
1

Uniform Offsetting of Polygonal Model based on Layered
Depth-Normal Images

Yong Chen*

Department of Industrial and Systems Engineering
University of Southern California

Charlie C. L. Wang

Department of Mechanical and Automation Engineering
The Chinese University of Hong Kong

* Corresponding Author: 213-740-7829, yongchen@usc.edu.

Abstract
Uniform offsetting is an important geometric operation for computer-aided design and manufacturing
(CAD/CAM) applications such as rapid prototyping, NC machining, coordinate measuring machines, robot
collision avoidance, and Hausdorff error calculation. We present a novel method for offsetting (grown and
shrunk) a solid model by an arbitrary distance r. First, offset polygons are directly computed for each face,
edge, and vertex of an input solid model. The computed polygonal meshes form a continuous boundary;
however, such boundary is invalid since there exist meshes that are closer to the original model than the
given distance r as well as self-intersections. Based on the problematic polygonal meshes, we construct a
well-structured point-based model, Layered Depth-Normal Images (LDNI), in three orthogonal directions.
The accuracy of the generated point-based model can be controlled by setting the tessellation and sampling
rates during the construction process. We then process all the sampling points in the model by using a set of
point filters to delete all the invalid points . Based on the remaining points, we construct a 2-manifold
polygonal contour as the resulted offset boundary. Our method is general, simple and efficient. We report
experimental results on a variety of CAD models and discuss various applications of the developed uniform
offsetting method.

Keywords: Offset surfaces, geometric modeling, trimming self-intersections, layered depth normal images,
point-sampled geometry.

1. Introduction
Offsetting a solid S by a distance r into a grown or shrunken version of S has been precisely defined for

point sets in Euclidean space E2 or E3 (Rossignac and Aristides A. Requicha 1986). As shown in Figure 1,
suppose a ball with radius r is defined as rb , we can define the two offsetting operations as:

(1) S grown by r as rr bSS ⊕=↑ , and (2) S shrunk by r as rr bSS ⊗=↓ ,
where a special case of the Minkowski sum of A and B, denoted BA⊕ , is defined as

},|{ BbAabaBAC ∈∈+=⊕= , and a special case of the Minkowski difference, denoted BA⊗ , is
BA⊕ .

2

rS ↑

Figure 1. Offsetting a solid S by a distance r.

Offsetting problems belong to a class of geometric problems that are fundamental and significant to
various computer-aided design and manufacturing (CAD/CAM) applications such as shelling, filleting and
rounding of 3D models, tool path generation for 3D NC machining, rapid prototyping and coordinate
measuring machines, tolerance analysis for assemblies, and robot path planning (Rossignac and Aristides A.
Requicha 1986) (Pham 1992) (Maekawa 1999) (Chen et al. 2005). Since boundary representation (b-rep) is
one of the most popular representations of 3D solid, we will focus on an input solid defined as a polygonal
model. Our goal in this paper is to compute a uniform offsetting model for an arbitrary offset distance to a
polygonal model, which has no defects such as gaps, holes, and self-intersections.

Although the offsetting operation is mathematically well defined, computing an offset model for a given
solid has proven to be difficult. Position changes by an offset distance generally lead to self-intersections and
consequently topological changes. Therefore trimming invalid offset surfaces in the polygonal model is
required, which is usually computationally complex and numerically instable. Many degenerate cases
between vertices, edges and surfaces need to be carefully considered in implementation. To avoid the
difficulties, previous work based on volumetric approach (Chen, Wang et al. 2005; Varadhan and Manocha
2006; Lien 2007; Pavic and Kobbelt 2008) and sampling point approach (Lien 2007) have been presented.
Instead of directly trimming the offset polygonal model, these approaches first generate volumetric grids and
sampling points to approximate the offset model. Then distance field computation is used to calculate the
minimum distance of a point to the original boundary, which is compared with the offset distance for its
inside/outside property. Finally an offset model can be reconstructed from the volumetric representations.

