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Abstract 

This paper describes a novel algorithm to extract surface meshes directly from implicitly represented 

heterogeneous models made of different constituent materials. Our approach can directly convert implicitly 

represented heterogeneous objects into a surface model separating homogeneous material regions, where every 

homogeneous region in a heterogeneous structure is enclosed by a set of two-manifold surface meshes. Unlike 

other discretization techniques of implicitly represented heterogeneous objects, the intermediate surfaces 

between two constituent materials can be directly extracted by our algorithm. Therefore, it is more convenient to 

adopt the surface meshes from our approach in the boundary element method (BEM) or as a starting model to 

generate volumetric meshes preserving intermediate surfaces for the finite element method (FEM). The 

algorithm consists of three major steps: firstly, a set of assembled two-manifold surface patches coarsely 

approximating the interfaces between homogeneous regions are extracted and segmented; secondly, signed 

distance-fields are constructed that each field expresses the Euclidean distance from points to the surface of one 

homogeneous material region; and finally, coarse patches generated in the first step is dynamically optimized to 

give adaptive and high-quality surface meshes. The manifold topology is preserved on each surface patch. 

Keywords: surface mesh, manifold preserved, implicit representation, heterogeneous models, remeshing. 

 

1. Introduction 

The modeling methods of heterogeneous objects have been widely studied in the past decade. A 

heterogeneous object is actually a solid model made of different materials, where each material occupies portion 

of the solid. Recently, more and more interests are shown to model heterogeneous structure using implicitly 

represented volumes [1-5]. The implicit models provide compact and intuitive mathematical representation for 

complex heterogeneous objects, supporting the operations from set theory and other operations such as 

offsetting, blending, and sweeping. Finite element method (FEM) and boundary element method (BEM) 

nowadays take the role as the most powerful analysis tools in engineering. However, the implicit represented 

models cannot be directly applied in them since these numerical methods usually need discrete models (volume 

or surface meshes) of geometric objects. Although the meshfree analysis and simulation methods [6, 7] can be 

employed, it is still important to have the surface representation in many computational engineering applications. 

Here comes the purpose of our research: to develop a method for extracting surface meshes which discretely 

represent the implicit heterogeneous volumes. After getting well-defined surface meshes, the procedure to 

generate a volumetric mesh by them is standard (see [8, 9] and the references therein). 

Benefited from the compact and intuitive mathematical representation, a lot of approaches conducted the 

implicit representation to optimize shape and topology of a given structure (e.g., [2, 10]). The approaches in [10] 
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considered about single material; therefore, the resulting surface can be easily determined by an isosurface 

extraction method (e.g., the optimized Marching Cubes method [11]). The technique introduced in [2] extends 

the topology and structure optimization to the domain of multi-material composition, so the intermediate 

surfaces are required to be generated. For an intermediate surface between the regions filled with two materials 

u1 and u2, if the isosurfaces are individually extracted on the region covered by u1 and the portion occupied by u2, 

the consistency between them cannot be guaranteed. In order to achieve a model with high accuracy it is 

expected that only one intermediate surface between u1 and u2 is constructed, hereby no gap or overlap is 

generated between two regions. Besides the structure optimization, similar problem arises when extracting a 

boundary surface of a human body part from CT or MRI data (ref. [12]). In summary, the problem addressed in 

this paper has many applications in both the mechanical engineering and the biomedical engineering. 

Problem statement: Following the representation method in [2], without loss of general, an implicit 

heterogeneous object H  is a solid in a given domain 
3ℜ⊆Ψ  defined by a function )( pF  with Ψ∈p . If 

there are total n materials involved in H , the value of )( pF  is an integral index of material class between 0 

and n  (zero represents no material), which indicates the material type in H  at p . Suppose that a region filled 

with the material class i is denoted by iΩ , we have  

i

n

i

H Ω=
=1

U .                                                                              (1) 

The heterogeneous object H is partitioned by sub-regions with unique material. Thus, we have ijj
ji

i Γ=Ω∩Ω
≠

 

and Hii ∩Ω∂=Γ , where each material region has a meaningful boundary surface iΓ  and the interface 

between two material regions iΩ  and jΩ  is denoted by jijiij Γ∩Γ=Γ=Γ  ( ji ≠∀ ). When considering the 

region has no material filled as material class zero, all the intermediate surfaces in H  can be defined as 

ijji

n

ji

Γ−=Γ
=

)1( ,
0,

δU ,                                                                      (2) 

where ji,δ  is the Kronecker delta defined to be 1 if ji =  and 0 otherwise. Therefore, the problem to be solved 

in this paper is to construct an adaptive and quality mesh approximating Γ  of H , where each intermediate 

surface ijΓ  is represented by a two-manifold mesh patch and two linked patches should have consistent 

boundaries (i.e., the corresponding nodes are coincident). For instance, in Fig.1, an implicit heterogeneous 

object is originally given in Fig.1a – different color represents different materials; Fig.1b and 1c show the 

surface meshes extracted by our approach. It is easy to find that the meshes are compatible at boundaries. 

 

 

 

 

(a) implicit representation (b) extracted surface  (c) wireframe display 

Fig. 1    Example I: a heterogeneous object consists of three materials 
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Major contribution:  To convert an implicit represented heterogeneous volume into a set of two-manifold mesh 

surfaces that can be utilized in computational engineering applications, a novel algorithm will be presented in 

this paper to extract adaptive and high-quality surface meshes. Two-manifold is guaranteed on each patch of 

extracted surfaces. The consistency is preserved on the interface of adjacent material regions, which cannot be 

solved by directly applying isosurface extraction algorithms. Although the volumetric-element related 

approaches could also generate elements approximating intermediate surfaces if they are adaptive to them, but 

our approach directly generates surface meshes from implicit data – this greatly reduces the computer memory 

required. Our algorithm also guarantees the connectivity consistency on the boundaries of surface patches, 

which is important to many computational engineering applications. The resultant surface meshes are adaptive 

to curvature and provide good element shape. By choosing different cell size and different refinement accuracy, 

the mesh patches with different level-of-details can be easily determined.  

The rest parts of the paper are organized as follows. In the next section, related researches in literature will 

be first reviewed. The outline of our algorithm is then presented in section 3 followed by the detail algorithms in 

succession. After that, experimental results are shown together with some applications of our approach. Finally, 

our paper ends with conclusions and discussions. 

 

2. Review of related research 

The algorithm presented here closely relates to isosurface extraction technology, but we are facing a 

problem which cannot be well solved by existed isosurface polygonization approaches in literature. The 

discretization techniques for implicit datasets fall into three categories: 1) marching cubes and its variants, 2) 

sharp feature preserved polygonization, and 3) isosurface approximation methods, which are reviewed below. 

  

⇒  

 

Fig. 2    Outline of the heterogeneous object in example I contoured using Marching Cubes [25] 

Marching cubes and its variants 

Marching cubes (MC) algorithm was first introduced by Lorensen and Cline [13] and has become the most 

commonly used method for isosurface extraction in scientific visualization. As first noted by Duerst [14], the 

original MC algorithm [13] may produce isosurfaces with holes due to topologically inconsistent decisions on 

the reconstruction of ambiguous faces, where the borders used by one incident cube do not match the borders of 

the other incident cube. Several approaches addressing this problem have been published (see [11, 15] for a 

review).  As addressed by [11], disambiguation techniques reported so far have focused on two major concerns: 

topological consistency [16-21], i.e. producing closed surfaces by proper cube polygonization, and topological 

correctness [21-25], i.e. extracting a surface faithful to the geometry of the real surface. 

