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a b s t r a c t

We introduce a novel solid modeling framework taking advantage of the architecture of parallel
computing onmodern graphics hardware. Solidmodels in this framework are represented by an extension
of the ray representation — Layered Depth-Normal Images (LDNI), which inherits the good properties of
Boolean simplicity, localization and domain decoupling. The defect of ray representation in computational
intensity has been overcome by the newly developed parallel algorithms running on the graphics
hardware equipped with Graphics Processing Unit (GPU). The LDNI for a solid model whose boundary is
representedby a closedpolygonalmesh canbe generated efficientlywith thehelp of hardware accelerated
sampling. The parallel algorithm for computing Boolean operations on two LDNI solids runs well on
modern graphics hardware. A parallel algorithm is also introduced in this paper to convert LDNI solids
to sharp-feature preserved polygonal mesh surfaces, which can be used in downstream applications
(e.g., finite element analysis). Different from those GPU-based techniques for rendering CSG-tree of
solid models Hable and Rossignac (2007, 2005) [1,2], we compute and store the shape of objects in
solid modeling completely on graphics hardware. This greatly eliminates the communication bottleneck
between the graphics memory and the main memory.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this research is to exploit a solid modeler for
freeform objects completely running on GPUs, which will greatly
improve the efficiency of shape modeling in various applications
(e.g., virtual sculpting, microstructure design, and rapid prototyp-
ing). Models in the above applications usually have a very complex
shape and topology. Furthermore, the solid modeling operations
(such as Boolean operations, offsetting, or hollowing) will be ap-
plied to the complex objects formany times. Therefore, an efficient
and robust solid modeler is needed.
The market-available solid modelers (e.g., ACIS and Parasolid)

use the boundary representation (B-rep) to present the shape of
an object in computers. Although these approaches based on in-
tersection calculation and direct manipulation of B-rep are accu-
rate, they lack of efficiency and prone to robust problems. The effi-
ciency and robustness problems become more serious when these
market-available tools are used tomodel objects with complex ge-
ometry (e.g., the models shown in Fig. 1). Volumetric represen-
tation is a good alternative as it can compactly approximate the
shape and topology of complex objects by a set of volume data.

∗ Corresponding author. Tel.: +852 26098052; fax: +852 26036002.
E-mail address: cwang@mae.cuhk.edu.hk (C.C.L. Wang).

Modeling based on uniformly sampled volume data is simple but
very expensive in time and memory. Adaptive sampling based ap-
proaches can reduce the memory cost but in general are not fast
enough. At present, the programmable components of the Graph-
ics Processing Unit (GPU) allow the use of its high-performance
parallel architecture to accelerate many graphics and scientific ap-
plications, which originally run on CPU and themain memory. The
data communication between the graphics memory and the main
memory is still a bottleneck. Thus, a solidmodeler completely run-
ning on the graphics hardware is a practical way to eliminate such
bottleneck at present. Although the rendering of CSG-tree on GPU
has been studied in [1,2], the problem becomes much more com-
plicated if the resultant shape of solid modeling operations needs
to be retained. For rendering, only the visible elements are kept
and displayed by pixels of a single image. To the best of our knowl-
edge, the computation power ofmodern GPUs on consumer graph-
ics cards however has not been exploited for the solid modeling
purpose.
By extending the ray representation (ray-rep) in solid modeling

(Ref. [4]), we conduct Layered Depth-Normal Images (LDNI) in our
GPU-based solid modeler, which can achieve a balance between
required memory and computing time. In our approach, every
solid model is represented by three LDNIs equipped with normals,
where each LDNI is perpendicular to one orthogonal axis (i.e., x-,
y-, or z-axis). For a given sampling rate w, the required memory
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Fig. 1. An example of using Boolean operations to build the interior structure of a hollowed solid model to balance the stiffness and the fabrication time in rapid
prototyping [3]. Our GPU-based solid modeler can generate high quality solids with fine details. (a) Input models: left, Truss with 941.9k triangles; middle, Buddha with
497.7k triangles; right, Offset of Buddha with 213.3k triangles. (b) The resultant LDNI solid is obtained by computing: ‘‘(Buddha ∩ Truss) ∪ (Buddha \ Offset)’’ — the model
is directly rendered by using sample points. (c) The final mesh surface with 804.6k quadrangles generated from the LDNI solid.

Fig. 2. The Buddha with internal structure is fabricated from the mesh model shown in Fig. 1 by using rapid prototyping.

of LDNI solids is only O(w2) for most practical models which
is similar to the adaptively sampled implicit representations but
can be more easily visited in parallel. Besides, the sampling of
LDNI from closed 2-manifold polygonal meshes can be efficiently
completed by a rasterization technique implementedwith the help
of graphics hardware. Boolean operations on LDNI solids can be
easily implemented running in parallel on GPUs. Solid models
in many downstream applications of solid modeling (e.g., rapid
prototyping and finite element analysis) still need to have the
boundary representation (B-rep). A parallel contouring algorithm
akin to the dual contouring [5] has beendeveloped for this purpose.
Moreover, as the sample points in LDNI solids are coupled with
normal vectors, they can be directly rendered as surfels [6] whose
size and shape will be changed according to the variation of
viewing parameters. Fig. 1 shows an example ofmodeling complex
(both in geometry and topology)models using our GPU-based solid
modeling framework, and the real model fabricated from themesh
model by rapid prototyping is shown in Fig. 2.