1.1 Our Approach
In this work, we follow the volumetric approaches on computing the offset boundary of a given solid.

However, different from the aforementioned volumetric approaches that are based on distance field
computation, our method is based on directly computing offset boundary, converting the boundary into
structurally sampled points and accordingly filtering the sampling points for reconstructing offset contour.
An illustration of our method for a 3-dimensional (3D) solid model is shown in Figure 2. We first compute a
set of offset surfaces directly from the vertices, edges and triangles of the input model. The offset surfaces
form a continuous boundary (refer to Figure 2.a). However, the generated offset surfaces may have self-
intersections and there are surfaces that are closer to the original model than the distance r. To trim the

3

invalid offset meshes, we construct a well-structured point representation, named Layer Depth-Normal
Images (LDNIs) (Chen and Wang 2008), to sample the offset meshes (refer to Figure 2.b). The accuracy of
the generated LDNIs models can be controlled during the construction process. We then process all the
sampling points in the offset LDNIs by using a set of point filters. Accordingly all the invalid points are
identified and discarded from the offset LDNIs. The remaining points after the filtering process are shown in
Figure 2.c. Finally, we reconstruct an offset contour from the processed LDNIs model by using an
adaptively sampling (Chen and Wang 2008) and manifold-preserving contouring methods (Wang and Chen
2008). The computed uniform offsetting model is shown in Figure 2.d with a magnified view (A~D) for
each major step of the method.

Filtering: separate boundary
and inner points

Ray
casting

filter

Offset
property

filter

Input model

Boundary LDNI model

Offset LDNI model

Inner points (discarded)

(a) (b)

(c)(d)

X-point

Z-point

Y-point

Small
segment

filter

A B

C
D

D C B A

Offset model

Offset meshes (r = -0.1)

Figure 2. An overview of our method. First, a continuous offset boundary is constructed; we then sample the
boundary from three axes to compute a point-based model; the sampling points are filtered and inner points
are discarded; finally the remaining boundary points are used to construct the contour of offset model.

1.2 Key Contributions:
We present a novel approach to compute the uniform offsetting boundary for an input polygonal model

and an offset distance. Our approach is based on the mathematical definition of offsets. It has several
benefits which are listed as follows.
• General: We provide a practical method to offset general 3D surfaces represented in polygonal meshes.

It can handle an arbitrary offset distance to generate both grown and shrunk models. The challenge of
detecting singularities and eliminating self-intersections is handled by the point-based representation.
Hence the topology of the reconstructed offset model can be quite different from that of the input model.

4

• Accurate: The resulting polygonal model is a close approximation of the exact offset boundary. Its
approximation error is bounded by the tessellation density and the sampling resolution used in
constructing the LDNIs model. Based on a mesh tiling technique, the LDNIs resolution can be set
sufficiently small and satisfy the requirements of most CAD/CAM applications.

• Efficient: Our method directly computes the offset surfaces and accordingly a related LDNIs model. For
each sampling point, we judge its inside/outside property directly based on a ray casting test instead of
the minimum distance computation form the original model. Therefore the performance of our method is
less related to the offset distance; while other offset approaches (Chen, Wang et al. 2005; Pavic and
Kobbelt 2008) will dramatically slow down for a bigger offset distance. In addition, several key steps in
processing a LDNIs model can be parallelized.

• Simple: Our method is mainly based on LDNIs. Comparing to other methods such as the ones based on
the boundary representation, our method is relatively easy to implement.
To illustrate the benefits, we present two offset examples that are generated by our method in Figures 3

and 4 respectively. In Figure 3, both the grown and shrunk models of a complex dragon model (publically
available from Stanford 3D Scanning Repository) are given. Notice the topological changes in the offset
models. In Figure 4, both the grown and shrunk models of an engineering model (a hub) are given, where
the sharp corners and edges in the offset boundary are well captured.

Figure 3. Screen capture of the offset results for a dragon model.

Figure 4. Screen capture of the offset results for a hub model.

2. Related Work
Earlier approaches (Rossignac and Aristides A. Requicha 1986) (Farouki 1985) (Satoh and Chiyokura

1991) (Frosyth 1995) first compute a superset of offset surfaces by offsetting vertices into spheres, edges into
cylinders, and faces into parallel faces. Then, they trim that superset by subdividing its elements at their

r = 0.02r = -0.02

r = 0.05r = -0.05

Input model

Input model

Offset model (grown)Offset model (shrunk)

Offset model (grown)Offset model (shrunk)

5

common intersections and by deleting the pieces that are too close to the original solid. The computational
complexity and numeric difficulty of trimming makes these approaches difficult to be implemented robustly.

To avoid the computational difficulties in surface trimming, some approximation approaches have also
been investigated. For example, Qu and Stucker (Qu and Stucker 2003) presented an offset method based on
moving triangle vertices while maintaining the same topology. The approach of calculating the position of
offset vertices was presented. However, such an approach is limited to sufficiently small offset values since
topological changes due to self-intersections are not considered.

