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Abstract

In many industries, products are constructed by assembled surface patches in <3, where each patch
is expected to have an isometric map to a corresponding region in <2. The widely investigated
developable surfaces in differential geometry show this property. However, the method to model
a piecewise-linear surface with this characteristic is still under research. To distinguish from the
continuous developable surface, we name them as flattenable mesh surfaces since a polygonal mesh
has the isometric mapping property if it can be flattened into a two-dimensional sheet without
stretching. In this paper, a novel flattenable mesh surface (Flattenable Laplacian mesh) is introduced
and the relevant modelling tool is formulated. Moreover, for a given triangular mesh which is
almost flattenable, a local perturbation approach is developed to improve its flattenability. The
interference between the meshes under process and their nearby objects has been prevented in this
local flattenable perturbation. Both the computations of Flattenable Laplacian meshes and the
flattenable perturbation are based on the constrained optimization technology.

Keywords: flattenable, freeform mesh surfaces, nonlinear subdivision, geometry processing, con-
strained optimization.

1. Introduction

The research presented in this paper is motivated by the development of geometric modelling systems
for freeform products in sheet manufacturing industries, where the products are fabricated from two-
dimensional patterns of sheet material (e.g, textile in apparel industry and leather in shoe industry).
During fabrication, the 2D patterns are warped and stitched together to build the final product.
Ideally, the warping and the stitching should be stretch-free since the stretch will produce some
elastic energy in the final product which debases the fitness and creates material fatigue. The
traditional design process in these industries is conducted in a trial-and-error manner. A designer
will draft 2D pieces on a paper and then make a prototype by the paper patterns to check whether
the fitting is good. If the result is not satisfied, the designer needs to modify the patterns by
his experiences and make another prototype. The prototyping and the modification steps will be
repeatedly applied, which is very inefficient. Another more serious problem occurs when designing
in 2D instead of 3D space – the product made from the patterns may not satisfy the desired 3D
shape. Industrial designers find that designing in three-dimensional space is the best way to solve
this problem. By a three-dimensional CAD systems (e.g., [47]), the product shapes are designed

1



Figure 1: Stretches happen on mesh surfaces: (a) the original design, (b) the 2D pattern generated
by [43], and (c) the color map for illustrating stretches in terms of elastic energy if the model is
fabricated by the patterns in (b).

using polygonal meshes in 3D around the virtual body of customers. The modelling interface is
more or less similar to the surface lofting function in state-of-the-art geometric modelling systems
based on parametric surfaces, but is able to create models with more complex shapes and has more
freedom on topological structures (e.g., the patch is not necessary to be 4-sided). After modelling
the 3D surface patches for the shape of products, their corresponding 2D patterns for fabrication
are computed through a surface flattening process. However, the flattening is stretch-free only if
a surface mesh under flattening holds the isometric mapping property (i.e., the Geodesic distance
between any two point on the 3D surface and the Euclidean distance between their corresponding
planar points are equal [15]); otherwise, distortion will be introduced. Therefore, when using these
2D patterns to build up the designed 3D product shape, patterns need to be stretched to form the
final 3D shape. The stretched region easily leads to material fatigue. For example, Fig.1 shows
a color map to illustrate the elastic energy on the mesh surfaces of a 3D product, where the 2D
patterns are computed by [43].

Studies for cloth simulation [4, 6, 7, 9, 41] show that cloth is an assembly of surface patches
which strongly resist stretching but allow a lot of bending. Therefore, flattenable mesh surface is the
best candidate for representing the products in apparel industry. At present, the cloth simulation
approaches usually conduct a mass-spring system to mimic the physical characteristic of fabrics
by choosing great stiffness coefficients for stretching springs but small coefficients for bending and
shearing springs. Their works are based on the assumption that these surface patches are warped
from 2D patterns without stretching. However, this is no more true for a system which allows users
to design products directly in 3D, where the surfaces in general are not flattenable.

A lot of mesh parameterization approaches in the computer graphics literature [13, 19, 23, 25,
37, 38] and surface flattening approaches in the computer-aided design literature [1, 2, 3, 28, 43, 45]
adopt various criteria to minimize the difference between the 3D surface patch and its corresponding
2D region. However, none of them provides the tools for directly modelling flattenable freeform mesh
surfaces in <3, which is the purpose of the research presented in this paper. We will firstly introduce
a new type of mesh surfaces – Flattenable Laplacian meshes (in short, FL meshes), and then develop
the modelling tool for FL meshes under the framework of constrained numerical optimization and
the variational subdivision scheme. Furthermore, if a given polygonal mesh is almost flattenable,
slight adjustments can improve its flattenability. For this, a new local flattenable perturbation
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Figure 2: The surface with wrinkles that can be modelled by FL meshes but cannot be represented
by a single developable ruled surfaces.

approach will also be developed in this paper. Different from previous approaches [12, 44] for the
similar applications, this new local perturbation approach prevents the interference between the
meshes under process and their nearby objects, where the computation is based on the constrained
optimization with vertex positions as variables.

1.1. Related work

In this section, we review related work in the aspects of 1) developable parametric surfaces, 2)
mesh processing for discrete developable surfaces, 3) mesh parameterization and flattening, and 4)
Laplacian meshes.

