-based ANN [11],
10.4−53.7 times increase in speed is observed for our coherent
SRS approach. Note that, although the ANN library is mainly
used for the k-ANN search, it also provides an option for exact
SRS. Our tests are run using this option. The shift-sort ANN is
tested by setting the number of NN as the average number of
NN obtained in our SRS. For the LSH-based query, we modify
the code provided by [44] to make it capable of computing SRS
results.

Querying Time (sec.) Usage of Memory (MB)
r/L̄ All Points NN Only† All Points NN Only†

0.005 0.101 0.091 18.33 17.13
0.010 0.155 0.144 31.34 21.78
0.015 0.233 0.206 60.47 28.50
0.020 0.335 0.279 112.7 37.62
0.025 0.475 0.396 194.7 49.41
0.030 0.660 0.531 312.9 64.18
0.035 0.871 0.683 473.9 82.27
0.040 1.133 0.872 683.5 103.9
0.045 1.449 1.128 947.5 129.5
0.050 1.848 1.397 1, 271 158.9

†Different querying time and memory consumption can be observed
when only the nearest neighbor (NN) is searched.

Table 1: Statistics when increasing the searching radius r

Searching radius
Now we study the performance of our coherent SRS with dif-

ferent search radii. Starting from 0.005 of the bounding box’s
diagonal length, we incrementally enlarge the search radius on
a set of 300k data points with 300k queries. The statistics of
querying time and memory usage are listed in Table 1. It is
easy to find that the querying time increases slightly faster than
the radius (i.e., about 18.3 times when the radius is increased by

Figure 11: For high-dimensional data sets, LSH [44] has better performance.
The curves show the comparison on the querying times.

10 times). The bottleneck is memory usage. This is because the
number of resultant points in SRS could increase by a factor of
τ3 when increasing the radius by τ times. This prevents apply-
ing SRS with large radii. In practice, we actually observe better
results. As shown in Table 1, about 69.3× memory is used af-
ter increasing r by 10×. Nevertheless, this is not a problem for
those SRS applications which only need to report the nearest
neighbour (e.g., distance-field evaluation). As shown in Table
1, the increase in memory usage is very slow in such cases.

Performance in higher dimensions
It is interesting to compare our coherent SRS approach with

LSH on data sets in spaces with higher dimensions, where LSH-
based approaches are supposed to have better performance. In
this test, the LSH-based kNN [44] is employed and the num-
ber of neighbours is set to be k = 20. To make a fair com-
parison, for a query set with |Q| points, we adjust the search
radius r to make the number of querying results meet the same
value as that of the LSH-based method (i.e., k|Q|). The compar-
ison results in different dimensions are shown in Fig.11. Note
that, when dimension increases tremendously, the memory con-
sumption becomes a bottleneck for our approach. Thus, a set
with 20k points is employed here. Our method is fast in low
dimensional queries but becomes slower when dimension goes
up to 12. One major problem of our approach in high dimen-
sional cases is that the radius needs to be very large to meet the
criterion of getting k|Q| resultant points. This results in a lot
of candidates in the 2nd phase of our algorithm, which signifi-
cantly slows down the computation.

Hierarchical updating time
We now study the performance of our tree updating scheme.

Our approach is compared with the GPU-based kd-tree con-
struction [17], the voxel-based GPU approach and the CPU-
based ANN. In the kd-tree based approaches, the structure of
the kd-tree needs to be rebuilt for dynamic points after each iter-
ation. The voxel-based GPU approach rebuilds the voxel-based
structure and reconstructs the hash table by using the highly
parallel scan, sort, and compact primitives [23]. According to
the statistics shown in Table 2, our updating method is faster

10



Figure 12: Comparison of WEE between the primary GPU SRS and the co-
herent GPU SRS on the sets of different number of points – the same number
(horizontal axis) of data points and query points are conducted in these tests.
Percentages of WEEs are shown along vertical axis.

than all other approaches based on rebuilding.
As mentioned in Section 4.3, we need to rebuild the AABB-

tree when the overlap between AABBs becomes serious. It is
also interesting to know the speed of tree-construction in our
CPU/GPU hybrid approach. For the same setup as above, the
times of construction (by only using a single core on CPU) plus
CPU/GPU communication are about 1.6− 2.8× of the querying
time of coherent SRS. Therefore, the additional time cost of
rebuilding an AABB-tree is not very significant if it is not ap-
plied very frequently. This can also be verified from the particle
simulation example shown below.