Another approximation approach is to convert the offsets of a 3D model into the offsets of 2D contours.
For example, Lam et al. (Lam, Yu et al. 1997) described an approach based on slicing geometries into 2D
contours and offsetting each slice contour based on pixels. McMains et al. (McMains, Smith et al. 2000)
presented an algorithm for building thin-walled parts in fused deposition modeling (FDM) machine.
Geometries are sliced first followed by creating 2D offset contours. Allen and Dutta (Allen and Dutta 1998)
also developed an algorithm for building thin shell surfaces with minimum supports in layered
manufacturing processes. However, these approaches are mainly used for special applications such as
layered manufacturing. No offset surface model is constructed.

A ray-rep representation and related computation method have been developed for offsets, sweeps, and
Minkowski operations (Hartquist, Menon et al. 1999). A ray-rep is a set of line segments that lie inside the
solid and generated by clipping a regular grid of lines against a solid model. The ray-rep representation
stores only depth values of intersection points in one ray direction. In comparison, the LDNIs-based method
uses both depth values and normals of sampling points that are generated in three orthogonal directions.
Also the reconstruction of offset model was not considered in (Hartquist, Menon et al. 1999).

An offset method based on distance volume and fast marching method was presented for CSG models
(Breen and Mauch 1999). The approach calculates the shortest distance to the CSG model at a set of points
within a narrow band around the evaluated surfaces. Additionally, a second set of points, labeled as the zero
set which lies on the CSG model's surfaces, are computed. A point in the zero set is associated with each
point in the narrow band. Once the narrow band and zero set are calculated, a fast marching method is
employed to propagate the shortest distance and the closest point information out to the remaining voxels in
the volume. The approaches of calculating distance maps and their representations can also be found
(Gibson 1999; Frisken, Perry et al. 2000). Based on the idea of computing unsigned distance fields, Kim et
al. (Kim, Varadhan et al. 2003) presented a five-stage pipeline to approximate the swept volume of a
polyhedron along a given trajectory. The major steps include classifying the grid points on a uniform grid,
using fast marching front propagation and reconstructing volume from iso-surfaces.

More recently, Chen et al. (Chen, Wang et al. 2005) presented a point based offsetting approach, in
which, uniform sampling points are first generated from the original model. Then for each point, a set of
offsetting lines are constructed to mark all intersected voxel grids and offset points valid/invalid; finally
offset surfaces are reconstructed from the marked voxels and offset points. Varadhan and Manocha
(Varadhan and Manocha 2006) presented an algorithm to approximate the 3D Minkowski sum of polyhedral
objects. The union of pairwise convex Minkowski sums is computed by generating a voxel grid, computing
signed distance on the grid points and performing isosurface extraction from the distance field. Lien (Lien
2007) used sampling points to compute the Minkowski sum boundary based on the normal filter and the

6

collision detection technique. However, the approach can only generate a set of points instead of meshes.
Pavic and Kobbelt (Pavic and Kobbelt 2008) presented a volumetric approach based on identifying octree
cells whose minimum distance to the original model is less than the offset distance while the maximum
distance to the original model is larger than the offset distance. The identified cells, which intersect the
offset surfaces, are iteratively subdivided until it reaches the finest resolution level. Finally the offset
surfaces can be extracted from the generated octree cells.

3. Principle of the LDNI-based Offsetting Method
Our method is based on the mathematical properties of offsets. Suppose S∂ is the topological boundary

of a set S. Nadler (Nadler 1978) define the regularized offset of a regular set S by a positive distance r as
}),(:{* rSpdprS ≤=↑ , where (,) inf

q S
d p S p q

∈
= − and inf denotes the greatest lower bound. From this definition,

}),(:{)(* rSpdprS =⊂↑∂ . For),(),(, SpdSpdSp ∂=∉ . The regularized negative offset of a non-empty S
is defined as the complement of the positive offset of the complement of S. So the analogous result in terms
of point/set distances for a negative offset of solid S is }),(:{)(** rScpdprS =⊂↓∂ , where c* denotes
regularized complement. Since *S r↓ can be directly derived from *S r↑ , we will focus on *S r↑ from
now on and briefly mention *S r↓ .

The principle of our method is to first generate a super set }),(:{ rSpdp =∂ and then calculate the offset
surfaces)(* rS ↑∂ from it. For a regularized set S defined as a polygonal model, its boundary

)()()(SFSESVS ∪∪=∂ where V(S), E(S), and F(S) refer to the vertices, edges and faces of S respectively.
Correspondingly, for point q S∈∂ , we can calculate the set }),(:{ rqpdp = as +++ ∪∪ rrr VEF |||||| , where
V||r+, E||r+, and F||r+ are the positive normal offset of V(S), E(S), and F(S) respectively.

(1) Faces F(S): Suppose f is a face of S and fq∈ . We can construct the set F||r+ by displacing each
point q a distance r along the unit normal n of f, i.e., let p = q + rn.