Developable parametric surfaces
The study of flattenable mesh surfaces relates to the developable surface. From differential ge-

ometry [15], the definition of a developable surface is derived on ruled surfaces: for a ruled surface
X(t, v) = α(t) + vβ(t), it is developable if β, β̇ and α̇ are coplanar for all points on X. The key con-
cept in characterizing the developability is Gaussian curvature which is the product of the maximum
and minimum normal curvatures at a given point [15]. In general, a surface is developable if and only
if the Gaussian curvature of every point on it is zero. Every surface enveloped by a one-parameter
family of planes is a developable surface. By this idea, some researches in literature focused on
modelling [24, 33, 11] or approximating [10, 30, 32] a model with developable ruled surfaces (or ruled
surfaces in other representations — e.g., B-spline or Bézier patches). However, it is difficult to use
these approaches to model freeform surfaces (e.g., the surfaces with wrinkles as shown in Fig.2 and
7). Another limitation of these approaches is that they can only model surface patches with 4-sided
boundaries as the surfaces are usually defined on a squared parametric domain. Although trimmed
surfaces were considered in [46], the modelling ability for freeform objects by these approaches is still
very limited.

Mesh processing for discrete developable surfaces
To compute flattenable mesh surface patches, Julius et al. developed an algorithm in [17] to

separate a given model into quasi-conical proxies. Based on a similar idea, in [12] they processed a
given mesh surface instead of segmenting it, where on every surface point a local conical surface is
approximated to compute the expected normal vector at this point and then a deformation process is
applied to make the surface follow the desired normal vectors — so that the deformed surface locally
approximates a conical surface. It is a sufficient (but not necessary) condition that a conical mesh
surface is flattenable. A more general representation for flattenable surface (or discrete developable
surface) is needed. In [44], Wang and Tang adopted the definition of Gaussian curvature in discrete
differential geometry [27] to define the measurement for the discrete developablity on given polygonal
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mesh surfaces. They conducted a constrained optimization approach to deform mesh surfaces so
that increase their discrete developability. Although [44] is akin to the approach in this paper, its
converging speed is much slower than the computation of FL meshes. Besides, neither [12] nor [44]
considers the interference between the surface and other objects nearby, which is usually the situation
in the design of products worn by human bodies (e.g., clothes and shoes).

Recently, Liu et al. in [26] presented a novel PQ meshes — quad meshes with planar faces,
which is useful to the application of architecture design. The computation of PQ meshes is based
on the constrained optimization with the position of mesh vertices as variables. The developable
surface constructed by [26] is still simple (i.e., with the shape similar to ruled surfaces). Our method
presented in this paper computes flattenable meshes also by using the constrained optimization,
however we can model the flattenable meshes with more complex shape (e.g., the surfaces in Fig.7).

Mesh parameterization and flattening
The work presented in this paper also relates to the research of mesh parameterization and mesh

flattening. The parameterization of a given three-dimensional surface P computes its corresponding
2D parametric domain D, usually via surface flattening. An ideal surface flattening preserves the dis-
tances between any two points on P and D - mathematically named as isometric mapping. However,
this property is not generally preserved. Therefore, a surface parameterization always introduces
distortion in either angles or areas. All parameterization approaches in literature give strength on
how to minimize the distortions in some sense, which has been mentioned in the detail review [16]
by Floater and Hormann. In the literature of mesh parameterization, only a few parameterization
schemes (e.g., [13, 19, 23, 25, 38, 37]) can generate a planar domain with a free boundary so that it
can be used to determine the shape of 2D patterns. In the area of computer-aided design, the surface
flattening for pattern design has been studied in various industries (cf. [1, 2, 3, 28, 43, 45]). Never-
theless, neither mesh parameterization nor mesh flattening approaches provides a tool for modelling
flattenable freeform mesh surfaces in <3.

Laplacian meshes
After being firstly applied in [40] to process mesh surfaces, Laplacian operators or Laplacian

coordinates have been widely used in various geometric modelling applications for freeform objects
(e.g., [14, 27]). Recently, Laplacian meshes have been systematically applied in the areas of mesh
compression, mesh watermarking, mesh editing, shape interpolation, mesh metamorphosis and mesh
editing (cf. the state-of-the-art report in [39] and its relevant technical papers [8, 35, 36, 34]). In
our approach, the global Laplacian operator is applied to define the fairness term of surfaces, which
works together with the flattenability term and the position term to model FL mesh surfaces.

1.2. Contributions and overview

This paper gives the following contributions.

• We introduce the Flattenable Laplacian (FL) mesh as a novel freeform surface representation
which inherits the isometric mapping property;

• By subdividing FL meshes, a new modelling method for flattenable mesh surfaces has been
developed under the variational subdivision scheme;

• Lastly, a new local flattenable perturbation approach is presented — the perturbation prevents
the interferences between the surface under process and the nearby objects.

The rest of the paper is organized as follows. After presenting the concept of FL mesh and
the computational method for its modelling in section 2, the FL mesh is utilized in the variational
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Figure 3: Illustration for flattenability: (a) the inner angles before and after flattening the triangles
around a vertex, (b) the cases of θ(vp) = 2π, θ(vp) < 2π and θ(vp) > 2π, and (c) flattening on a
disk-like patch can be given in a front advancing way.

subdivision scheme (in section 3) to model flattenable mesh surfaces with high quality. Section
4 describes the local flattenable perturbation approach which is developed to process the almost
flattenable meshes. Computational statistics and some discussions are given in section 5. Finally,
our paper ends with the conclusion section.

2. Flattenable Laplacian meshes

The concept of Flattenable Laplacian meshes (in short FL meshes) will be introduced in this sec-
tion by inheriting advantages from both the flattenable meshes and the Laplacian meshes. The
computational scheme for FL meshes will also be detailed.