Data AABB-tree kd-tree construction voxel-base
Size GPU refitting GPU† [17] CPU [11] rebuild [20]
100k 0.000624 0.0320 0.0406 0.0185
200k 0.00116 0.0470 0.106 0.0206
300k 0.00178 0.0630 0.184 0.0243
400k 0.00234 0.0780 0.298 0.0267
500k 0.00292 - 0.413 0.0319
600k 0.00356 - 0.530 0.0358
700k 0.00418 - 0.687 0.0396
800k 0.00471 - 0.827 0.0414
900k 0.00530 - 0.967 0.0453
1M 0.00589 - 1.17 0.0488
2M 0.0132 - 2.93 0.0804

† Note that, the GPU-based kd-tree construction algorithm [17] has
very high cost in memory consumption so that it cannot compute data
sets with more than 400k samples.

Table 2: Comparison of the updating time vs. the construction times in prior
approaches (in sec.)

Workload balancing
As one of the key issues to leverage the parallelism on GPUs,

our coherent GPU based SRS shows good balance on the dis-
tribution of workload running on different cores. Comparisons
have been conducted between the primary GPU SRS (Algo-
rithm 1) and the coherent GPU SRS (Algorithm 2) with the help
of the NVIDIA Visual Profiler. Average of the Warp Execution

Figure 13: The analysis of WEE in different phases of our coherent SRS al-
gorithm: (Phase I) packing of queries, (Phase II) common back traversal with
swept volume and (Phase III) result extraction.

Efficiency (WEE) of all the kernels in the algorithms is recorded
to represent the kernel performance of the algorithms. WEE is
the average percentage of active threads in each executed warp.
When the parallelism on many-cores is fully utilized, the value
of WEE should be 100%.

In our experimental tests for evaluating WEE, both the data
points in P and the query points in Q are randomly drawn in
<3 in the range [−1.0, 1.0]. Search radius is assigned as 1/100
of the bounding box’s diagonal length. Data sets with differ-
ent number of points ranging from 100k to 1M are tested, and
statistics are shown in Fig.12. It is easy to observe that the co-
herent algorithm provides much better WEE comparing to the
primary scheme in all tests. The improvement is mainly caused
by aligning similar traversals near to each other (by the sorting
in Step 7 of Algorithm 2). As has been proved in [51], assigning
similar tree-traverses to the same batch of thread-execution can
reduce the complexity of parallel algorithms. The performance
improvement in terms of WEE on our coherent SRS algorithm
is also caused by this same reason. Moreover, to further iden-
tify the bottleneck of our algorithm, WEE analysis for different
phases of our algorithm is taken and shown in Fig.13. It is found
that the back traversal phase is still a bottleneck. It may be fur-
ther improved by using the sophisticated workload balancing
algorithm (e.g., Algorithm 4 in [51]).

5.2. Applications

We have also tested the performance of our approach in dif-
ferent applications, including point-set geometry processing,
distance-field evaluation and particle-based simulation.

Processing of Point-Sampled Geometry
Point-based geometry processing has been studied for more
than a decade, where Moving Least Square (MLS) surface [52]
is a widely used representation. Point projection is an oper-
ator that is intensively used. When iteratively computing the
new position q′ of a projected point q, all the data points within
the spherical range h are searched out to jointly determine q′.
Here h is a fixed parameter reflecting the anticipated spacing
between neighbouring points. We test the performance of our
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Methods Average SRS Total
Model of SRS Time (sec.) Time (sec.)
Inukshuk Coherent 0.162 6.33
(206k pts.) Shifted-sort 0.292 (×1.80) 10.4

Voxel-based 0.663 (×4.09) 22.3
ANN 5.36 (×33.1) 208

Japanese- Coherent 0.0794 3.67
Lady Shifted-sort 0.129 (×1.62) 6.22
(176k pts.) Voxel-based 0.245 (×3.09) 12.1

ANN 4.49 (×56.5) 166
Nasa Coherent 0.281 9.98
(889k pts.) Shifted-sort 0.557 (×1.98) 20.0

Voxel-based 0.636 (×2.26) 22.1
ANN 14.9 (×53.0) 689

Figure 14: MLS based smoothing is applied to three models with differ-
ent support size h: (left) Inukshuk (h = 70( L̄

n )1/2), (middle) Japanese-Lady
(h = 20( L̄

n )1/2) and (right) Nasa (h = 20( L̄
n )1/2), where L̄ is the bounding box’s

diagonal length and n is the number of sample points. The total running time
of 30 iterations and the average SRS time in every iteration are also reported in
the table.

coherent SRS in this application and compare with the ANN-
based (on CPU), the shifted-sort based ANN (on GPU) and the
voxel-based SRS (on GPU with resolution 2563). Note that P
and Q are the same in this application. MLS projection based
smoothing is applied to three models shown in Fig.14 by Point-
Set Surface (PSS) [53]. In all examples, 30 iterations of projec-
tions are applied for smoothing. Comparison of SRS times and
total running times by using different methods is also given in
Fig.14. Here, the total running time includes the memory allo-
cation, copying and memory release on both the CPU and the
GPU sides. Our coherent SRS is up to 4× faster than the voxel-
based GPU search, 1.62−1.98× faster than the shifted-sort, and
more than 50× faster than the CPU-based ANN.