1.1. Related work

Solid modeling based on B-rep has been investigated for many
years. Most of the existing approaches are based on the intersec-
tion calculation followedby a directmanipulation of boundary rep-
resentation. Surveys canbe found in [7,8]. The topology correctness
of resultant models relies on the robust intersection computation
(Ref. [9]). Although a recently published approach [10] proposed
a topologically robust algorithm for Boolean operations using
approximate arithmetic, the computation still needs to face the
topology regularization problem in some extreme cases (such as
the examples shown in [11]). Therefore, many approaches start
to seek help from volumetric representation. However, most vol-
umetric representations, which are easier to be implemented on

GPU than adaptive sampled ones, require the memory in O(w3)
complexity. Here we only need O(w2) for a LDNI solid — details
will be explained in Section 2.
The purpose of the techniques presented in this paper is

different from the point-sampled geometry approaches [12–14]
which focus on interactive rendering. In these approaches, the
shape of a model is described by a set of surface points coupled
with normals (i.e., surfel). As mentioned before, the CAD/CAM
applications such as CNC and rapid prototyping planning need to
have B-rep of solid models. Although we can generate B-rep from
the surfels, the structural information of samples that can be used
to speed up the solid modeling operations and the contouring
process is missed. Moreover, the point-sampled geometry does
not give an efficient way to evaluate the inside/outside of a point.
Similar to point-sampled geometry, the surface information of
solids encoded by LDNI is also stored by a set of points coupled
with normal vectors. However, the samples in LDNI representation
are well organized in a data structure so that the following solid
modeling operations and contouring can be implemented easily
and completed in an interactive speed. Recently, Nielson et al.
in [15] developed an efficient data structure for representing high
resolution level sets. However, whether it can be applied to solid
modeling is still under research. Moreover, their method cannot
preserve sharp feature as no Hermite data is recorded.
Our LDNI solid representation is an extension of ray-rep in the

solid modeling literature [4,16,17]. However, different from our
LDNI representation, the Ray-rep only stores depth values without
surface normals. Furthermore, the algorithm presented in [17]
which converts models from ray-rep to B-rep does not take the
advantage of structurally stored information, thus it involves a lot
of global search and could be very time-consuming. Another line of
research related to our work is the so-calledMarching Intersections
(MI) approach [18,19]. The representation of MI is similar to our
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LDNI representation butMI does not use normal vectors at samples
in the surface reconstruction. This leads to the major deficiency of
MI. As discussed in [20], aliasing error cannot be eliminated along
sharp edges without normal vectors. None of these approaches
takes the advantage of high parallel computing capability which
is available on consumer-level PCs nowadays. Although recently,
the LDNI is adopted to generate fast volumetric tests by Trapp and
Döllner in [21], they did not consider the problem of using LDNI to
represent the shape in solid modeling.
Stimulated by the original work of Layered Depth Images

(LDI) in [22], we recently proposed to use Layered Depth-Normal
Images in adaptive sampling, modeling andmesh generation (Refs.
[23,24]). Although the primal idea of using LDNI in solid modeling
has been addressed in [23,24], the highly parallel algorithms
for sampling, Boolean operations and contouring have not been
exploited there, which are the unavoidable issues of developing a
solid modeler completely running on the GPU for complex objects.

1.2. Main result

The work presented in this paper includes the following main
results.
• We introduce a special kind of LDI — Layered Depth-Normal
Images (LDNI) as an extension of the ray representation (ray-
rep), which can be efficiently sampled from the B-rep1 of a solid
model and be well mapped to the texture memory on graphics
hardware.
• The parallel algorithm for the Boolean operations on two LDNI
solids runs well on modern graphics hardware. Although it is
not a necessary step after each solid modeling operation, a
highly parallel algorithm running on GPU is also developed to
generate mesh surfaces from a LDNI solid.
• The above results lead to a novel solid modeling framework,
which can handle solid modeling problem more efficiently on
modern graphics hardware.

In the rest of this paper, we first brief the LDNI representation
in Section 2, and then present the efficient sampling method using
graphics hardware rasterization in Section 3. How tomap the com-
putation of Boolean operations on the GPU in parallel is addressed
in Section 4. The direct rendering method of LDNI solids and the
sharp-feature preserved parallel algorithm to generate mesh sur-
faces from LDNI solids is then developed in Sections 5 and 6.
After demonstrating the functionality of our modeling framework
in Section 7, our paper ends with the discussion and conclusion
sections.

2. Layered depth-normal images for solid models on GPU

In this section, we first explain the principle of Layered Depth-
Normal Images (LDNI) as an extension of ray-rep briefly, and point
out that LDNI is actually a semi-implicit representation. Then, we
detail the data structure for storing LDNI in the texture memory of
graphics hardware.