A few works attempt to recover the original topology also inside the ambiguous cubes either by using 

critical point analysis [26, 27] or trilinear interpolation [28, 29]. All these techniques are data-dependent and 

therefore are noise-sensitive and cannot be applied to binary grids. In [11], the authors propose global strategies 
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for optimizing several topological and combinatorial measures of the isosurfaces including triangle count, 

genus, and number of shells. However, the decisions of the measurements to be given by users are not natural, 

i.e., novices may feel difficult to give good decision. Our mesh extraction algorithm follows the common 

requirement of a good isosurface extractor – manifold guaranteed, and the requested inputs from users are more 

intuitive – so easier to control. Also, in most MC algorithms, the element shape of a resulting mesh is not 

controlled. As shown in Fig.2, the mesh resulted from [25] has a lot of thin triangles and short edges, while our 

result in Fig.1 gives good element shapes. Although post-processing steps, such as triangle decimation 

techniques [30-32] as well as re-tiling algorithm [33] can be adopted to eliminate badly shaped triangles, the 

approximation accuracy can be better controlled if we directly address the aspect of generated triangles during 

the contouring process. In fact, the adaptive remeshing step of our algorithm borrows some ideas from the 

triangle decimation approaches. Another problem is about the common curves between the bounding surfaces of 

different material regions, which are not generated by all MC algorithms but are preserved in our approach (see 

Fig.1b). 

A closely related work to our approach in literature is [12] for the application in biomedical engineering. 

The authors of [12] modified the MC for single material to M3C – a multi-material marching cubes algorithm 

(similar ideas have also been shown in [34, 35]). They solved the geometry ambiguous problem by assuming 

that continuity will be preserved when the same material IDs are shown on diagonals. However, as mentioned in 

[12], there are 8
8
 (i.e., 16 777 216) possible cases when the eight cube vertices have eight different materials – 

thus, the programming task for topology correctness will become very tough. Our approach develops a compact 

cell-merging strategy to elegantly solve the problem of topology correctness. Besides, the post-smoothing step 

in [12] leads to the shrinkage of surface. The same problem will not occur in our approach since the remeshing 

is governed by the underlying distance-fields, which prevents the shrinking effect. 

Sharp feature preserved polygonization 

The accuracy of a marching cube algorithm is mainly governed by the resolution of underlying grids, so 

sharp features are destroyed. Some approaches addressed this problem. The techniques include generating 

adaptive grids based on octrees or using adaptively sampled distance fields (ADFs) [36]. The key challenge is to 

design criteria for generating adaptive subdivision. Two improved isosurface extraction algorithm, extended 

marching cubes [37] and dual contouring [38], have also been presented. Both algorithms use Hermite data and 

generate isosurfaces that contain sharp features. They work well when each cell contains no more than one sharp 

features or complex edges (i.e. edges with more than one intersection with a surface). The approach in [39] 

solved the problem with more than one sharp features by integrating the adaptive grid generation methods and 

the improved isosurface extraction algorithms. 

The algorithms presented in [40, 41] improve the output of MC algorithms based on optimization 

techniques and smoothing operations. Their approach is based on mesh evolution towards a given implicit 

surface with simultaneous control of the mesh vertex position and mesh normals. The remeshing step in our 

method is akin to the dynamic mesh optimization approach [41]. The authors of [42] extended the idea in [39] to 

discretize functionally based heterogeneous objects. Their discretization result is with volumetric elements, and 

intermediate surfaces are adapted and generated during the advancing front procedure when creating volumetric 

elements. In other words, the surface meshes are not able to be extracted directly from heterogeneous volumes. 

Comparing to [42], our technique can directly extract intermediate surfaces, so less computer memory is needed; 
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also, the tedious adaptively advancing front procedure is avoided, thus the implementation of our approach is 

easier and runs faster.  

Isosurface approximation methods 

One class of isosurface generation algorithm is based on the active model, where the constructed surface is 

deformed to approximate the underground isosurface embedded in a scalar-field. The methods presented in [41, 

42] actually also belong to this category. Crossno and Angel [43] conducted particle systems to extract 

isosurfaces, where particles are programmed to attract towards a specific surface value while simultaneously 

repelling adjacent particles. The repulsive forces are based on the curvature of the surface at that location. Their 

approach presented the advantages include: vertex densities are based on surface features rather than on the 

sampling rate of the volume – so it is an adaptive approach; and a single scaling factor simplifies level-of-detail 

control. Our adaptive remeshing is also performed in the similar manner, but is speeded up by the distance-

fields. A so-called SurfaceNets algorithm developed in [44] was an alternative to MC for building globally 

smooth but locally accurate triangle models from binary volume data. In [45], this algorithm is further enhanced 

in the Kizamu system to generate mesh models from distance values sampled on an adaptive grid. During our 

implement of their algorithm, we find that the EdgeFace table in [45] does not guarantee to generate a manifold 

mesh surface. For example, as shown in Fig.3, some voxels belonging to different toruses sharing a common 

edge, which leads to edges with four adjacent faces, so non-manifold topology occurs. The bolded lines in 

Fig.3b indicate these edges. This problem has been essentially solved in our approach. 

Recently, Jin et al. [46] developed a subdivision based approach to interpolate the RBF represented implicit 

surfaces. During the subdivision, the newly introduced vertices are iteratively tracked to implicit surfaces. Their 

algorithm gives good result, however a good initial coarse mesh for subdivision is difficult to be generated 

automatically. The Shrinkwrap method presented in [47] starts with a triangulation of a sphere and next applies 

a series of deformations to this triangulation to transform it into the shape approximating the requested 

isosurface. The algorithm in [47] is adaptive in the sense that the lengths of the sides of the triangles in the mesh 

vary with the local curvature of the underlying surface. Unfortunately, only isosurfaces with genus number zero 

(i.e., topology similar to sphere) can be generated. Our method overcomes this limitation. 

Marching triangles (MT) is another class of isosurface approximation approaches. It is firstly appeared in 

[48]. The MT algorithm employs the local 3D constraint to reconstruct a Delaunay triangulation of an arbitrary 

topology manifold surface. This method is further enhance in [49] by adapting the size of triangles to the 

curvature of surface and closing cracks at the end of mesh growing. However, the drawback inherent to all 

continuation methods still exists that it is difficult to determine seed triangles on the connex part of a surface. 