Another example of SRS for dynamic points in geometry
processing is surface approximation by using the Weighted Lo-
cally Optimal Projection (WLOP) [54]. Given the set of data
points P = {p j ∈ <

3}, the operator of WLOP projects a set of
particles X = {xi ∈ <

3} onto the surface approximating P by

Methods Average SRS Time (sec.) Total
of SRS X ⇒ P X ⇒ X (sec.)
Coherent 0.0840 0.0268 13.7
Shift-sort 0.133 (×1.58) 0.0432 (×1.61) 19.9
Voxel-based† 0.183 (×2.18) 0.0820 (×3.06) 29.7
ANN 2.30 (×27.4) 0.645 (×24.1) 462

†With the resolution: 1283

Figure 15: Applying WLOP operators on a Kitten model with 137k points – the
positions of 20k particles are progressively updated in 100 iterations. The total
running time and the average SRS time are reported.

iteratively updating the positions of xi. When applying WLOP,
the SRS needs to be intensively used among the points in X and
between P and X by using all particles inX as the query points.
An example is shown in Fig.15. Again, the computational time
of our coherent SRS approach is compared with the state-of-
the-art method. The radius of SRS is set to r = 40( L̄

m )1/2 with
m being the number of particles to be projected. 100 iterations
are taken to generate optimal distribution of particles, and the
average SRS times are reported. Again, the total running time
includes the memory allocation, copying and memory release
on both the CPU and the GPU sides.

Model |P| r Methods Time (sec.)
Vase-Lion 731k 4w Coherent 0.880
(Fig.16(a)) Voxel-based 1.84 (×2.09)

ANN 210 (×239)
Buddha 678k 4w Coherent 1.05

(Fig.16(b)) Voxel-based 1.64 (×1.56)
ANN 231 (×220)

Offsetting 731k 0.2L̄ + 2w Coherent 1.99
Vase-Lion Voxel-based Failed
(Fig.17) ANN 236 (×119)

Table 3: Statistics of distance-field evaluation (res.: 2573)

Distance-Field Evaluation
Our coherent SRS approach is also used to evaluate distance-
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Figure 16: Distance-fields (res.: 2573) are evaluated for (a) the Vase-lion model
(with 731k points) and (b) the Buddha model (with 678k points), and the mesh
surface can be extracted from the distance-fields at zero-level.

fields, which have many applications in geometric modelling.
In our tests, a signed distance is computed from a set of points
P = {pi} equipped with consistently oriented normal {ni}. The
signed distance of a solid can be evaluated by a set of points, P,
sampled from its boundary

dS (q) = sgn((q − xc) · nc) infx∈P ‖x − q‖,

where xc is the closest point of q in P and nc is the normal of
xc.

In Fig.16, we evaluate the signed distance-fields of two mod-
els on a 3D regular grid at a resolution of 2563. The grid width
is denoted by w. Specifically, every grid node is used as a
query point to conduct SRS with radius r = 4w. There are
2573 = 16, 974, 593 query points in total. For those grid nodes
having no data point found in their search range, the field values
are assigned to undefined. In this way, a narrow-band distance
field can be constructed. After obtaining a distance-field, the
dual contouring algorithm [55] can be employed to extract the
iso-surfaces: dS (q) ≡ 0 (see the results shown in Fig.16).

Figure 17 shows an example by using the signed distance-
field to compute the offset surface of a given model. The grown
and shrunk offset surfaces with distance as 0.2L̄ are generated,
where L̄ is the diagonal length of the model’s bounding box.
To obtain a narrow-band distance field to extract the offset sur-
faces, we conduct the coherent SRS with r = 0.2L̄ + 2w to eval-

Figure 17: Distance-fields (res.: 2573) are evaluated for computing the offset
surfaces: (left) the shrunk offset with distance 0.2L̄, (middle) the original model
and (right) the grown offset with distance 0.2L̄.

uate the values on 2573 grid nodes. Computational statistics are
shown in Table 3.