2.1. Flattenable meshes

A flattenable mesh surface M is a polygonal mesh surface patch which can be flattened into a
two-dimensional pattern D without stretching any polygon on it. More specifically, the flattening
only involves the rotation and the transformation but no deformation. However, this is only a
descriptive definition. Starting with flattenable vertices, we will give a more mathematical definition
of flattenable mesh patches. Without loss of generality, only triangular mesh surfaces are referred in
rest parts of the paper. Considering about an interior mesh vertex and its adjacent triangular faces
as shown in Fig.3, we can easily conclude the following property.

Property 1 For an inner triangular mesh vertex vp, if and only if the summed inner angle,
θ(vp) =

∑
j θj , around it is identically 2π, the triangles around it can be flattened into a plane

without distortion.

This property has been illustrated by Fig.3. If θ(vp) > 2π, when flattening triangles around vp

without stretching, the triangles will generate overlap; while θ(vp) < 2π, it yields gap. Therefore,
we have the following definitions.

Definition 1 An inner triangular mesh vertex vp is named as flattenable vertex when θ(vp) = 2π.

Definition 2 $(vp) = |θ(vp)− 2π| is defined as the flattenability at vp — the smaller the better.

This is similar to the discrete form of Gaussian curvature [27]. The reason why we do not adopt
the name developable (or discrete developable) as [17, 26, 44] is that: when discussing developable
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property, it is usually derived from differential geometry on regular surface points; for a sharp (or
singular) vertex as shown in Fig.3, which is not differentiable, it is more appropriate to name it as
flattenable/unflattenable rather than developable/undevelopable.

Property 2 A triangular flattenable mesh patch is with all its inner vertices flattenable.

Again, this is only a necessary condition but not sufficient. For example a triangular mesh surface
like cylinder (with two boundary loops), even if all inner vertices on it are flattenable, we cannot
flatten it into a two-dimensional region without stretching or inserting cuts. However, we observe
the following geometry property.

Property 3 For a triangular mesh patch M in <3 with the disk-like topology, if all its inner
vertices are flattenable, it can be deformed into a patch D in <2 without stretching any triangle.

Proof At first, if any vertex on M is not flattenable, by Fig.3(b) we know that the surface cannot
be locally flattened into a plane without stretching.

Secondly, if all interior vertices on M are flattenable, can we find some case that M is not
flattenable? As illustrated in Fig.3(c), starting from an interior point vc (the dark one), we can
flatten the triangles adjacent to vc into <2 by rotation and transformation only (without stretching)
since θ(vc) = 2π. Therefore, the shape of the pink front is formed. We sort the vertices on the pink
front in the anti-clockwise order. For a vertex v1,i

c located on the pink front, all triangles adjacent
to it can be flattened into <2 without stretching as that v1,i

c is a flattenable vertex. The problem
is that whether the location and orientation of planar triangles determined by the local flattening
around v1,i

c will conflict with the local flattening determined by other vertices. The answer is that if
the topology of the front is disk-like, the triangles adjacent to v1,i

c shall only be adjacent to its two
neighboring vertices v1,i−1

c and v1,i+1
c but not any other vertex on the same front. Therefore, the

triangles between the pink front and the red front can be flattened without stretching. Repeating
this front advancing, as long as the front is in the disk-like topology, no stretch will be given during
flattening. However, if the given mesh surface M is not in the disk-like topology, the disk-like topology
cannot be always maintained on the fronts. For example, the cylinder or the cone, although every
interior vertex on it is flattenable, some confliction will occur during the flattening of triangles in the
front advancing.

Q.E.D.

2.2. Laplacian meshes

Let M be a given mesh patch with the graph G = (V,E), where V = 1, 2, ..., m is the set of vertices
and E is the set of edges. vi is used to denote the position of vertex i in <3, and ∂V represents the
set of vertices on the boundary of M . Similar to [39, 8, 35, 36, 34], the following equation defines
the fairness or smoothness condition for vi ∈ <3

vi − 1
|N(vi)|

∑

j∈N(vi)

vj = 0 (1)

where N(vi) is the set of 1-ring neighboring vertices of vi (vi ∈ V \∂V ), and |...| denotes the number
of elements in a set. The linear system can be rewritten in the matrix form

Lx = 0, Ly = 0, Lz = 0, (2)

where x, y and z are the n × 1 vectors containing the x, y and z coordinate of the vertices. The
matrix L is known in [18, 40] as the Laplacian operator below
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Figure 4: A Laplacian mesh with the same boundary and the same connectivity as the patch shown
in Fig.2: (a) the surface and (b) the color map to illustrate the flattenability at vertices.

Li,j =





1 (i = j)
− 1
|N(vi)| (j ∈ N(vi))

0 (otherwise)

From [34], we know that the rank of L is n−k where k is the number of connected components in the
graph G. Therefore, for a mesh surface patch, the rank is n− 1. When fixing vertices in ∂V , Eq.(2)
gives the solution for the coordinates of inner vertices on a Laplacian mesh patch which minimize
the linearized membrane energy

∫
Ω ‖vs‖2 + ‖vt‖2dsdt (ref.[14]) – the resultant mesh of Eq.(2) is a

very smooth mesh surface which is uniquely defined by G and the position of vertices in ∂V .
A Laplacian mesh surface patch in general is not a flattenable mesh. For example, the Laplacian

surface patch shown in Fig.4 is with the same boundary and the same connectivity as the surface
in Fig.2; however, it is not flattenable — this can be easily found by the color map (Fig.4(b))
where colors represent the flattenability at vertices. Of course, surfaces like this cannot satisfy
the applications in sheet manufacturing industries. Therefore, the FL meshes defined below are
requested.