 
 

⇒  

 

(a) an implicitly represented 

heterogeneous object 

(b) non-manifold edges produced (the bolded ones) by using [45] 

to construct the connectivity of isosurface  

Fig. 3    Non-manifold happens when contouring two blended toruses by [45]  
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Fig. 4    Three steps of our algorithm  

3. Outline of algorithm 

For extracting mesh surfaces from implicitly represented heterogeneous volumes, our algorithm consists of 

three phases: 

1. Extraction and segmentation of two-manifold coarse patches: The definition domain Ψ  of a given 

heterogeneous object H  is first sampled by uniformly subdivided cells with user specified cell size. A cell 

is identified to be filled with material class i if ipF =)(  is agreed at most points inside the cell (the cell 

sampling step). Then, cells belonging to the same material class are merged by joining the shared cell nodes 

(the cell merging step), and a polygon soup enclosing the different material regions is extracted on the 

interface of neighboring cells filled with different materials (the polygon soup extraction step). After that, 

the polygon soup is segmented into a collection of two-manifold polygonal mesh patches ji

n

iji
,

,0

Μ=Μ
>=

U  

where a patch ji,Μ  is an intermediate surface separating material region i and j (the patch segmentation 

step). Every segmented patch is a two-manifold mesh surface with linking information stored on boundary 

vertices. For the object of example I originally given in Fig.1, the extracted and segmented patches after this 

phase are shown at the top row of Fig.4. An illustration for the algorithm in this phase is given in Fig.5. 

2. Construction of signed distance-fields for different material stuff: Signed distance-fields are constructed 

from each homogeneous material region (i.e., a signed distance-field )( pDi  will be generated for the 

region iΩ , where for any p, )( pDi  denotes the signed Euclidean distance from p to iΩ∂ ). These distance-

fields will act as potential fields in the third phase to govern the movement of mesh vertices. For the 

intermediate surface ijΓ  between iΩ  and jΩ , both the attraction from iD  and the one from jD  will be 

applied on it; however, for the most outside surface, which is with one side has no material stuff, only the 

attraction from one distance-field is applied on it. This easily leads to instability. Therefore, we consider the 

region with no material as 0Ω , a signed distance-field )(0 pD  is also constructed for it. As illustrated in the 

middle row of Fig.4, for the heterogeneous object H  with three classes of materials, four signed distance-

fields are computed, where the black portion represents points with negative Euclidean distances. 
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3. Adaptive remeshing process: With the help of signed distance-fields, the collection of mesh patches Μ  

generated in the first phase are refined and optimized to generate an adaptive and high-quality 

approximation of Γ . The following operations are iteratively applied on Μ . 

(a) Vertex Repositioning: Using the distance-fields iD  and jD  to generate attractions on the vertices of7 

mesh ji,Μ , the vertices are driven towards the isosurface of iD  and jD  (i.e., ijΓ ). During the 

repositioning, the vertices distribution inside a mesh is also relaxed so that every vertex is close to the 

average position of it one-ring neighborhoods.  

(b) Adaptive Refinement: The distance from the middle point of every edge in Μ  to ijΓ  is detected, if it is 

greater than a tolerance, a new vertex will be introduced to split the edge and its related triangles. 

(c) Element-Shape Optimization: In this operation, extreme short edges in Μ  will be eliminated by edge 

collapse, and the edges yield sharp triangles will be replaced by their dual edges using the edge swap 

operator. The edge operations leading to invalid topological structure will be avoided, and the normal 

flips are also prevented. 

(d) Normal Preservation: This is an optional operation. To preserve sharp features, the normal preservation 

process is first applied on every inner vertex of Μ  to let the normal of polygonal faces following the 

normal given by Γ . Then, regions with sharp features are detected through the principal curvatures and 

the mean curvature on mesh vertices. In the following, the positions of vertices on sharp features are 

further adjusted by preserving their related polygonal normals while non-sharp-feature vertices are 

repositioned smoothly. 

(e) Final Contouring: Finally, we go through every edges of Μ  to ensure the element shape of triangles 

and the preservation of sharp features, where the edge swap operator will be conducted. 

After iteratively applying the above operations on the coarse mesh patches constructed in the first phase, the 

final mesh patches approximating Γ  are determined. For instance, the results of example I are listed at the 

bottom row in Fig. 4.  

The implementation details of every algorithm phase will be described successively in the following sections. 
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Fig. 5    2D illustration of the extraction and segmentation of two-manifold coarse patches 
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Table 1    Entities: cell, cellNode, and cellFace 

Class cell { 

 cellNode* nodes[8]; // the pointers of eight nodes in a cell 

 cellFace* faces[6]; // the pointers of six faces in a cell 

 bool bMerged[6];    // the flags to identify whether the cell in the ith direction has been merged with this one 

 int material;  // the index of material class with maximal volume in this cell 

} 

Class cellNode { 

float pos[3];             // the position of this cellNode 

cell** cellSet;         // the set of cells containing this cellNode 

cellFace** faceSet;         // the set of cellFaces containing this cellNode 

} 

Class cellFace { 

 cellNode* nodes[4]; // the pointers of four nodes in a face in anti-clockwise direction 

 int posMaterial, negMaterial; // index of material class at the positive/negative direction region of this face 

} 

4. Extraction and segmentation of two-manifold coarse patches 

In the first phase of our algorithm, we sample the definition domain Ψ  of a given heterogeneous object H 

into cells with uniform size, merge the cells to generate a polygonal soup, and segment the soup into linked two-

manifold mesh patches. The two-manifold topology is preserved on every step. 

4.1. Cell Sampling 

The definition domain 3ℜ⊂Ψ  bounded by ],[],[],[ maxminmaxminmaxmin zzyyxx ××  is first divided into 

LNM ××  sub-regions with a user specified width ch , where a sub-region kji ,,ψ  is defined as a cubic space 

with the interval ])1(,[])1(,[])1(,[ minminminminminmin cccccc hkzkhzhjyjhyhixihx +++×+++×+++ . The 

volumes of regions occupied by different materials are computed in each kji ,,ψ , including the region of material 

class zero – no material region. For a material with the type index ξ  which covers the maximal volume, if 

0≠ξ , a cell kjiC ,,  is created on this sub-region, and the material type in kjiC ,,  is then assigned to ξ . The data 

structures of a cell entity and its related cellNode entity are listed in Table 1, where every cell is a box 

containing eight nodes, six faces, and the flags about whether the cell has merged it corresponding nodes with 

the adjacent cells in six Cartesian directions ( zyx ±±± ,, ). When constructing a cell C, eight cellNodes are also 

created at the locations of )
2

.,
2

.,
2

.( c
c

c
c

c
c

h
zc

h
yc

h
zc ±±±  and filled in the related slots in C, where cc  is the center 

of cell. Every cellNode has this cell C stored in its cellSet.  

Analysis for Two-manifold Preservation: For the six cellFaces in a cell, we just leave them null now. They 

will be constructed and filled later. If all cellFaces are filled at this moment, the model constructed is an object 

with a lot of cubes each bounding a cell filled with one homogeneous material. In fact, the object is represented 

by many two-manifold cubes with the uniform size at this moment. 

4.2. Cell Merging 

Each cell created during cell sampling holds eight cellNodes. As a necessary step of constructing two-

manifold polygonal surface patches, the nodes at adjacent cells with the same material type are merged. This is 

called cell merging.  
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Before describing the process of cell merging, we need to introduce a common operator utilized in cell 

merging: node-merge. The operator node-merge is applied on two coincident nodes: 1v  and 2v  ( 21 vv ≠ ). The 

three steps of node-merge are: 

Step 1: Replacing 2v  in all cells containing it by 1v  (the cells containing 2v  can be easily accessed by the 

cellSet of 2v );  

Step 2: Add all cells in the cellSet of 2v  into the cellSet of 1v ;  

Step 3:  Making the cellSet of 2v  empty.  