Particle-Based Simulation
Lastly, our coherent SRS is used to speed up particle-based
physical simulation. Systems with a massive number of parti-
cles are a commonly used technique to simulate different physi-
cal behaviours. Due to the capability of highly parallel comput-
ing on modern GPUs, simulating particle systems at interactive
rates becomes possible. In [20], voxel-based SRS is employed
on GPUs to generate the repulsion forces between particles to
simulate the splashing of fluids (see Fig.18). Here, we replace
the voxel-based SRS by our coherent SRS and can observe up to
3.78× increase in the update rate in the simulator (see Fig.18).
Moreover, when more particles are involved, higher speed in-
creases can be observed. We also compare the performance of
shifted-sorting based ANN [28] in this application. To conduct
a fair comparison, the number of neighbours in this test is cho-
sen as the maximal one obtained in the coherent SRS. From the
statistic shown in Fig.18, we find that voxel-based SRS outper-
forms shifted-sorting in the scenario with more particles, but
both are much slower than ours.

A more interesting study is about the distribution of compu-
tation time on each step during the whole simulation with 250k
particles (see Fig.19). According to the criterion of rebuilding
in Section 4.4, the AABB-tree for SRS is rarely rebuilt – only
33 times in 2, 000 iterations. The total time of our coherent SRS
in each step is also compared with other GPU approaches. It is
found that the computation of our approach is much faster even
in the step with tree rebuilding. In summary, our coherence SRS
is also more efficient than the prior approaches in the scenario
of promptly moved points.

6. Conclusion

This paper presents a highly parallel algorithm of spheri-
cal range-search for dynamic points that exploits the compu-
tational power of many-core GPUs. The spatial coherence of
query points and the temporal coherence of dynamic points are
exploited to achieve very efficient range searching in our ap-
proach. In the coherent SRS, query points are first packed.
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Particle Average Steps per Second
Number Coherent Shifted-sort Voxel-based

50k 60.98 15.41 (×3.96) 21.75 (×2.80)
100k 25.41 8.421 (×3.02) 10.63 (×2.39)
150k 20.91 4.155 (×5.03) 6.656 (×3.14)
200k 16.55 3.121 (×5.30) 4.762 (×3.48)
250k 13.84 2.473 (×5.60) 3.662 (×3.78)

Figure 18: Application of particle simulation: 2.39 − 5.60× increase in speed
can be observed on the simulator of a particle system by replacing the voxel-
based SRS with our coherent SRS. The statistic shows the average number
of steps which can be computed per second during the whole simulation with
2, 000 steps.

Then, the spatial coherence of these query points is employed
to reduce more than 90% of the back-traverse on the tree. Af-
ter getting the intermediate candidates of SRS, the final results
are extracted by a parallel compaction. The technique has been
tested in several applications with both slowly and promptly
moved points to verify its efficiency. Compared with existing
techniques, we can achieve up to two-order performance im-
provement over the sequential algorithm [11] and around 4× to
5× faster than the voxel-based [20] and shift-sorting based [28]
approaches running on GPUs.

7. Discussion

In an extension of this work, we find that a much higher ra-
tio of speedup can be achieved in the benchmark of particle-
based simulation with highly uniform distribution and variation
of searching radii (see Fig.20 for the benchmark). In this bench-
mark of particle-based simulation, 30k particles are clustered
into three groups:

1. 10k red and yellow particles in the upper-left region (with
searching radius 3r;

2. 10k green particles in the upper-right part having a smaller
searching radius 2r;

3. the bottom 10k blue and purple particles using the search
radius r.

The distribution of particles in the upper region are much
sparser than the lower region at the beginning of simulation.
While the value of r changes from 0.25/100L̄ to 0.5/100L̄ and
then to 1/100L̄ with L̄ being the diagonal length of the sim-
ulation envelope, the average frames per second (fps.) in the
simulation are recorded as around 66fps., 62fps. and 62fps.
In short, the increase of time-cost is trivial. However, when
the same searching radii are used in the voxel-based search on
GPU, computations at the speed of 21fps., 4fps. and 0.4fps. are
observed. That mains the speedup of 3.1×, 15.5× and 155× ac-
cordingly. A similar observation is reported in the prior work
of Liu’s [40] on collision detection – when the searching ranges
have large variation, a much higher ratio of speedup can be
achieved comparing to the voxel-based searching approach.

A hybrid approach is conducted in our implementation for
the tree-construction (on CPU) and the query-and-update (on
GPU). Although as analyzed very few times of construction are
needed in most scenarios, it is still worth to study whether there
is enough benefit for a full GPU-based approach like [38, 39].
A common problem of existing GPU-based tree construction
approaches is that the constructed tree is not well-balanced
in many cases. On the other aspect, we also plan to extend
Liu’s approach [40] for SRS and study its efficiency, where
their method is fully GPU-based and does not need a tree-
construction step.

The current implementation of Phase II in our coherent SRS
algorithm is a bottleneck of the overall algorithm. One possi-
ble work is to add a sophisticated dynamic workload balancing
strategy as what is conducted in [51]. Moreover, we will also
further optimize our code to achieve better memory usage. We
plan to make the source code of our method publicly available.
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