Definition 3 A Flattenable Laplacian mesh is a mesh surface patch which can be flattened
into two-dimensional pieces without stretching, and at the meanwhile minimizes the fairness energy
function defined by Laplacian operators.

2.3. On computing FL meshes

In this section, we develop the computational scheme for FL meshes which inherits advantages
from both the flattenable mesh and the Laplacian mesh. In short, given a triangular mesh M , we
need to recompute the positions of all inner vertices to generate a FL mesh MFL which

• Being a flattenable mesh surface;

• Trying to be smooth (i.e., a Laplacian mesh);

• Trying to approximate the shape of M .

The three requirements can be formulated into a constrained optimization problem

arg min
p∈Vact

w1Jfair + w2Jpos subject to θ(vp) ≡ 2π (3)

where Vact = V \ ∂V , Jfair is the fairness term derived from the Laplacian mesh as

Jfair =
1
2

∑

p∈Vact

φ(vp), (4)
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with φ(vp) a piecewise function φ(vp) = ‖Lvp‖2 only defined on the Voronoi area of vp, the gradient
of Jfair with respect to vp is ∂Jfair

∂vp
= vp − 1

|N(vp)|
∑

k∈N(vp) vk, and Jpos is the position functional
defined to minimize the difference between the new surface MFL and the given surface M

Jpos =
1
2

∑

p∈Vact

‖vp − v0
p‖2 (5)

with v0
p being the closest position of vp on the given surface M or simply being the original position of

vp. Two coefficients w1 and w2 reflect the weights of functionals in fairness and position respectively.
They are assigned by users. In all examples shown in this paper, we choose w1 = 1.0 and w2 =
0.1. In the fairness term, Jfair, we choose the uniform Laplacian but not the cotangent weighted
Laplacian as [14, 27]. This is because that the uniform Laplacian also acts as a regularization term
to re-distribute vertices while smoothing the given surface. Meanwhile, when cooperating with the
variational subdivision scheme, most vertices are with regular valence. Therefore, it is appropriate
to employ the uniform Laplacian here. In Eq.(3), we add the position constraints into the objective
function (but not into the constraints set) — this is based on the reason that adding these constraints
will disturb the constraints of flattenability during the numerical computation. The value of w2 must
be much smaller than w1; otherwise, the numerical system may become instable.

With the Lagrange multiplier λ = (λ1, λ2, ..., λn) (n = |Vact|), the constrained optimization
problem defined in Eq.(3) can be converted into an augmented objective function

J(X) = J(v1,v2, ...,vn, λ1, λ2, ..., λn);

in detail,
J(X) = w1Jfair + w2Jpos +

∑

p∈Vact

λp(θ(vp)− 2π). (6)

This objective function J(X) can be minimized by using the Newton’s method [29] below, where we
employ a damping factor τ = 0.25 to increase the stability of computing.

Algorithm 1 Newton’s Method
1: while ‖δ‖ > 10−5 do
2: Solve ∇2J(X)δ = −∇J(X);
3: X ← X + τδ;
4: end while

Using the sequential linearly constrained programming to minimize J(X) by neglecting the terms
coming from the second derivatives of the constraints in the Hessian matrix ∇2J(X), the equation
∇2J(X)δ = −∇J(X) solved at each step is simplified into




H ΛT
x

H ΛT
y

H ΛT
z

Λx Λy Λz 0







δpx

δpy

δpz

λ


 =




Bpx

Bpy

Bpz

Bλ


 (7)

where λ is the vector of multipliers. Note that since λ is solved in Eq.(7) instead of δλ, only the
positions of inner vertices are updated by δp in the routine of Newton’s method. Here Bpx , Bpy and
Bpz are the x-, y- and z-components of Bp respectively, and so as Λx, Λy and Λz. From Eq.(6), we
can easily obtain that

Bp = {− ∂

∂vp
(w1Jfair + w2Jpos)} = {−w1(vp − 1

|N(vp)|
∑

k∈N(vp)

vk)− w2(vp − v0
p)}, (8)
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Figure 5: The gradient of summed angle at a vertex respect to the position of the vertex (or of its
adjacent vertex) can be computed locally.

Bλ = −{ ∂

∂λp

∑

p∈Vact

λp(θ(vp)− 2π)} = {2π − θ(vp)}, (9)

H = {hi,j}, hi,j =





w1 + w2 (i = j)
− w1
|N(vi)| (vj ∈ N(vi))

0 (otherwise)
, (10)

Λ = { ∂2

∂λi∂vj

∑

p∈Vact

λp(θ(vp)− 2π)} = {∂θ(vi)
∂vj

}. (11)

Proposition 1 The gradient of the summed inner angle θ(vp) at an inner vertex vp ∈ V \ ∂V
respect to the vertex vp itself is

∂θ(vp)
∂vp

=
∑

q∈N(vp)

cot γq,p + cot ξq,p

‖vpvq‖ (vq − vp) (12)

where ξq,p and γq,p are the left and right angles aside the edge vpvq at vq – see Fig.5.

Proposition 2 The gradient of the summed inner angle θ(vq) at an inner vertex vq ∈ V \ ∂V
respect to its adjacent vertex vp is

∂θ(vq)
∂vp

=
cot ξq,p + cot γq,p

‖vpvq‖2 (vp − vq)−
(vq+ − vq)

‖vpvq‖‖vq+vq‖ sin ξq,p
− (vq− − vq)
‖vpvq‖‖vq−vq‖ sin γq,p

(13)

where vq+ and vq− are the next and last vertices to vq in N(vp) anti-clockwise – see the illustration
in Fig.5.