2.1. LDNI as a semi-implicit representation

The ray-rep of a solidmodelH along a specific viewing direction
can be considered as a two-dimensional image withw×w pixels,
where on the ray passing the center of each pixel the segments
inside the solid H are recorded. As an extension of ray-rep, a LDNI
with a specified viewing direction is a two-dimensional imagewith
w × w pixels, where each pixel contains a sequence of numbers

1 The B-rep of an input solid model must be polygonal surfaces that are closed,
manifold (i.e., having a disk-like surface neighborhood around each vertex) and free
of self-intersections.

Fig. 3. A two-dimensional illustration of LDNI, where the dot represents the
location of sampled depth and the arrow denotes the unit surface normal vector
at this point. Red color is employed for the x-LDNI that is perpendicular to x-axis,
and blue is for y-LDNI. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

that specify (1) the depths from the intersections (between a ray
passing through the center of pixel along the viewing direction and
the boundary surface ∂H of H) to the viewing plane, and (2) the
normal vector of ∂H at the intersections. Therefore, each sample
on rays in a LDNI is a Hermite data. The samples on a ray are sorted
in ascending order by their depth values.
We employ a structured set of three LDNIs sampled along x-,

y-, and z-axes to present a solid model H in LDNI representation
(denoted by H̃). All three images are with the same resolution
w × w, and the images are located to let their rays intersect at
the w × w × w nodes of uniform grids in <3. Fig. 3 gives a 2D
illustration of the LDNI representation, where the red dots and
arrows indicate the Hermite data points recorded on the x-LDNI
and the blue ones illustrate the Hermite data points on the y-
LDNI. The example information stored in one pixel on the x-LDNI
(linked by the red dash line) and one pixel on the y-LDNI (linked
by the blue dash line) is also illustrated in Fig. 3, in which the slots
with blue background represent the depth values and the yellow
slots denote unit normal vectors. We can find that the information
stored in LDNI representation is different from other uniformly
sampled implicit representation — here only the set of Hermite
data points on the surface of amodel is sampled and stored. Similar
to Point Set Surfaces (PPS) in [25], the inside/outside status of a point
p to H̃ can be detected by its closest Hermite sample on H̃ — thus
LDNI representation is in fact a semi-implicit representation.

2.2. Data structure on GPU

The data structure of LDNI representation on GPU is discussed
below. A solid model represented by LDNI is stored as a list of 2D
textures in graphics memory. More specifically, if the maximum
number of samples among all pixels on the LDNI along thedirection
t is ntmax, there are n

t
max textures with resolution w × w for the t-

LDNI. Fig. 4 gives an example of the textures of z-LDNI. On the ray
passing a pixel p, if there are only m samples (with m < ntmax),
a special value M (e.g., ∞ or 0) will be filled at the location of
this pixel on the ith texture when i = m + 1, . . . , ntmax — for
example, the white pixels in Fig. 4. Therefore, when exploring
the samples on the ray of p, we can start searching the pixel
value at p from the first texture, then the second, until the special
valueM is met or we have already searched ntmax textures. Simply,
four channels of textures, RGBA, could be used to store the three
components of normal vector and the depth value at Hermite
samples respectively. Unlike [21], we adopt 2D textures but not 3D
textures to store LDNI.
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Fig. 4. A solid model represented by LDNI can be stored as a list of 2D textures in graphics memory — an illustration without encoding.

The information stored on a ray of LDNI is with the size ntmax.
On most practical models, ntmax is a constant number that satisfies
ntmax � w; in the worst case, ntmax → w on all rays. Therefore, the
memory complexity of LDNI isO(w2) onmost practical models but
become O(w3) in the worst case.
An encoding method is presented below to reduce the required

memory. Simply using four components, RGBA, on a texel to store
the depth value and the normal vector at a sample wastes the
texture memory. From the study in [26], we found that the shape
presented by LDNI ismore sensitive to the depth values on samples
than the normal vectors. Therefore, using less memory to store
the normal vectors is a good way to further reduce the required
memory to store LDNI in graphics memory. Moreover, the x-, y-
and z-components of a unit normal vector n̂ are normalized by
n̂2x + n̂2y + n̂2z ≡ 1. We adopt the following method to make the
samples of LDNI stored more compactly. A LDNI solid with nmax
layers are stored by 12nmax textures. Onmodern graphics hardware,
the pixels at a texture usually have four color channels: RGBA, and
each color channel has 32-bits. For the samples on the 2ith layer
and the (2i + 1)th layer of LDNI, we store their depth values in
the G and A components respectively with 32-bits. By selecting
an appropriate origin, we can easily make the depth values of all
samples be positive. Then, the n̂x and n̂y components of the unit
normal vector at a sample are truncated into 16-bits and stored in
the R channel for the sample on the 2ith layer, and the B channel
for the sample on the (2i + 1)th layer. Lastly, the signs of n̂z are
encoded onto the depth values in G or A components. By this way,
we can reduce half of the required memory. Such encoding can be
easily implemented during the sampling by shader programs.

3. Sampling B-rep into LDNI

Using graphics accelerated hardware to construct LDNI repre-
sentation from the closed 2-manifold boundary of a solid model
H is similar to the scan-conversion algorithm that the scan line
along view direction alternatively passes H between the interior
and exterior. Two strategies can be employed to convert a mesh
surface ∂H into samples intersected by the rays and ∂H: (1) the
widely used depth-peeling [27] and (2) ours using stencil buffer
akin to [28].