The merging operation is then applied on every cell kjiC ,, : for every Cartesian direction of kjiC ,,  (i.e., 

1,1,1 ±±± kji ), we detect whether there is an adjacent cell aC  of kjiC ,,  having the same material type. If 

there has such an adjacent cell and no previous merge (detected by the bMerged flag) is applied between them, 

we merge their four coincident nodes by node-merge. After checking and merging all cells, all the cellNodes 

with their cellSet empty are removed finally. 

AC
BC

AC
BC

 

AC
BCShared Node

AC
BCShared Node

 

AC
BCShared Node

AC
BCShared Node

 
(a) no node shared (b) two nodes shared (c) one node shared 

Fig. 6    Case study of results after cell merging  

Analysis for Two-manifold Preservation: By the operations conducted above, all inner nodes of a 

homogeneous region are removed. Now, if the cellFaces are constructed on boundary nodes, the resultant 

polygonal surfaces are two-manifold. Each encloses a homogenous region – they are two-manifold. However, 

on the interface between two cells with different materials, duplicate faces will be given. By applying the 

following polygon soup extraction steps, we can construct a polygon soup which shows single-layer 

intermediate surfaces. With the help of cell merging, non-manifold is definitely prevented on the boundary of 

any iΩ . For instance, three different cases of two cells AC  and BC  having only one edge coincident are 

illustrated in Fig.6, where AC  and BC  contain the same material stuff. Correct results of the three cases are 

automatically generated through cell-merging according to different configurations around the coincident edge.  

4.3. Polygon Soup Extraction 

After cell merging, the polygon soup S  approximating Γ  will be extracted. The polygon soup here is a 

collection of quadrilateral polygons - cellFaces. The data structure of a cellFace entity has already been given in 

Table 1. The cellFaces in polygon soup are constructed by the following rules: 

Rule 1:  Every cell kjiC ,,  is detected in six Cartesian directions to see whether there is an neighboring cell aC . 

Rule 2: If there is no aC  neighboring to kjiC ,, , a cellFace βα ,cf  is created by the four nodes of kjiC ,,  in the 

corresponding Cartesian direction. The order of nodes in βα ,cf  is to let its normal pointing outwards 
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kjiC ,, , where the subscripts α  and β  represent the material type in positive/negative directions (i.e., 

so 0=α  and )( ,, kjiCξβ =  with )( ,, kjiCξ  giving the material index of kjiC ,, ). βα ,cf  is then filled 

into the related slot of kjiC ,, . 

Rule 3:  If there is a neighboring cell aC  to kjiC ,, , the material indexes in aC  and kjiC ,,  are detected – 

adjacent cells with the same material need no cellFace in between; also, if a cellFace βα ,cf  between 

aC  and kjiC ,,  has been generated, no cellFace is needed any more. 

Rule 4: If a cellFace βα ,cf  needs to be generated to separate aC  and kjiC ,,  (i.e., )()( ,, kjia CC ξξ ≠ ), the 

βα ,cf  is created by connecting four nodes in the cell with greater )(Lξ , and the normal of βα ,cf  

points to the cell with smaller )(Lξ . The values of α  and β  are assigned by the related )(Lξ s. 

Also, the newly created βα ,cf  is filled in its related slots of both aC  and kjiC ,, . 

Rule 5:  After creating any cellFace βα ,cf , the faceSet of each cellNode in βα ,cf  will be updated appropriately, 

where the faceSet of a cellNode contains all the βα ,cf s adjacent to this node. 

An example of polygonal soup generated by above rules on two cells enclosing different materials with 

)()( AB CC ξξ >  is shown in Fig. 7a. Following Rule 1, 3 and 4, the cellFace between AC  and BC  is created by 

four nodes (i.e., cellNodes with no.9-12) in BC  and with the order 9-12-11-10 so that the normal of the face 

pointing to AC  - the cell with smaller material index. 

Analysis for Two-manifold Preservation: For cellFaces on the adjacent cells with different materials, the 

duplication is removed after this step of algorithm. Considering about a region of material type ξ , it is bounded 

by all cellFaces, βα ,cf , with either ξα =  or ξβ = . If flipping all cellFaces βξ ,cf  into ξβ ,cf , we obtain a two-

manifold polygonal surface approximating ξΩ .  
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AC BCAC BC

 

(a) faces and nodes in a polygon 

soup before segmentation 

(b) polygonal patches after 

segmentation 

(c) segmented patches with cross-

bridges 

Fig. 7    An example of the two-manifold patch segmentation on a polygon soup with two cells AC  and BC  

( )()( AB CC ξξ > ) – different colors represent different mesh patches after segmentation where blue 

denotes the patch 0,AΜ , yellow is the patch AB,Μ , and red is for the patch 0,BΜ . The numbers denote 

different vertices. 



 11 

cn2

cn6

cn1

cn3

cn4 cn8

cn5

cn10 cn14

cn16

cn13cn9

cn12

cn7

cn11

cn15

)( ACξ )( BCξ0

0

)( ACξ

)( BCξ

)( ACξ )( BCξ0 )( ACξ )( BCξ0 )( ACξ )( BCξ0

Acn2 Acn6 Acn10 Acn14

cn2

cn6

cn1

cn3

cn4 cn8

cn5

cn10 cn14

cn16

cn13cn9

cn12

cn7

cn11

cn15

)( ACξ )( BCξ0

0

)( ACξ

)( BCξ

)( ACξ )( BCξ0 )( ACξ )( BCξ0 )( ACξ )( BCξ0

Acn2 Acn6 Acn10 Acn14

 

cn2

cn6

cn1

cn3

cn4 cn8

cn5

cn10 cn14

cn16

cn13cn9

cn12

cn7

cn11

cn15

2 

2 

6 

6

10 

18 

1810

14 

14 

)( ACξ )( BCξ0

0

)( ACξ

)( BCξ

)( ACξ )( BCξ0 )( ACξ )( BCξ0 )( ACξ )( BCξ0

Acn2 Acn6 Acn10 Acn14

cn2

cn6

cn1

cn3

cn4 cn8

cn5

cn10 cn14

cn16

cn13cn9

cn12

cn7

cn11

cn15

2 

2 

2 

2 

6 

6

6 

6

10 

18 

1810

10 

18 

1810

14 

14 

14 

14 

)( ACξ )( BCξ0

0

)( ACξ

)( BCξ

)( ACξ )( BCξ0 )( ACξ )( BCξ0 )( ACξ )( BCξ0

Acn2 Acn6 Acn10 Acn14

 

(a) alias-matrices are constructed on every 

cellNode – indices represent the related regions 

(b) after the vertices construction step, the vertices 

are created and filled in the alias-matrices 

Fig. 8    An illustration for explaining the functionality of alias-matrices (four selected matrices for the 

cellNode cn2, cn6, cn10 and cn14 are shown in the figure). 