The proof of Proposition 1 has been given in [13]. The proof of the Proposition 2 is derived in
Appendix A, which can also yield the proof of Proposition 1 (see Appendix B).

By Eq.(7-11), we can model the FL mesh patch MFL from a given polygonal mesh M using the
sequential linearly constrained programming. Figure 6 gives the progressive results about how the
FL mesh in Fig.2 is obtained from a given mesh surface patch in Fig.6(a). Defining the maximal
vertex flattenability $max = max{$(vp), ∀vp ∈ Vact}, after 8 steps of iteration, the mesh patch is
very similar to the final FL mesh and its $max has also been close to $max on the final FL mesh. In
conclusion, the computation of FL meshes converges very fast. However, the computation may fail on
some meshes with topological obstructions. To overcome the topological obstructions, if high value
of $(vp) keeps showing on the vertex vp during the computation of FL meshes, we locally refine the
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Figure 6: The progressive results of computing FL mesh: (a) the given mesh ($max = 1.92), (b)
after 2 steps ($max = 1.34 × 10−1), (c) after 4 steps ($max = 5.46 × 10−2), (d) after 6 steps
($max = 1.77 × 10−2), (e) after 8 steps ($max = 2.86 × 10−3), (f) the final FL mesh after 20 steps
($max = 3.20× 10−5).

triangles around vp by the strategy similar to the
√

3−subdivision [20] to add more degree-of-freedom
on the mesh under processing.

3. Variational Subdivision of FL meshes

FL mesh introduced in above section can be integrated with subdivision schemes to generate a high
quality FL mesh patch from a coarse control mesh. Unlike [26], we do not conduct the subdivision
schemes with fixed masks (e.g., the Loop, the Doo-Sabin, or the Catmull-Clark scheme) since the
vertices will be adjusted later for making the surface flattenable — the fixed linear combination
rules are in fact not followed. Here, a modified variational subdivision algorithm akin to [21] is
adopted. Our algorithm consists of three steps: step 1) a topological splitting operator is conducted
to introduce new vertices to increase the number of degree of freedom (i.e., M i+1 is obtained from
M i); step 2) discrete fairing operators are applied to move the newly created vertices to increase
the overall smoothness and interpolate the user specified boundary curves; step 3) we employ the
FL mesh processing method on M i+1 to compute a FL mesh surface M i+1

FL . Iterating these three
steps, a hierarchical sequence of FL meshes are generated (e.g., the sequence in Fig.7).

In the first step, instead of uniformly applying the 1-to-4 triangle subdivision, we split triangles
based on the length of their edges. More specifically, we first compute the average edge length L on
M i — only the edges whose length is greater than 0.5L are split. Therefore, each triangle on M i is
adaptively converted into one (with no edge split), two (with one edge split), three (with two edges
split) or four triangles (with all edges split) on M i+1.

The second step of our modified variational subdivision scheme moves the newly created vertices in
the first step to 1) increase the overall smoothness or 2) interpolate the user specified boundary curve.
As shown in Fig.7, our scheme allows users to specify some interpolation curves on the boundary
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Figure 7: The variational subdivision with FL meshes.

Figure 8: Determine the position of splitting vertices on boundary edges: (a) the boundary edge is
with an interpolation curve so that the splitting vertex is positioned in the middle of the curve, and
(b) without interpolation curve the splitting vertex is positioned by the modified Butterfly mask [49].

edges (the green curves on the control mesh M0 in Fig.7). A refined mesh should interpolate these
curves during the subdivision. Therefore, when a boundary edge with interpolation curve is split,
the newly created vertex should be moved to the middle of the curve; meanwhile, the curve is split
into two and attached to the newly created two edges as shown in Fig.8(a). Some of the boundary
edges are with no interpolation curve specified; on these edges, the splitting vertex is expected to
move to a place make the boundary curve smooth. We conduct the mask for boundary vertices in
the modified Butterfly subdivision scheme [49] to determine their new positions. Figure 8(b) shows
the linear combination mask: the rounded white node is the vertex position to be determined, and
the rectangular gray nodes are the boundary vertices generated in last subdivision (or on M0) whose
positions are fixed. For the newly created inner vertices, their positions are determined by iteratively
applying the 1st order umbrella operator and the 2nd order umbrella operator in succession. In detail,
we first apply the 1st order umbrella operator to all vertices for 10 runs and then use the 2nd order
umbrella operator for 100 runs. To be self-contained, we list the two operators from [21] below.
Giving

u(vi) =
1

|N(vi)|
∑

j∈N(vi)

vj − vi, (14)

u2(vi) =
1

|N(vi)|
∑

j∈N(vi)

u(vj)− u(vi), (15)
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Figure 9: A metal-sheet vase modelled by the subdivision FL meshes: (a) the control mesh with
interpolation curves specified and (b) the refined mesh surfaces.