Why not depth-peeling? For a correctly sampled solid model H̃
represented by LDNI, the number of samples on the ray passing
a pixel must be even so that the samples clearly state the in-
side/outside regions for the sampled solid along the ray. However,
the depth-peeling cannot ensure this as it is based on the depth val-
ues of intersections. The edges on an input mesh model are called
silhouette-edges if only one of its two adjacent polygons faces
towards the viewpoint. During sampling, it is possible to have a
ray passing through silhouette-edges. The depth-peeling algorithm

(e.g., [27]) will report only one intersection point with the silhou-
ette. However, for a valid solid representation along the ray, two
(or zero) samples must be reported at this intersection. This mis-
reporting will lead to the incorrect specification of inside/outside
along the ray.
In order to avoid the misreporting cases in depth-peeling, we

consider using stencil buffer to count the number of intersections
along the rays, which can guarantee a valid number of samples
being reported although the reported samples are not sorted by
their depth values. When a ray that passes through the center of a
pixel intersects a silhouette edge, the stencil buffer will report two
intersections as long as both the faces adjacent to the silhouette
edge cover the center of pixel. If they do not cover the center
(even if this is generated by numerical error), no intersection
will be reported which is also acceptable to LDNI sampling. More
details of stencil buffer at silhouette-edges can be found in [29].
Similar to [28], the boundary surface mesh of H has to be rendered
several times for the sampling of LDNIs. The viewing parameters
are determined by the working envelope, which is slightly larger
than the bounding box of the model. Orthogonal projection is
adopted for rendering so that the intersection points from parallel
rays can be generated. The number of times that the rendering will
repeat is determined by the depth complexity ntmax of the model
H along the given direction t . The value of depth complexity np
at every pixel p can be read from the stencil buffer after the first
rendering, in which the stencil test configuration allows only the
first fragment to pass per pixel but still increase the stencil buffer
in the later fragment pass. After that, nmax = max(np) can be
determined by scanning np on all pixels in parallel using [30]. If
nmax > 1, additional rendering passes with k = 2 to nmax will
generate the remaining layers and the stencil test configuration
allows only the kth fragment to pass. For the pixels with np < nmax,
layers from np + 1 to nmax do not contain valid depth values and
are assigned with special mark M . Not only depth values but also
the normal vectors at the intersection points must be sampled and
stored (details will be given below). The above algorithm generates
an unsorted LDNI as fragments are in general rendered in arbitrary.
Therefore, a post-step is needed to sort the samples at each pixel
by their depth values.
Speed up by shader program. The bottleneck of the above sampling
method is the communication between the main memory and
the texture memory of graphics hardware. In order to avoid
repeatedly sending the geometry and connectivity data from the
main memory to the graphics hardware during the sampling, we
first compile a graphics object list onto the graphics hardware so
that we can call the object list directly from the graphics hardware
to repeatedly render the models. By this standard rendering
procedure, we can only send the model to be sampled through the
data communication bottleneck once. In order to further reduce
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Table 1
Logic operator OPRT (A, B).

Status of A and B Type of Operations
inside A inside B ‘∪’ ‘∩’ ‘\’
True False True False True
False True True False False
True True True True False
False False False False False

the amount of data sent through this communication bottleneck,
instead of sending 9m vertex coordinates and 3m face normals
for a mesh surface with m triangles, we pass a vertex table with
3n float coordinates (for n vertices) and a triangular face table
with 3m integer indices for vertices of triangles to the graphics
hardware. In general, n ≈ m

2 — i.e., we reduce the amount of
communication from 12m × 4 = 48m bytes to 4.5m × 4 = 18m
bytes. A geometry shader program is also developed to assemble
the topology information into triangles to be rendered by the
streamline. A fragment shader program is adopted to encode the
sampled depth values and normal vectors into the two channels of
frame-buffer. Note that the encoding mentioned at the end of last
section is implemented here.
As we use CUDA kernel programs [31] in the next section to

compute solid modeling operations in parallel, after sampling two
layer of LDNI onto the frame-buffer, we can instantly map the
pixel values at frame-buffer to the texture memory, which can be
accessed by CUDA kernel program.2 Before computing a Boolean
operation, the unsorted samples will be sorted through a CUDA
kernel program.

4. Boolean operations on LDNI

As the fundamental operation of solid modeling, Boolean
operations are widely used in various CAD/CAM applications. A
solid model in LDNI representation is actually a set of well-
organized 1D volumes that inherits the good property of Boolean
simplicity from ray-rep. When computing the Boolean operation
of two LDNI solid models H̃A and H̃B, the Boolean operations can
simply be conducted by the depth-normal samples on each ray as
long as the rays of H̃A and H̃B are overlapped. This request can be
easily satisfied during sampling. More specifically, when sampling
HB into a LDNI solid H̃B, we carefully choose the origin of sampling
envelope to ensure that the rays of H̃B overlap the rays of H̃A. More
specifically, the two inputmodels are identically oriented andwith
the same sampling frequency.
The algorithm of Boolean operations on rays is briefed below.