4.4. Two-manifold Patch Segmentation 

A polygon soup is going to be further segmented into a collection of two-manifold mesh surface patches, 

where each mesh surface patch ji,Μ  is defined as a pair ),( VK , where K  is a simplicial complex specifying 

the connectivity of vertices, edges, and faces (i.e., the topological graph of ji,Μ ), and },,{ 1 mvvV L=  is the 

set of vertices defining the shape of a polyhedral patch in 3ℜ . From K , it is straightforward for our algorithm 

to fetch the adjacent nodes, edges, and faces of a triangular node in constant time. The above definition follows 

the notation in [31].  

Before presenting the segmentation algorithm, let us first introduce the concept of common vertex. Suppose 

a common point p shared by m intermediate surfaces of H, since each jiij Γ=Γ  is requested to be represented by 

a manifold mesh ji,Μ  (i<j), totally m vertices need to be constructed at p – everyone belongs to different mesh 

patches. To prevent the duplication, no ij,Μ (i<j) will be constructed. The m vertices are kept coincident – they 

are called common vertices. For one of the m common vertices v, the set of other (m-1) common vertices are 

denoted by )(vΘ . In the finally constructed ji

n

iji
,

,0

Μ=Μ
>=

U , every common vertex v stores the links to the 

other (m-1) common vertices, )(vΘ , sharing the same position. The links are named as cross-bridges.  

The position of every node in the polygon soup S  could possibly be with a set of common vertices. Hence, 

in our segmentation algorithm, a )1()1( +×+ nn  alias-matrix }{ , jicn aA =  is kept at every cellNode Scn ∈ , 

where its entry jia ,  is an alias of a vertex in ji,Μ  located coincident to cn . When φ=jia ,  , it means that there 

is no related vertex in ji,Μ . After creating the alias-matrices on every cellNode, we go through all cellFaces in 

S  twice to create vertices and update the alias-matrix of every node in the first round, and then create faces in 

the second round.  

1) Vertices Construction: For any cellFace βα ,cf  in S  contains the cellNode cn , if φβα =,a  

( cnAa ∈∀ βα , ), we create a new vertex cnv  in βα ,Μ  and let cnva =βα , . 
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2) Faces Construction: After creating all necessary vertices, we construct faces by every cellFace Scf ∈βα , . 

The generated faces are stored in mesh βα ,Μ . For a face created according to βα ,cf , the face is composed 

of the vertices indicated by cnAa ∈βα ,  and with the same orientation as βα ,cf , where cn  is a cellNode in 

βα ,cf . In other words, the newly created faces are connected to the vertices stored in the alias-matrix of a 

cellNode but not the cellNode itself.  

The faces in Μ  could be either triangular or quadrilateral. However, our latter remeshing operations requires 

triangular element, so two triangles are constructed corresponding to every cellFace. Following these, we can 

easily create every mesh patch ji,Μ  corresponding to the intermediate surface jiij Γ=Γ  of H.  

For the example polygon soup S  with two cells of different material shown in Fig.7a, the obtained mesh 

patches is as shown in Fig.7b – different colors represent different mesh patches (i.e., three patches are 

generated). When segmenting the mesh patches from a polygon soup, the alias-matrices play a significant role. 

As shown in the example of Fig.7 and 8, with the help of the alias-matrices, we can easily separate the vertices 

no.17-20 from the vertices no.9-12 (see Fig.7b) – for example the cellNode cn10 in Fig.7a, two vertices are 

created (vertex 10 and 18 in Fig.7b) and filled into its alias-matrix as )(),( ABa ξξ  (vertex no.18 for the mesh patch 

)(),( AB ξξΜ ) and 0),(Baξ  (vertex no.10 for the patch 0),(BξΜ ); for the cellNode cn6, only one vertex (vertex no.6 

for the patch 0),( AξΜ ) is created and filled into its alias-matrix as 0),( Aaξ . By the alias-matrices, we can fill the 

correct vertices into the face in a constant time (just using the index to search a vertex) – it is very efficient. 

After processing all nodes and faces in the polygon soup S, a collection of mesh patches has been created where 

each patch ji,Μ  (i<j) is a two-manifold open surface. 

Finally, the linking information of common vertices is constructed on the boundary vertices of each mesh 

patch. Our approach is based on the positions of boundary vertices. For the boundary vertices that are 

coincident, the cross-bridges are constructed on them. The coincident can be easily and efficiently detected by a 

uniform subdivision of the definition domain 3ℜ⊂Ψ .  However, this time every grid box is with mesh vertices 

at its center instead of corners. In detail, a sub-region kji ,,ϖ  is a cubic space with the interval:  

])
2

1
(,)

2

1
([])

2

1
(,)

2

1
([])

2

1
(,)

2

1
([ minminminminminmin cccccc hkzhkzhjyhjyhixhix ++−+×++−+×++−+ . 

If some boundary vertices fall in the same sub-region kji ,,ϖ , the cross-bridges are constructed among them. 

These vertices should be maintained coincident in the later refinement steps to achieve the compatible 

boundaries. 

The finally segmented ji

n

iji
,

,0

Μ=Μ
>=

U  is a collection of two-manifold mesh patches, which gives an 

approximation of Γ  in coarse level. For the example in Fig.7, the result is as shown in Fig.7c, where the nodes 

inside a black dash circle represent a unique vertex and the vertices surrounded by a red dash circle are common 

vertices linked by cross-bridges. Our later processes will refine Μ  to make its approximation to Γ  become 

more accurate. 
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Analysis for Two-manifold Preservation: For the homogeneous region ξΩ , it is approximated by the 

collection of all patches ξ,iΜ  and j,ξΜ , where the normal of each triangle on ξ,iΜ  facing outwards but the 

normal vectors on j,ξΜ  facing inwards. Since the meshes are created according to the two-manifold preserved 

polygon soups, they are two-manifold. In summary, every steps of above algorithm preserve two-manifold 

topology on the constructed model, so the final result guarantees two-manifold on each mesh patch. Fig. 5 has 

already given an illustration of our algorithm on 2D, where a collection of two-manifold patches are extracted 

from the given implicit representation. Our results follow the regularization theory (ref. [50]) for computing a 

two-manifold model from non-manifold objects. 

5. Signed distance-fields for different material stuff 

In this section, discrete signed distance-fields are constructed, which will govern the movement of mesh 

vertices in the following remeshing phase. For a give region αΩ  with material class α  in H, a signed distance-

field defined on αΩ  is a function )( pDα  assigning to every point 3),,( ℜ∈= zyxp  its distance 

),()( αα Ω∂= pdistpD , where a positive sign for points αΩ∉p , a negative sign for points )( αα Ω∂−Ω∈p , 

and 0)( =pDα  if αΩ∂∈p . A convenient way to store the distance field )( pDα  for αΩ  in an efficient data 

structure is to sample )( pDα  on uniform spatial grids with nodes ),,(,, hkhjhid kji ∆∆∆= . For a point 

),,( zyxp =  with ))1(,[ hihix ∆+∆∈ , ))1(,[ hjhjy ∆+∆∈  and ))1(,[ hkhkz ∆+∆∈ , its Euclidean distance to 

αΩ∂  can be interpolated on the grid cell ))1(,[))1(,[))1(,[ hkhkhjhjhihi ∆+∆×∆+∆×∆+∆  by a tri-linear 

function such that we obtain a piecewise tri-linear approximation )( pDα  for the original distance-field )( pDα . 