Figure 10: With the same boundary and the same connectivity on a given control mesh, different
FL meshes are generated if different initial shapes are given.

thus the 1st order umbrella operator is defined as

vi ← vi + u(vi), (16)

and the 2nd order umbrella operator is

vi ← vi − 1
ν
u2(vi) (17)

with ν = 1 + |N(vi)|−1 ∑
j∈N(vi)

|N(vj)|−1.
This subdivision algorithm introduces a very useful method for modelling flattenable mesh sur-

faces. We find that the surface generated by this method is not the same as the results from other
developable meshes modelling approaches, which are derived from the theorems of continuous differ-
ential geometry. Our method can model both the smooth surfaces and the surface with the effect like
a piece of crumpled leather (see Fig.7). The example shown in Fig.9 demonstrates the functionality of
our approach for modelling a relative complex object — a metal-sheet vase by using the subdivision
FL meshes. Figure 9(a) gives the control mesh with interpolation curves specified, where the refined
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Figure 11: Local flattenable perturbation improves the flattenability of given mesh surfaces — an
example from apparel industry: (a) the given pants and the reference human body, (b) the pants after
local flattenable perturbation, (c) the local flattenable perturbation without the reference human
body, and (d) the interference occurs.

FL meshes interpolate the curves as Fig.9(b). For the same control mesh, by using the variational
subdivision scheme without the FL mesh processing step, the resultant mesh surfaces are as shown
previously in Fig.1(a) which is non-flattenable. Two other examples of subdividing FL meshes are
shown in Fig.10, which have the effect of paper craft.

4. Local flattenable perturbation

The mesh surface generated in some application may be almost flattenable (i.e., with only a few non-
flattenable vertices). Figure 11(a) shows an example of such mesh surfaces generated from a 3D CAD
system for garment design. For these mesh surfaces, we develop a new local perturbation approach
in this section to increase their flattenability with slight position adjustment. The approach is local
optimization based, so it can be finished in a relative short time comparing to the computation of
FL meshes.

In the local perturbation, only the vertices falling in the disk region of a center vertex vc are
moved at each step. Suppose Nr(vc) denotes the r-rings neighbors of vc and ∂Nr(vc) represents the
vertices on the rth-ring of vc, we have

Nr+1(vc) = Nr(vc) + ∂Nr+1(vc).

The set of vertices that are moved in the local perturbation around vc is defined as

Vact = Nr(vc)
⋂

(V \∂V ) (18)

In our tests, we usually choose r = 3. Choosing a larger support size will of course make the
computation more robust to overcome a stick point – local optimum, but will have a longer computing
time. When moving vertices in Vact, not only vertices in Vact but also the vertices adjacent to ∂Vact

have their flattenability changed. The set of vertices whose flattenability will be effected by the
movement of vertices in Vact is

Vdev = Nr+1(vc)
⋂

(V \∂V ). (19)

When moving vertices in Vact, we wish that:
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• The surface shape after perturbation will still approximate the original surface around vc,
which can be formulated as the same functional Jpos in Eq.(5);

• All vertices in Vdev are as flattenable as possible (i.e., ∀vp ∈ Vdev letting $(vp) ' 0);

• The interference between the given surface and some reference object H is prevented.

The last requirement is important for many industry applications (e.g., the design of garment and
shoes) as the products presented by flattenable mesh patches are usually worn by a reference model
(i.e., part of a human body). All these factors are formulated into a constrained optimization problem

arg minp∈Vact Jpos

subject to θ(vq) ≡ 2π (q ∈ Vdev)
(vr − hr) · nhr ≥ ε (r ∈ Vcollid)

(20)

where hr is the current closest point of vr on the reference body H, nhr is the unit normal vector
at hr ∈ H pointing outwards, and Vcollid ⊂ Vact is the set of vertices whose distance to the reference
body is less than the user specified collision tolerance ε.

Again, the optimization problem is solved by using the sequential linearly constrained program-
ming, where the Lagrangian function below is adopted.

Jlocal(X) =
∑

p∈Vdev

1
2
‖vp − v0

p‖2 +
∑

q∈Vdev

λq(θ(vq)− 2π) +
∑

r∈Vcollid

λr((vr − hr) · nhr − ε) (21)

The linear equation system solved at each iteration is



I ΛT
x

I ΛT
y

I ΛT
z

Λx Λy Λz 0







δpx

δpy

δpz

λ


 =




Bpx

Bpy

Bpz

Bλ


 (22)

where

Bp = {v0
p − vp}, Bλ =

(
2π − θ(vq)

−((vr − hr) · nhr − ε)

)
, Λ =

(
αq,p

βr,p

)
=

(
∂θ(vq)/∂vp

δr,pnhr

)

with the Kronecker delta δi,j =
{

1 (i = j)
0 (i 6= j)

.

Being not surprised, we find that the problem defined in Eq.(20) is not as stable as the one in
Eq.(3). This is because that fairness term defined in Eq.(3) take the role of regularization to the
mesh system which prevents the singularity. Trying to avoid singular results, we employ Singular
Value Decomposition (SVD) [31] to solve the linear equation system in Eq.(20). Firstly, λ in

(ΛxΛT
x + ΛyΛT

y + ΛzΛT
z )λ = ΛxBpx + ΛyBpy + ΛzBpz −Bλ (23)

is solved by SVD. Then, δpx , δpy and δpz are consequently computed by

δpx = Bpx − ΛT
x λ, δpy = Bpy − ΛT

y λ, δpz = Bpz − ΛT
z λ. (24)