(2) Edges E(S): Suppose e is an edge of S and eq∈ . The two neighboring faces of e are f1 and f2. We
can construct the set E||r+ by constructing a cylinder centered at e with radius r. The cylinder can be bounded
by f1||r+ and f2||r+ because the points outside the bounded portion are closer to f1 and f2.

(3) Vertices V(S): Suppose v is a vertex of S and vq = . The neighboring edges of v are e1, e2, …, ei. We
can construct the set V||r+ by constructing a sphere centered at v with radius r. The sphere can be bounded by
e1||r+, e2||r+,…, ei||r+ because the points outside the bounded portion are closer to the neighboring faces.

Therefore, *() || || ||r r rS r F E V+ + +∂ ↑ ⊆ ∪ ∪ . That is, any point)(* rSp ↑∂∈ must be attained from
+++ ∪∪ rrr VEF |||||| . Notice all points of F||r+, E||r+, V||r+ are at a distance r from some points of S∂ (suppose

qi); however some of them may be at a smaller distance to other points of S∂ (suppose qk). When p is an
invalid point, qi||r+ and qk||r+ will intersect each other. Such self-intersection is a core challenge to be
addressed. We define inner points as the sampling points on +++ ∪∪ rrr VEF |||||| whose minimum distance
to)(S∂ is less than the offset distance r, and boundary points as all the sampling points on

+++ ∪∪ rrr VEF |||||| that are also on)(* rS ↑∂ . Therefore, the essence of our method is to remove the inner
points from the set +++ ∪∪ rrr VEF |||||| such that the boundary points can be computed to approximate the
boundary of rS *↑ .

The uniform offsetting considered in this paper is a special case of general Minkowski operations.
Guibas et al (1983) presented a framework which converts Minkowski operations into convolution operations.

7

A set of concepts such as polygonal tracings and state counting functions have been proposed and the related
properties have been studied. Our offsetting approach shares the similarity to their framework on computing
the offset boundary by a polygonal tracing tour and judging its ray casting values based on winding numbers.

We illustrate the aforementioned principle by using a 2D case as shown in Figure 5. Suppose a portion
of the boundary for defining a 2D region S is shown in Figure 5.a. It includes three edges (E1 ~ E3) and two
vertices (V1, V2). To offset ()S∂ by a distance r (shrunk), we can compute e||r- for each edge of E(S) and v||r-
for each vertex of V(S). Notice −− ∪ rr EV |||| form a continuous boundary (refer to a magnified view A in
Figure 5.a-right). It also has multiple self-intersections. We use a well-structured point representation
(LDNIs) to sample the boundary −− ∪ rr EV |||| . Figure 5.b gives a two-dimensional illustration of the
constructed LDNIs model, where the red dots indicates the points recorded on the x-LDNI and the blue ones
illustrate the points on the y-LDNI. Hence each pixel of a LDNI contains a sequence of Hermite data that
specify the depths from the intersections to the viewing plane and the unit normal vector of the sampled
surface at the intersection point. Furthermore, all the depths of a pixel are sorted in the ascending order.

r
E1

E2

E3

V1

V2
V2||-r

E1||-r

E3||-r

E2||-r

V1||-r

E1||-r

E3||-r

0

-1
0

1

0 -1
-2 0

1-1

Xi

Yj

Yj

Xi

V2||-r

V1||-r
E2||-r

(a) Computed continuous offset boundary.
Notice it has complex self-intersection.

(b) Computed LDNIs model include x-
LDNI and y-LDNI. Their sampling points
are shown in red and blue respectively.

(c) Compute boundary points based on three types of
point filters. Two of them are shown with examples.

Ray casting filter

B

Small segment filter
B

d

(d) Construct offset contour
based on boundary points.

S

S r

A

A

Figure 5. A 2D illustration example of S shrunk by a distance r.

A set of point filters have been developed to process all the LDNI points. For example, the ray casting
test values of pixels Xi and Yj are shown in Figure 5.c. A point will be deleted if its two neighboring regions
do not have the ray casting value of (0, 1) or (1, 0). As another example, the two LDNI points as shown in

8

view B define a small segment. The two points will be deleted if Δd < ε, where ε is a small tolerance such as
10-5. After the filtering process, the remaining LDNI points are shown in Figure 5.c-left. Notice the exact
surface normals at these points are also known. Hence based on the Hermite data at these points, a manifold
contour can be computed from the cells defined by the intersections of the rays related to x-LDNI and y-
LDNI pixels. Such a contour is an approximated boundary of)(* rS ↓∂ (refer to Figure 5.d).