At the meanwhile, a corresponding isosurface αΩ∂  defined by 0)( =pDα  gives an approximation to αΩ∂ . 

The unit normal vector of αΩ∂  at any point αΩ∂∈p  can be calculated by the negative gradient )( pDα∇  of 

)( pDα  at p as 

)()()( pDpDpn ααα ∇∇−= ,                                                            (3) 

where the gradient vector can be simulated by the numerical central differences 

T

hzyxDhzyxD

zhyxDzhyxD
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The smaller grid size h∆  chosen, the more accurate approximation of )( pDα  is given by )( pDα , but more 

computer memory is needed for storing )( pDα . An alternative solution is the adaptively sampled distance-field 

as shown in [36]. In our current implementation, we uniformly sample the definition domain Ψ  of H to detect 

whether a sampled grid node kjid ,,  is in αΩ . For a grid node αΩ∈kjid ,,  with one of its neighborhood 

αΩ∉±±± 1,1,1 kjid , we assign the distance from kjid ,,  to αΩ∂  as zero. Then, after setting the distance values of 

other sample points to ∞ , the vector distance transforms (VDTs) presented in [51] is applied to propagate the 

distance values. The sign of distance at every sample point ),,( kji zyx  can be detected by whether αΩ∈kjid ,, . 
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If αΩ∈kjid ,, , the sign is negative; otherwise, a positive sign is given. The reason why we did not choose the 

fast marching method [52] is that, in the routine of fast marching, it needs repeatedly query the node with the 

smallest distance in its current marching set (stored by a minimal heap). The time complexity of the query is 

O(logT) if there are T nodes in the heap (in the worst case, T could be a very large number), which makes the 

fast marching slower than the VDTs in [51] where the processing time of every node is a constant. 

6. Adaptive remeshing 

By the signed distance-fields generated above, in this section, the mesh patches in collection Μ  are refined 

and optimized to give an adaptive and quality approximation of Γ . The operations adopted here include: vertex 

repositioning, adaptive refinement, element shape optimization, normal preservation, and final contouring. They 

will be iteratively applied on Μ  in the remeshing algorithm, where the refinement and optimization of Μ  are 

governed by the signed distance-fields.  

Vertex Repositioning: The purposes of this operation are to 1) move all vertices of Μ  towards Γ  and 2) relax 

the distribution of vertices on Μ . For a vertex jiv ,Μ∈ , to let ji,Μ  accurately approximate ijΓ , v should lie 

on ijΓ . However, the surface ijΓ  is not explicitly given, so we conduct two isosurfaces - 0)( =pDi  and 

0)( =pD j  to simulate ijΓ . The vertex v is attracted to move towards these two isosurfaces. At the same 

moment, in order to improve the mesh regularity when moving the vertices, every vertex is expected to be close 

to the average position of its one-ring neighbors. In summary, the following functional is defined to govern the 

vertex repositioning 

( ) ( )
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where in the third term the kq s are the one-ring neighbors of v. For the weights of functional terms, we choose 

125.0=ω  and 25.0=λ  in our implementation to balance the weights of attraction and relaxation. To make 

boundary curves smooth and maintain the position continuity between linked patches, a special functional is 

needed for relocating common vertices. Suppose that the vertex cv  is a common vertex lying on a common 

boundary of several mesh patches - PΜ s, the collection L  includes the indexes of all material regions at the 

both sides of every PΜ . The functional on cv  is then defined by 

( )
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The kq̂ s are boundary vertices in Μ  adjacent to all common vertices shared with cv  (including cv ). The 

weights in this functional are again set as 125.0=ω  and 25.0=λ . By minimizing the functionals given in Eq. 

(5) and (6) iteratively, the vertices in Μ  are moved closer and closer to Γ  while being relaxed. 

Adaptive Refinement: To make the approximation of Γ  adaptive to its shape, we split some triangular edges 

to introduce new vertices. This is very important for the surfaces with large curvatures. Considering about any 



 15 

triangular edge Μ⊂Μ∈ jie ,  with ep  as its middle point, if r

ejei pDpD
ε>

+

2

)()(
, we insert a new vertex 

at ep . In our implementation, we choose hr ∆= 75.0ε  where h∆  is the sampling rate of underlying distance-

fields. After checking all triangular edges on Μ , several new vertices are created. If the two vertices sv  and ev  

of a divided edge are both common vertices, to eliminate T-junctions on the boundary of surface patches, all 

other edges with vertices having cross-bridges linking to both sv  and ev  must also be split by inserting new 

common vertices in the middle; also, the cross-bridges need to be constructed on the newly created common 

vertices. 

Element-Shape Optimization: Two types of element shape optimizations are conducted during the remeshing 

of Μ  to amend the shape of its elements. They are edge collapse and edge swap in [31]. These two operators 

work together to iteratively remove triangles with extreme small and large angles. Note that the operation leads 

to topology degeneration cases shown in [53] should be prevented. An illustration for how the degeneration 

happens is given in the Appendix of this paper. Again, to avoid T-junctions the operations on boundary edges 

are not allowed either. 

Normal Preservation: This is an optional operation. The function of this operation is to preserve sharp features 

on Μ  through minimizing the difference of each face’s normal and the normal given by Γ  at its center. The 

preservation is achieved through two phases of vertex position optimization. By moving mesh vertices 

iteratively, we can make the normal of every mesh triangle jif ,Μ∈  closer to the reference normal given by 

)( ci pD  and )( cj pD  at the centroid cp  of f (details refer to [41]).  The first phase of normal preservation is to 

update every vertices in Μ  except the boundary ones for several iteration steps to optimize normals on their 

adjacent triangles. The sharp-feature vertices are then detected through the curvature tensors (ref. [54]). The 

discrete mean curvature at every interior vertex is computed (eq.(8) in [54]) – if the mean curvature is greater 

than a user specified threshold, it is identified as a sharp-feature vertex. Note that, the threshold can be 

determined in a trial-and-error manner or be specified interactively: the user can specify a few vertices he 

thought to be on a sharp edge and some others not on a sharp edge, these vertices can then be used to compute 

the threshold for classification. After classifying vertices, we start the second phase of normal preservation. For 

the non-sharp-feature vertices, we reposition them by minimizing the functional given in Eq.(5) or Eq.(6); while 

for the sharp-feature vertices, we go on updating their positions to let its adjacent triangles satisfy the reference 

normal vectors. 