On two overlapped rays RA ∈ H̃A and RB ∈ H̃B, if either RA or RB is
empty (i.e., with nA = 0 or nB = 0), the processing will be very
simple (see line 21-26 in Algorithm BooleanOperationOnRay). For
the case neither RA nor RB is empty, we can perform a 1D Boolean
operation easily by moving on the samples of RA and RB according
to their depth values. During themovement, the resultant samples
are generated and stored on a new ray Rres, where the resultant
samples are those leading to a change of inside/outside status based
on the analysis of current position of the sample and the type of
Boolean operation performed with the help of a logic operator,
OPRT (A, B). The operator OPRT (A, B) is as defined in Table 1. In
short, we can check whether a depth value d is inside or outside
a 1D volume by detecting whether there are odd (or even) number
of samples whose depth values are less than d. Then, the inside
or outside status on a resultant 1D volume is determined by

2 Such an instant mapping is supported by DirectX using cu-
daD3D10RegisterResource and cudaD3D10ResourceGetMappedPointer.

OPRT (A, B). After scanning all samples on RA and RB, we can output
the resultant samples into a list of sample, Rres. Pseudo-code is
listed in Algorithm BooleanOperationOnRay (in Appendix), where
nA and nB are the numbers of samples on RA and RB, RA[i] and RB[i]
denote the ith sample on the ray, and RA[i].d and RB[i].d represent
the depths at samples. Lines 1-20 show the method of scanning all
samples of RA and RB, which is similar to the Boolean operations on
Ray-rep except the manipulation on normal vectors.
Robustness enhancement. A step of small interval removal is given to
enhance the robustness of Boolean operation computation. The 1D
volumes whose thickness are smaller than ε will be removed from
the 1D volume of the resultant LDNI samples. ε = 10−5 is chosen in
our implementation. This is because the depth values are encoded
in single precision float on graphics hardware, and ε = 10−5 is
slightly larger than the smallest number that can be presented
by single precision float (i.e., with 32-bits). We incorporate this
robustness enhancement into Algorithm BooleanOperationOnRay
(RA, RB) by changing its Step 17. Instead of simply insert s at the
tail of Rres, we compare its depth value with the depth of the last
sample in Rres. If the difference on their depths is smaller than ε,
we remove the last sample from Rres; otherwise, we add s at the
tail of Rres. By this, the result of Boolean operations on tangential
contact models can be easily corrected; however, it is very tough
to directly compute Boolean operations on B-rep models.
Implementation on GPU. The above algorithm for Boolean opera-
tions on two LDNI solids H̃A and H̃B maps to the parallel com-
putation on the GPU very well. We just need to write a kernel
program by CUDA [31] for Algorithm BooleanOperationOnRay
(RA, RB) and run it for all rays on H̃A and H̃B in parallel. The resultant
sampleswill be kept in the graphicsmemory for further use, so that
the time for data communication between graphics hardware and
main memory can be saved.
Furthermore, we can classify the rays from H̃A and H̃B into four

groups:

• Group I: Neither RA nor RB are empty;
• Group II: RA is not empty but RB is empty;
• Group III: RA is empty but RB is not empty;
• Group IV: Both RA and RB are empty.

Our tests on many examples show that there are in general
more than 60% rays belonging to Group IV. Therefore, a lot of time
will bewasted if we simply runAlgorithm BooleanOperationOnRay
in parallel on all rays. To avoid this, we employ the all-prefix-
sum scan technique in [30] to remove rays in Group IV according
to above criteria, and then call Algorithm BooleanOperationOnRay
(RA, RB) in parallel on the rest rays in Group I–III.

5. GPU-based direct rendering of LDNIs

Many solid modeling applications like virtual sculpting and
microstructure design request the function for displaying the solid
model during the procedure of modeling. Different from B-rep,
there is no straightforward method for displaying the surface of
a solid model in LDNI representation. Although we can convert
it into a B-rep mesh to display (by the algorithm presented in
the following section), the communication between the graphics
hardware and the main memory will be a bottleneck to slow
down the update rate — such refreshment can hardly be in a real-
time (>25 fps) or interactive rate (∼10 fps). Based on this reason,
we develop a method for directly rendering the samples of LDNI
on GPU. As the sample points in LDNIs are coupled with normal
vectors, they are rendered as surfels [6] whose size and shape are
changed according to the variation of viewing parameters.
The most important issue is to reduce the amount of commu-

nication between the graphics hardware and the host. First of all,
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Fig. 5. The inside/outside status of eight nodes on a cell can be detected on-site
locally by exploring 12 related rays (rays in different directions are displayed in
different colors). The black segments are the cell-edges overlapped with rays. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

we employ the all-prefix-sum scan technique in [30] to obtain
the total number, npnts, of samples in a LDNI solid. To activate the
engine of displaying while minimizing the amount of data com-
munication, we adopt geometry shader to create the surfels for
rendering. If each geometry shader can generate mmax primitives,
we send pnpnts \ mmaxq point primitives from the host. Then, each
shader will splat one point intommax points with the positions and
normals are acquired from the LDNI samples already stored in the
graphics memory. By this, we can achieve real-time rendering of
more than tenmillion surfels, which is fast enough for directly ren-
dering the samples of LDNIs (for example, the direct rendering re-
sults shown in Fig. 1).