Based on these formulas (Eqs.(22-24)), we introduce the Algorithm LocalFlattenablePerturbation
to improve the flattenability of a given mesh patch by local perturbation. The basic idea is that
by storing all vertices into a maximum heap keyed with the flattenability on vertices, we iteratively
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Algorithm 2 LocalFlattenablePerturbation
1: For a given mesh patch M , compute the flattenability on all vertices vp ∈ V \∂V and record the

maximal flattenability value $max;
2: Save the current positions of all vertices as the current optimal record;
3: Search the closest tracking point of all vertices on the reference body H;
4: Insert all vertices into a maximum heap Υ;
5: repeat
6: while Υ is not empty AND the flattenability of its top node is greater than 0.5$max do
7: Remove the top node vt from Υ;
8: Determine Vact, Vdev and Vcollid by a user specified ring number r;
9: repeat

10: Compute (δpx , δpy , δpz) for all vp ∈ Vact using Eqs.(22-24);
11: vp ← vp + τ(δpx , δpy , δpz);
12: until the process has been iterated for more than 5 times;
13: Update the closest tracking point of all vertices in Vact;
14: end while
15: if the current maximal flattenability is less than $max then
16: Update $max and save the current positions of all vertices as an optimal result;
17: end if
18: Add all the removed nodes back into Υ, and update the position of all moved vertices in Υ by

their new flattenability;
19: until the terminal condition is satisfied.

perturb the regions around k-most non-flattenable vertices while preventing the interference with the
reference body H. Note that the value of k is controlled by the number of vertices whose flattenability
is greater than 0.5$max. The pseudo-code has been listed.

A soft update strategy for Newton’s method is employed here — we usually choose τ = 0.1 to sta-
bilize the computation. In Algorithm LocalFlattenablePerturbation, there are two time-consuming
space searching steps — step 3 and 13. For step 3, we speed up the searching by uniformly decom-
posing the bounding box of H into several sub-regions and the closest point of a vertex vp is searched
in the sub-region holding vp and its 26 neighboring sub-regions. In step 13, a local search approach
from [48] is adopted: to update the closest tracking point of a vertex vt ∈ Vact, the polygonal faces
f ∈ H holding its newest tracking point are searched among the polygons adjacent to the face holding
its current tracking point and the polygons that are tracked by the vertices vj (j ∈ N(vt)).

There is no theoretical guarantee about the convergency of the computation conducted in Algo-
rithm LocalFlattenablePerturbation. However, steps 15-17 ensures that this algorithm always output
a result not worse than the input by keeping the optimal result during the computation. In our im-
plementation, the terminal condition of the outer iteration loop (step 19) consists of three part — we
stop the iteration if 1) $max < ε (ε = 0.001 is chosen by users in our application), or 2) the iteration
has been repeated for 10 times without updating $max, or 3) the iteration has been repeated for
more than 50 times.

Figure 11 shows an example application of this local flattenable perturbation in apparel industry.
The computation stops at $max = 4.75 × 10−3 by the second type of terminal condition after
running the outer iteration for 21 steps (see Fig.11(b)). Our experimental tests found that the
collision constraint somewhat prevents the further optimization on given surfaces. After removing
the reference object, the optimization runs for 36 steps and stops at $max = 3.14 × 10−3 (see
Fig.11(c)) — of course, it yields the interference between the pants and the reference object H as
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Figure 12: The comparison of results from [44] and the FL mesh computation: (a) the input mesh,
(b) the output of [44] ($max = 1.18× 10−2), and (c) the computed FL mesh ($max = 1.05× 10−3).

shown in Fig.11(d).

5. Discussions

Similar to other numerical optimization based approaches, the computation of FL meshes relies
on the initial input. Although the Laplacian term has improved the robustness of the computation,
there is still no theoretical guarantee on the generation of FL meshes on arbitrary input mesh surface.
In other words, there are input meshes where the FL-mesh computation and the local flattenable
perturbation fail because of topological obstructions. However, during our tests, we seldom find the
input that cannot generate a FL mesh surface after the subdivision or the local

√
3-refinement. This

is because that the subdivision (or the refinement) increases the degree-of-freedom for optimization
so that overcomes the topological obstructions. Different initial control meshes, even if they have the
same boundary edges and the same connectivity, may lead to different resultant FL meshes. Models
shown in Fig.10 exemplify this. The result shape cannot be predicted from the shape of input control
mesh; however, the final shape can be predicted by the FL mesh surface computed from the input
mesh (i.e., M0

FL). Therefore, this tool is easy to use — once you create a control mesh and apply
the FL mesh processing on it, you will see whether your mesh can be processed into a FL mesh close
to your input. If your control mesh is very close to a flattenable one, the processed FL mesh will be
similar to your input.

The computation of FL meshes and the local flattenable perturbation depend not only on the
number of vertices in Vact, but also on the geometry of input mesh — whether it is close to a
flattenable mesh. By preparing the examples on a PC with 3.0 GHz Pentium CPU, the computation
times have been listed in Table 1. Note that for the mesh with 7.8k faces, the FL mesh computation
takes less than 1 second for each iteration step, which is much faster than the time reported in
[12] running on a PC with the same configuration but less triangles (they take 29 seconds for each
step on a mesh with only 7k faces). The approach in [44] needs about 309 seconds to process the
mesh shown in Fig.12(a) (which is M3 in Fig.9) resulting in patches not as good as FL meshes.
Figure 12 shows the result comparison of [44] and M3

FL. Solving linear equation system Eq.(7) is the
most time-consuming step in the computation of FL meshes. In our first implementation, the sparse
linear systems are solved by PBCG in [31] with the 1st-type terminal condition (more specifically,
the conjugate gradient iteration stops when |A · x− b|/|b| < 10−3), where the times used are listed
in the bracket of Table 1. To speed up, we move to the LU-decomposition solver [22] so that the
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Table 1: Computational Statistics