Final Contouring: Finally, after using above operations to change the geometry and connectivity of Μ , we go 

through every inner edge twice to see whether edge swap is necessary. In the first run, the distances from the 

middle point of every edge and its dual edge to Γ  are compared. The one with smaller distance is expected. The 

second pass detects normals on the adjacent faces of every edge and its dual edge. If the normals of faces 

adjacent to the dual edge gives better approximation of Γ  (simulated by distance fields), edge swap is applied 

on the edge to enhance the approximation of Γ  by Μ  - this greatly improves the sharp features on resultant 

meshes. Again, the edge swap leading to topology degenerations must be prevented. 
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By iteratively applying above operations to the two-manifold coarse patches, we can finally construct the 

adaptive and quality Μ  which gives a good approximation of Γ . The overall remeshing algorithm is written in 

pseudo-code in Table 2. For the loop of Procedure Remeshing, the terminal condition of iteration is that: 

rejei pDpD ε≤+ ))()((
2

1
 is satisfied on every Μ⊂Μ∈ jie ,  with ep  as its middle point, where 

hr ∆= 75.0ε  – the same as what we used in Adaptive Refinement. Since all operations utilized in remeshing 

preserves 1) two-manifold on a mesh patch and 2) continuity cross linked patches, the resultant Μ  of remeshing 

is guaranteed to be topologically valid. Every homogeneous region in the given heterogeneous object Γ  is 

explicitly represented by the assembled two-manifold mesh patches; the elements on meshes are with good 

shape, and are adaptive to the curvature of Γ . 

Table 2    Procedure Remeshing 

Procedure Remeshing( Μ )  

{ 

 Vertex Repositioning; 

 Do { 

Adaptive Refinement; 

Vertex Repositioning; 

Element-Shape Optimization; 

 }While(the terminal condition of refinement is NOT satisfied); 

 Vertex Repositioning; 

 Normal Preservation;          // optional 

 Final Contouring; 

} 

 

7. Experimental Results 

In this section, several experimental results will be shown. Our first example is a heterogeneous volume 

consists of three materials which has been previously shown in Fig.1a. The coarse meshes and signed distance-

fields extracted from the implicitly represented H have already been listed at the top two rows of Fig.4. The 

progressive results during Procedure Remeshing are shown in Fig.9. It is easy to find that the remeshing 

procedure significantly improves the quality of Μ  approximating Γ . vN , eN , and fN  denote the number of 

vertices, edges, and faces in Μ  respectively. 

Example II demonstrates the performance of sharp feature preservation in our algorithm. The implicitly 

represented heterogeneous object H of two materials is given as shown in Fig.10a with 0.5mm sampling 

accuracy. The coarse two-manifold meshes in Μ  are extracted and segmented by choosing 3=ch mm (see 

Fig.10b). If no normal preservation is applied on Μ  in Procedure Remeshing, the resultant object will 

degenerate to smooth regions at the place where sharp edges are expected (see Fig.10c). In the first phase of 

normal preservation, every inner vertices on Μ  are moved to preserve normals on its neighboring faces; 

however, unexpected sharpening is generated on some regions expected to be smooth (e.g., the surface of sphere 

becomes unsmooth in Fig.10d). To further enhance Μ , the vertices on sharp features are detected (i.e., the 

vertices with small cubes in Fig.10e); then the second phase of normal preservation and the final contouring are 

applied on Μ  to give the final result as shown in Fig.10f. To illustrate sharp features clearly, we adopt the flat 

shading to display the results in Fig.10.  
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(b) after partially refinement and element-shape optimization: 2132=vN , 6102=eN , and 3974=fN  
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(c) the final result: 2209=vN , 6303=eN , and 4098=fN  

Fig. 9    Progressive results of Example I during remeshing 

 

  

(a) the given implicit 

heterogeneous object 

(b) the coarse meshes before 

remeshing 

(c) the result without normal 

preservation 

   

(d) the noisy mesh after Phase I of 

normal preservation 

(e) the vertices in sharp feature 

region have been detected 

(f) the final result of our 

remeshing algorithm 

Fig. 10    Example II: demonstrate the performance of sharp feature preservation 
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In our example III, a heterogeneous object with four materials is given (see Fig.11a). Our surface extraction 

algorithm provides two parameters to control the resolution of resulting meshes: one is the size of cells ch  that 

determines the initial mesh resolution before remeshing, and the other is the sampling accuracy of underlying 

distance-fields h∆  which effect on the Adaptive Refinement, Vertex Repositioning, and Normal Preservation in 

Procedure Remeshing. Comparing the results given in Fig.11b and 11c, since they adopt the same ch , the 

elements at flat and curved regions are with similar size; however, with smaller h∆ , more elements have been 

created to adapt high curvature regions on Γ  of H. When keeping the same h∆ , but using smaller ch  (e.g., the 

one in Fig.11d), the elements at low curvature regions become smaller either – so more elements are generated. 

It is not difficult to find that every mesh patch in the final result gives very smooth boundary curves, which are 

illustrated by the red color edges. 

 

 

       

(a) the given implicit heterogeneous object (b) the result with 3=ch mm and 1=∆h mm 

( 2854=vN , 7863=eN , and 5009=fN ) 

              

(c) the result with 3=ch mm and 5.0=∆h mm 

( 5143=vN , 13878=eN , and 8735=fN ) 

(d) the result with 2=ch mm and 5.0=∆h mm 

( 6382=vN , 17621=eN , and 11239=fN ) 

                

(e) the parts with different classes of materials 

Fig. 11    Example III: the approximation of Γ  in different resolutions 
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(a) the given implicit 

representation 

(b) the extracted surface (c) the parts with different classes of 

materials 

Fig. 12    Example IV: bounding surfaces of different material regions for a freeform model 

The mesh patches Μ  extracted in our algorithm, which approximate the interfaces Γ  of a given implicit 

heterogeneous object H, can also be employed to generate two-manifold mesh surfaces for freeform fabrication 

of heterogeneous structures (e.g., the multi-volume B-rep models requested by [55] can be easily generated). 

Suppose the part of material class X in Μ  needs to be fabricated, its related STL file is produced by the 

following two steps: 1) for a  two-manifold mesh patch Μ∈Μ ji, , if Χ=j , every triangle in ji,Μ  is written 

into the STL file, and 2) for the patch Μ∈Μ ji,  with Χ=i , its triangles are also written into the STL file, but 

in the opposite direction – i.e., when writing, the order of nodes must be reversed.  Fig.11e shows the parts in 

STL files with different materials on Example III, and Fig.12 demonstrates this on a freeform model. 

Our fifth example comes from the application of structure optimization. For a cantilever beam loaded 

vertically at the bottom of its free end as shown in Fig.13a, to minimize the mean compliance by distributing six 

given materials, the heterogeneous structure can be optimized by using the “color” level set method [2]. When 

the resultant structure is implicitly represented as Fig.13b, our approach presented in this paper can extract mesh 

representation of the heterogeneous structure. Both the bounding surfaces of structure and the intermediate 

surfaces inside will be constructed. The resultant surfaces are given in Fig.13c, from which it is not difficult to 

find that our method works well on narrow geometries (as long as the thickness of the geometry is greater than 

h∆  and ch ). As shown in the zoom-view – Fig.13d, a sharp intersection angle between two boundaries can also 

be reconstructed successfully. 

The method presented in this paper also works for the applications of biomedical engineering (e.g., Fig.14). 

After segmenting the CT volume images of a human brain, we obtain an implicitly represented volume data (see 

Fig.14a, where different colors represent different tissues). By the approach presented in this paper, the mesh 

surfaces approximate the interfaces between the tissues are successfully extracted (see Fig.14b). Meshes on the 

reconstructed surface are adaptive to curvatures (see the meshes in Fig.14c). By the resultant model from our 

approach (e.g., in Fig.14d), it is easy to generate the B-rep models for different tissues to be applied in the 

further simulation and processing.  