6. Contouring LDNI solid to B-rep

This section will present the contouring algorithm which
converts a LDNI solid model H̃ into a closed polygonal mesh
S (i.e., B-rep). We develop a parallel dual contouring algorithm
running on GPU. The most difficult part is how to generate the
mesh surface in a streaming mode without requesting additional
memory as it is very limited on the graphics hardware. Our
algorithm outputs the resultant mesh model by two passes, where
the vertex table (geometry) of S is generated in the first pass and
the secondpass constructs the face table (topology)which specifies
the polygons linking the vertices.
The first issue if how to detect inside/outside consistently on a

node intersected by three rays. As the images of a LDNI represen-
tation are located so that the intersections of their rays intersect
at the w × w × w nodes of uniform grids in <3, our algorithm
will employ this grid structure to construct vertex and face tables.
However, instead of constructing such grids explicitly, we check
the inside/outside configuration of each grid node on-site by us-
ing the samples on the three rays intersecting at this node. There-
fore, we avoid spending additional O(w3)memory on contouring.
Although the numerical error could lead to inconsistent classifica-
tion of inside/outside from three rays at very few nodes, it can be
easily solved by a majority vote — a node is classified to be inside
the model if it shows inside on at least two rays passing this node.
The method to locate vertices on the resultant mesh surface is

introduced here. For a solid represented by LDNIs with resolution
w × w, the rays of LDNIs actually establish (w − 1) × (w −
1) × (w − 1) cubic cells with cell-edges overlapping with part of
the rays (see Fig. 5), and each cell is labeled by its location index
[i, j, k](i,j,k=0,...,w−2). A cell is at the boundary of the LDNI solid
model H̃ if any of its grid nodes is insidewhile there is at least one

node outside. Such a cell is called boundary cell. Vertices of the final
polygonal mesh S are only constructed in the boundary cells. Every
boundary cell contains one vertex which has an unique ID, (i(w −
2)2+ j(w−2)+ k), if the cell’s index is [i, j, k]. The position of this
vertex is determined by the position that minimizes the Quadratic
Error Function (QEF) defined by the Hermite samples falling on the
cell-edges of the cell [i, j, k]. Using the position minimizing QEF
helps reconstructing sharp features on the resultant mesh surface
S. This is also the reason why we choose dual contouring but not
the Marching Cubes [32] as the strategy of our parallel contouring
algorithm. The first pass of our algorithm will check the boundary
cells in parallel and output the vertices, both the positions and IDs,
in the boundary cells. This is easily implemented in a streaming
way. To further speed up, the all-prefix-sum scan technique in [30]
is employed to prevent spending unnecessary time on the non-
boundary-cells.
The second pass of our algorithm checks the edges of cells

in parallel. If there is an inside/outside sign change on the two
grid nodes of a cell-edge, one quadrilateral face is constructed by
linking the vertices in its four neighboring cells. Note that only the
IDs of vertices for quadrilateral faces are output as records in the
face table. All faces should be constructed in such an orientation
that its normal faces outwards. The second pass is also easy to be
implemented to run in parallel and streamingmode. Again, the all-
prefix-sum scan technique in [30] is utilized to remove those rays
not adjacent to any boundary cells from computation.

7. Experimental results

We have implemented the above algorithm and tested various
examples with massive number of triangles on a consumer-level
PC with Intel Core 2 Quad CPU Q6600 2.4 GHz + 4 GB RAM and
GeForce GTX295 graphics card. We first study the performance
of our parallel sampling algorithm and the graphics memory
occupied by the resultant LDNI solid. Statistics are shown in
Table 2. All examples given in this paper are tested at the resolution
of 512 × 512. From Table 2, we can conclude that our parallel
sampling algorithm is able to generate the LDNI representation
from closed polygonal mesh surfaces efficiently.
Our first example of solid modeling shown in Fig. 1 is to

construct the interior truss structure of a hollowed solid model,
which is a very important modeling step for the rapid prototyping
in CAD/CAM [3]. Five more examples are shown in Figs. 6 and
7, where the sharp features are well preserved in our modeling
framework as our LDNI representation keeps the Hermite data on
each sample. Lastly, the example of cube and sphere is used to test
the robustness of our solid modeler when handling degenerated
cases (i.e., tangential contact cases) in Fig. 8. After testing variety of
freeform models, it is not difficult to conclude that our algorithm
is very robust and efficient.
In order to compare the proposed algorithm with the state-

of-the-art, we also implemented two other programs for Boolean
operations. One calls the API functions provided by the commercial
software packageACIS R15 [34], and the other employs the Boolean
operation functions on 3D selective Nef Complexes in the newest
version of CGAL library [33]. The comparisons of computing time
are listed in Table 3. It is not difficult to find that our GPU-based
solid modeler works well on the models with massive number
of triangles, which cannot be computed by ACIS and CGAL. It is
surprising that although ACIS can work out the Boolean operation
on tangential contacted models by using exact arithmetic, it takes
very long time to generate the results. CGAL performs better on this
aspect. More than that, ACIS takes a long time to report failure on
the complex models (e.g., ‘‘Dragon \ Bunny’’ takes 1.14 h).
To further demonstrate the speed improvement on the GPU-

based parallel algorithms comparing to the CPU-based algorithm
in [23,24], we list the statistics for the same sets of examples in
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Table 2
Statistics of LDNI sampling and memory usage at resolution 512× 512.