Example Method Vertices Faces Time* (sec) Iteration Steps
Fig.6 FL meshes 142 250 0.81 (1.37) 56

Fig.7 - M0 FL meshes 41 64 0.02 (0.05) 68
Fig.7 - M1 FL meshes 141 248 1.03 (1.67) 77
Fig.7 - M2 FL meshes 527 988 6.55 (57.5) 58
Fig.9 - M1 FL meshes 270 516 0.67 (0.28) 69
Fig.9 - M2 FL meshes 1,028 2,008 3.09 (8.52) 39
Fig.9 - M3 FL meshes 3,952 7,808 21.5 (252.6) 47

Fig.10 - with H* Local Perturbation 3,539 3,458 21.5 21
Fig.10 - without H Local Perturbation 3,539 3,458 48.8 36

* 1) The times listed in the brackets are by the PBCG solver [31], and the times outside the brackets
are by the LU-decomposition solver [22]; 2) The reference human body is a triangular mesh with
5,659 vertices and 5,544 triangles.

computational time has been greatly reduced (especially for the surface with large mesh size – see
Table 1).

Our approach for computing flattenable mesh surfaces has the following limitations:

• The current method only preserves G0 continuity on the boundary of a FL mesh surface, which
is acceptable for the sheet-manufacturing of soft materials (e.g., the apparel industry). For
those industries considering more stiff materials (e.g., the ship industry), G1 continuity may
be expected. We will address this issue in our near future work.

• The FL mesh is not a connectivity invariant representation (i.e., for an input with the same
geometry shape but with different mesh connectivity, the resultant FL could be different). This
limitation can be somewhat overcome if we apply the remeshing procedure like [5] to remesh
the input surface into a semi-regular mesh with almost uniform triangle size. We have tested
this with our implementation of [5], the result is satisfactory.

• The collision response method, which is currently implemented in the local flattenable pertur-
bation, is relative primitive. Ideally, the collision handling algorithm should provide a response
that changes the direction of colliding vertices in order to simulate the slippage of vertices on
the reference bodies. A geometric distribution correction method [42] will be considered in our
future work.

6. Conclusion

This paper presents two approaches for the modelling of flattenable mesh surfaces which can be
flattened into a two-dimensional pattern without stretching. Firstly, a new flattenable mesh surface
— Flattenable Laplacian (FL) mesh is introduced and its relevant modelling tool is developed by the
constrained numerical optimization. In the following, the technique of FL meshes is integrated with
the variational subdivision scheme to model more complex objects. Furthermore, a local flattenable
perturbation approach has been developed to increase the flattenability of a given mesh surface if it
is almost flattenable. The constraint for preventing interference between the surface under process
and their nearby reference objects has been incorporated. The computation of local permutation is
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also solved by the constrained optimization. The experimental results show that our method can
successfully model flattenable meshes in a reasonable time on a PC with standard configuration. In
summary, the approach developed in this paper provides a very useful geometric modelling tool for
designing products built from sheet materials in various applications.
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Appendix A

Proposition 2 can be proved as below. In the summed angle θ(vq) at vq, only the components ξq,p

and γq,p are effected by the position of vp. Let us consider ξq,p first (see Fig.13). When ξ is an acute
angle, ξ = arccos ‖QH‖

‖PQ‖ (with ‖QH‖ = (P −Q) · QA
‖QA‖)) yields

dξ
dP = − 1r

1− ‖QH‖2
‖PQ‖2

d
dP (‖QH‖

‖PQ‖ )

= − ‖PQ‖
‖PH‖‖PQ‖2 (‖PQ‖d‖QH‖

dP − ‖QH‖d‖PQ‖
dP )

= − ‖PQ‖
‖PH‖‖PQ‖2 (‖PQ‖

‖QA‖ (A−Q)− ‖QH‖
‖PQ‖ (P −Q))

= cot ξ

‖PQ‖2 (P −Q)− 1
‖QA‖‖PQ‖ sin ξ (A−Q)

When ξ is an obtuse angle, ξ = arccos(−‖QH‖
‖PQ‖ ) (with ‖QH‖ = (Q− P ) · QA

‖QA‖) leads to

dξ
dP = − 1r

1− ‖QH‖2
‖PQ‖2

d
dP (−‖QH‖

‖PQ‖ )

= ‖PQ‖
‖PH‖‖PQ‖2 (‖PQ‖d‖QH‖

dP − ‖QH‖d‖PQ‖
dP )

= ‖PQ‖
‖PH‖‖PQ‖2 (‖PQ‖

‖QA‖ (Q−A)− ‖QH‖
‖PQ‖ (P −Q))

= cot ξ

‖PQ‖2 (P −Q)− 1
‖QA‖‖PQ‖ sin ξ (A−Q)

The part corresponding to γq,p can be derived in a similar way.
Q.E.D.

Appendix B

Based on the formulas in Appendix A, we can also proof Proposition 1 as follows.

dε1
dP = d

dP (π
2 − ξ) = − dξ

dP = 1
‖QA‖‖PQ‖ sin ξ (A−Q) + cot ξ

‖PQ‖2 (Q− P )
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and

dε2
dP = d

dP (π
2 − γ) = − dγ

dP = 1
‖QA‖‖PA‖ sin γ (Q−A) + cot γ

‖PQ‖2 (A− P )

As ‖PQ‖ sin ξ = ‖PA‖ sin γ = ‖PH‖, the first terms will be eliminated when summing all apex
angles around P .

Q.E.D.
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