By the examples shown in the Fig.12 and 14, our approach has been proved its ability to process the meshes 

with vertices at the range of tens thousand (in detail, example IV is with 12,200 vertices and example VI is with 

29,932 vertices). When processing these two examples, only about 200 to 300 MB RAM is used. Also, the 
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memory usage in our approach is linearly proportional to the number of mesh vertices. Therefore, it is not 

difficult to conclude that the proposed approach can process the meshes with even >100K vertices. 

FF
  

(a) structure to be optimized (b) optimized structure with five 

materials in implicit representation 

  

(c) mesh surface extracted (d) zoom-view 

Fig. 13    Example V: optimized heterogeneous structure 

 

  

(a) the segmented CT medical 

image 

(b) the extracted surface patches (c) mesh view 

 

 
 

 

 
 

(d) the parts with different tissues 

Fig. 14    Example VI: the application of our approach in biomedical engineering to extract mesh surfaces 

from a segmented CT image data 
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8. Conclusion and Discussion 

In this paper, a novel direct method is presented to extract adaptive and quality surface meshes from 

implicitly represented heterogeneous volumes made of different materials. Our approach can directly convert 

implicitly represented heterogeneous objects into a surface model separating homogeneous regions with 

different material stuffs, where every homogeneous region in a heterogeneous structure is bounded by a set of 

two-manifold surface meshes. The element size on resultant meshes is adaptive to the curvature of surfaces, and 

the shape quality of each element is well controlled. The intermediate surfaces between two constituent 

materials in a heterogeneous structure are directly extracted by our algorithm. Therefore, it is more convenient 

to adopt the surface meshes generated in our approach for BEM computing or as a starting model to build 

volumetric meshes for FEM computing. Also, it is easy for our approach to generate models for manufacturing, 

where two-manifold is always required. In summary, our algorithm shows the following advantages: 

• Two-manifold is preserved on each patch of extracted surface meshes; 

• The consistency is preserved on the intermediate surfaces of adjacent material regions, which cannot be 

solved by applying existed isosurface extraction algorithms on each homogeneous material region; 

• Comparing to volumetric-element related approaches, our method conducts less computer memory; 

• The consistency is also preserved on the shared boundaries of mesh patches by maintaining the linking 

relationship on boundary common vertices; 

• The resultant mesh surfaces are adaptive to curvature and provide good element shape; 

• By choosing different cell size and different distance-field sampling size, the mesh patches in different 

level-of-details can be easily generated. 

In summary, this paper presents a novel approach for solving the problem of directly extracting intermediate 

surfaces from an implicit heterogeneous volume. The algorithm is stable and fast. The results of all examples 

listed in this paper can be computed in from several seconds to tens seconds on a PC with standard configuration 

(PIII 1.0GHz CPU + 512MB RAM). Our program is written in ANSI C++ and the GLUT library. 

Limitations: The approach presented in this paper shows some limitations in the aspects of normal 

preservation, models with thin-wall structures, types of heterogeneous volume, and accuracy of distance-field 

approximation.  

• The normal preservation method presented in this paper actually depends on the approximation of 

underlying distance-fields. However, as mentioned in [37], the distance-field does not converge to the 

normal field while increasing the sampling rate. For this reason, the influence on our approach is that 

the reconstructed surface sharpness may not give sharp enough edges (e.g., on the sharp edges expected 

to be with 
2

π
θ =  dihedral angles, maybe only the edges with 

2

π
θ <  dihedral angles are constructed). 

• The reconstruction of thin-wall geometry depends on the user specified parameter: h∆ . If the thickness 

of a thin-wall structure is less than h∆ , our algorithm will become instable. For another user specified 

parameter ch , hhc ∆>  should be kept; otherwise, the cell-merging algorithm will fail. 

• The presented algorithm only works for the heterogeneous volumes which have clear interfaces 

between different material regions. For those heterogeneous volumes described by continuous 
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functions, where the stuff on a single point is a blending of several material types, the strategy to 

separate different regions is still under investigation.  

• The mesh quality around boundaries of mesh patches is sometime not high enough – this is mainly 

because that some of the mesh optimization operators are prevented so that to remain the topological 

structure. This problem can be solved if adaptive remeshing technique is applied to post-process the 

output of our approach. 

• The signed distance-field adopted in our current implementation is tri-linear, which shows relative low 

approximation accuracy. 

The mesh surfaces constructed above are with triangular elements. However, quadrilateral meshes are 

widely utilized in FEM for its better numerical quality. The triangular mesh patches generated in our approach 

of course could take the role of underlying meshes to generate quadrilateral meshes using the Q-Morph 

approach [56], which is an indirect approach. As an alternative, our algorithm presented above can also be 

conducted as a direct quadrilateral meshing approach after giving some modification. First of all, when 

extracting and segmenting coarse mesh patches from the polygonal soup, we keep the faces in the mesh Μ  

being quadrilateral. Fig.15a gives an example of the coarse two-manifold quadrilateral meshes segmented from 

the polygonal soup. Then, in the Procedure Remeshing, only Vertex Repositioning and Normal Preservation 

can be applied on quadrilateral meshes. After iteratively applying these two operations to the coarse two-

manifold quadrilateral meshes, the final shape of quadrilateral meshes approximating the interfaces of H is 

determined. For instance, Fig. 15b and 15c give the quadrilateral mesh representation of heterogeneous object H 

originally given in Example I (Fig.1a). The overall geometry of Μ  is good; but when looking at the shape of 

each element, some quadrilateral elements are degenerated (with obtuse inner angle). The degraded elements 

usually happen near the boundaries of mesh patches (e.g., the black quad given in Fig.15d). In order to solve this 

problem, further research shall be conducted to develop a quadrilateral version of Element-Shape Optimization 

in Procedure Remeshing. Our preliminary review finds that the polygonal surface mesh optimization approach 

in [57] is helpful; since it is not the major concern in this paper, we just leave it for the future investigation. 

According to the approximation error shown on the signed distance-field, one possible future work is to 

adopt non-linear basis functions defined on grid node to give a non-linear approximation of the distance-fields 

(e.g., the B-spline basis employed in [58]) – so that the approximation error could be decreased without 

increasing the grid nodes. Other possible future works based on this research include the investigations about 

how to further enhance the performance of normal preservation and how to extend current in-core algorithm into 

an algorithm to extract the mesh surfaces in the out-of-core manner, which is very useful when handling the 

implicit volume sampled on billions of grid nodes. 

   
 

(a) two-manifold coarse 

mesh patches 

(b) surface after Vertex 

Repositioning 

(c) mesh view (d) degenerated 

quadrilateral element 

Fig. 15    Quadrilateral mesh generated by our approach  
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Appendix Topology Degeneration in Element-Shape Optimization 

The figures below show the cases which will lead to invalid topology. In detail, for edge collapse, if  

},{},,,{)()( rlirlrs vvvvvvstarvstar ⊃= LI  

but not  

},{)()( rlrs vvvstarvstar =I , 

the degeneration happens after collapsing Μ∈= rs vve , ; for edge swap, if there exist an edge Μ∈rl vv , , 

invalid topology will occur after swapping e.  
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Fig. A    Mesh degradation cases should be prevented in edge collapse and edge swap 

 