Model Faces num Vertices num Sampling time (s) LDNI layers Memory (MB)
Buddha 498k 249k 0.400 14-20-10 88
Truss 942k 467k 0.773 34-88-36 316
Bunny 70k 35k 0.127 20-10-12 84
Dragon 277k 138k 0.253 14-12-12 76
Filigree 260k 130k 0.244 28-30-10 136
Lion 400k 200k 0.322 24-18-12 108
Helix 74k 37k 0.130 6-6-32 88

Fig. 6. Two examples: ‘‘Dragon \ Bunny’’ (top) and ‘‘Mickey ∪ Octa-Flower’’ (bottom). The results preserve details very well — see the geometry details from Bunny on the
resultant dragon, and the sharp features on the resultant Mickey.

Table 3
Computational statistics in time (second).

Example Figure Face num ACIS CGAL Our GPU-based solid modelera

First Second Sampling Boolean Contouring

RP Exampleb 1 942k 498k Failed Failed 1.466 0.354 1.551
213kc

Dragon \ Bunny 6 277k 69.7k Failed Failed 0.361 0.113 0.757
Mickey ∪ Octa-Flower 6 80.1k 15.8k 135.22 Failed 0.197 0.078 0.656
Buddha ∪ Filigree 7 498k 260k Failed Failed 0.622 0.111 0.703
Bunny \ (Helix ∪ Box) 7 69.7k 74.0k 106.08 Failed 0.351 0.164 0.720
Lion \ (Lion-off ∪ Box) 7 400k 99.2k 7120.98 Failed 0.527 0.209 1.537
Box ∪ Sphere \ Box 8 4.80k 760 43.388 0.864 0.195 0.147 0.314
Chair \ Octa-Flower 9 464 15.8k 1.72 7.82 0.173 0.084 0.687
Ring-A ∪ Ring-B 9 12.3k 14.3k Failed 34.9 0.185 0.078 0.968
a The solids are computed at the resolution of 512× 512.
b We actually compute ‘‘Buddha \ (Offset \ Truss)’’ in the RP example to speed up the computation.
c For the offset model of Buddha model.

Table 4
Computing time (Second) of CPU-based LDNI approach [23,24].

Example Sampling On Single-Core CPU On Quad-Core CPU
Boolean Contouring Boolean Contouring

RP Example 8.044 (6.578) 1.092 13.244 1.092 7.972
Dragon \ Bunny 1.710 (1.349) 0.327 6.585 0.328 3.902
Mickey ∪ Octa-Flower 0.934 (0.737) 0.250 4.040 0.266 2.356
Buddha ∪ Filigree 2.534 (1.912) 0.094 5.366 0.234 3.245
Bunny \ (Helix ∪ Box) 1.767 (1.416) 0.516 9.142 0.905 5.288
Lion \ (Lion-off ∪ Box) 2.777 (2.250) 0.874 13.135 0.905 7.644

* The values in brackets are the time spending on reading back from the graphics memory to the host.



Author's personal copy

542 C.C.L. Wang et al. / Computer-Aided Design 42 (2010) 535–544

Fig. 7. Three more examples: ‘‘Buddha ∪ Filigree’’, ‘‘Bunny \ (Helix ∪ Box)’’, and ‘‘Lion \ (Lion-off ∪ Box)’’.

Table 4. It is not hard to find that GPU-based parallel algorithms
proposed in this paper can achieve more than 5 times speed
up — even after using multiple-core parallelization and adaptive
algorithms in [23,24]. When comparing to the results evaluated
on PC with single-core CPU, the speed up is even higher. The
speed up is gained from (1) the reduction of communication
between the graphics hardware and the host, and (2) the highly
parallel computational power provided by the graphics hardware.
If we consider about the Boolean operation step itself, the speed
up ratio seems is not that high. However, we find that in the
GPU-based Boolean operation step, the memory allocation to
generate the texture space to store the resultant samples takes
from 18.6% to 58.6% of the total Boolean time. The time needed for
Boolean step can be further reduced if we pre-allocate the texture
memory — of course, the program implemented in this way will
not be efficient in memory consumption. Nevertheless, this will
benefit the applications relying on repeated Boolean operations
(e.g., virtual sculpting, CNC simulation, microstructure design,
etc.). A video to demonstrate the function of our implementation
can also be downloaded from the link: http://www.mae.cuhk.edu.
hk/∼yleung/cadgpumodeler.wmv.

8. Discussions

The major limitation on our current implementation is the
memory occupied by the sampled LDNI solids.When increasing the
resolution from 512 × 512 to 1024 × 1024, the graphics memory
on our graphics card has been used up in the RP example as the dis-
playing of OS GUI and the 3D models need some graphics memory
as well. We are developing a new data structure like [15], which is
stimulated by the data structure for storing sparse matrix, to store
the sampled LDNI more compactly. This is considered as our work
in the near future. Currently, the high resolution computation can
also be achieved in our framework by volume tiling. However, the
extra cost we should pay is the time of data communication be-
tween the graphics memory and the host (i.e., the differences of
times in Tables 3 and 4).
Another limitation of solid in LDNI is an old problem of ray-

rep — it is rotation sensitive. Specifically, when we have a solid
in ray-rep, the current ray-rep is not correct any more after a
simple rotation. Therefore, a fast re-sampling method needs to be
developed to solve this problem.
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Table 5
Shape error reported by the metro tool [35].

Example Res.: 128× 128 Res.: 256× 256 Res.: 512× 512
Emean(%) Emax(%) Emean(%) Emax(%) Emean(%) Emax(%)

Mickey ∪ Octa-Flower 7.97× 10−3 0.333 2.03× 10−3 0.291 6.56× 10−4 0.277
Bunny \ (Helix ∪ Box) 6.89× 10−3 0.396 4.04× 10−3 0.301 1.32× 10−3 0.293
Lion \ (Lion-off ∪ Box) 1.69× 10−2 1.27 4.48× 10−3 0.988 2.10× 10−3 0.262
Box ∪ Sphere \ Box 1.53× 10−3 0.0426 5.76× 10−4 0.0202 1.53× 10−4 0.0106
Chair \ Octa-Flower 1.54× 10−3 0.808 4.37× 10−4 0.117 9.02× 10−4 0.0503
Ring-A ∪ Ring-B 3.45× 10−3 0.108 1.09× 10−3 0.0681 3.03× 10−4 0.0292

* The errors are reported in percentage with reference to the diagonal lengths of the models’ bounding boxes.

Fig. 8. A tangential contact example to test the robustness of our approach: ‘‘Box
∪ Sphere \ Box’’.

Our current implementation lacks of other more complicated
solid modeling operations, e.g., general offsetting and Minkowski
sum. Special parallel algorithms need to be developed to further
enhance the current solid modeling framework on LDNI.
We present the highly parallel algorithm in this paper which

can fully run on the GPU. The most critical issues solved here are:
(1) how to reduce the communication between graphics memory
and host, and (2) how to enhance the degree of parallelism.
Differently, the approach proposed in [23,24] provides methods
on the adaptive sampling, modeling and mesh generation so
that a better accuracy control can be achieved with limited
memory. These two approaches focus on different aspects of the
solid modeling on complex objects. We leave the problem about
whether to choose high speed or adaptive accuracy to the users.
Moreover, the conversion from LDNI to B-rep could be an issue
to generate water-tight model when the modeled object has very
small features (e.g., the feature size less than

√
3 times of the

diagonal length of cubic cells in contouring).
In this approach, the solid modeling operations are computed

on the sampled LDNI representation, which will generate shape

approximation error on the results. The surface errors can be mea-
sured using the publicly available Metro tool [35] by comparing
with the exact Boolean operation’s results obtained from ACIS (or
CGAL). From Table 5, we can find that the error generated by this
method is small, and the accuracy converges while increasing the
sampling rates.

9. Conclusion

In this paper, we propose a novel solid modeling framework
using Layered Depth-Normal Images (LDNI) to represent solid
models on GPU. All steps of the framework including sampling,
computing of Boolean operations and contouring map to the
architecture ofmodern graphics hardware quitewell so that a fully
GPU-based solid modeler can be implemented by our approach.
Results with massive number of triangles have been successfully
tested on our prototype implementation, where most of them
fail on the state-of-the-art commercial (or open-source) solid
modeling kernels (i.e., ACIS and CGAL). In short, our solidmodeling
framework running on GPU can compute operations on complex
models more efficiently and effectively.
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Appendix

The pseudo-code of the Algorithm BooleanOperationOnRay is
shown below.

Fig. 9. The results of our approach on two more examples — ‘‘Chair \ Octa-Flower’’ (left) and ‘‘Ring-A ∪ Ring-B’’ (right) that can be successfully computed by CGAL [33].
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Algorithm 1 BooleanOperationOnRay(RA,RB)
1: Initialize a NULL result sample list Rres;
2: if (nA > 0) AND (nB > 0) then
3: inside A = inside B = false;
4: lastConfig = OPRT (inside A, inside B);
5: iA = iB = 0;
6: while (iA < nA) AND (iB < nB) do
7: if (iA < nA) AND ((iB == nB) OR (RA[iA].d < RB[iB].d))

then
8: s = RA[iA] and iA = iA + 1;
9: inside A = ((iA%2) == 0);
10: else
11: s = RB[iB] and iB = iB + 1;
12: inside B = ((iB%2) == 0);
13: For ‘\’ operation, reverse the normal of s;
14: end if
15: config = OPRT (inside A, inside B);
16: if (config! = lastConfig) then
17: Insert s at the tail of Rres;
18: lastConfig = config;
19: end if
20: end while
21: else if (nA == 0) AND (nB > 0) then
22: For ‘∪’ operation, copy all samples from RB to Rres;
23: else if (nA > 0) AND (nB == 0) then
24: For ‘∩’ operation, remove all samples from RA;
25: Copy all sample from RB to Rres;
26: end if
27: return Rres;
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