We further illustrate our method by using a 2D contour sliced from a 3D model as shown in Figure 6.a.
The offset boundary −− ∪ rr EV |||| of its internal loop 1 is shown in Figure 6.b. As illustrated in two
magnified views A and B in the figure, complex self-intersections exist in the offset boundary. As discussed
before, we handle them by converting the boundary into a LDNIs model and using point filters to process the
sampling points. The filtered LDNIs points are shown in Figure 6.c-top. The offset boundary of its internal
loop 2 and related LDNI points are shown in Figure 6.c-middle. Notice if only the ray casting filter as shown
in Figure 5.c is used, wrong judgment can be made in classifying points. For example, the resulted points
based on such a filter are shown in Figure 6.c-right. For such inner points, another type of filter, offset
property filter, can correctly remove them. Accordingly, the reconstructed contour to approximate

*()S r∂ ↑ is shown in Figure 6.d.

r

r

r

r = 0.03

(d) Offsetting contour (grown by 0.03).

(a) A 2D contour sliced from a 3D model.

Internal
loop1

External
loop

Internal
loop2

A

A

B

B

(b) Complex self-intersections in offset boundary of internal loop1.

(c) Computing boundary points based on three filters.

Resulted points
for internal loop1

Offset boundary
of Internal loop2

LDNIs Points before
applying filters

Resulted points with
only ray casting filter

Input 2D
model

r

r

r

Figure 6. An example of a 2D contour grown by a distance r.

Similarly, the contour for *()S r∂ ↓ can be computed. A test example based on shrinking the same
input model is shown in Figure 7.a. The uniform offsetting of a more complex contour is shown in Figure 7.b,

9

in which a 2D contour with 18 loops is sliced from a cancellous bone structure model. The offset contour
computed by our method for such an input model is shown in Figure 7.b-right.

Figure 7. An illustration of S shrunk by a distance r and a more complex 2D example.

Our method is based on an approximation approach. Hence it suffers from the same shortcomings as all
other volumetric approaches. That is, any features (gaps or shells) whose size is smaller than the LDNIs
resolution may not be captured in the computed offset model. However, compared to other volumetric
approaches that are only based on cells or voxles, our approach is much more accurate because: (i) we can
accurately compute the offset boundary −− ∪ rr EV |||| ; (ii) we accurately compute the ray casting points on

−− ∪ rr EV |||| along a set of rays. Therefore, the boundary points on the rays related to LDNIs pixels are
accurate (both their positions and normals). Although in practical implementation, a tessellated version is
computed instead of an exact −− ∪ rr EV |||| , the accuracy actually can be controlled by choosing different
density in tessellation. Consequently the computed offset contour is a close approximation of the exact offset
boundary on features whose sizes are bigger than the LDNIs resolution. A volume tiling technique has been
developed to ensure a sufficiently small LDNIs resolution (Chen and Wang, 2008). Since the small features
that may be missed in our offset contour are usually unmanufacturable, our approach is appropriate for most
CAD/CAM applications.

The remainder of the paper is organized as follows. The approach of computing candidate offset meshes
is presented in Section 4. The approach of determining valid offset points is presented in Section 5. The
approach of reconstructing an offset contour from the processed LDNIs model is presented in Section 6. We
discuss the implementation techniques related to our method in Section 7. The experimental results of
various test cases are presented in Section 8. We also discuss some applications of our offsetting method in
the section. Finally, conclusion with future work is drawn in Section 9.

4. Compute Continuous Offset Boundary
Offsetting a face, a edge and a vertex into a face, a cylinder and a sphere respectively has been discussed

before (Lee 1999; Kim, Lee et al. 2004). In our method, we further ensure the offset meshes
+++ ∪∪ rrr VEF |||||| will form a continuous boundary with a consistent surface orientation.

10

Theorem 4.1. Let S be a regularized point set and S∂ be its boundary defined as a polygonal model. The
offset meshes +++ ∪∪ rrr VEF |||||| as defined in Section 3 will form a continuous boundary with a consistent
surface orientation.
Proof. According to the definition of positive normal offset, we know:

(1) the offset +
rF || is a set of translated faces by an offset distance in their surface normal directions

(refer to an example as shown in Figure 8.b);
(2) For a valid input model S∂ , each edge e must have two half-edges, he1 and he2, corresponding to its

two neighboring faces f1 and f2. Edges +
rhe ||1 and +

rhe ||2 in +
rF || will be on the same cylinder

centered at e with radius r. Further since he1 and he2 have opposite directions in S∂ , we must be
able to construct a portion of a cylinder that is bounded by the reverse edge of +

rhe ||1 and +
rhe ||2 to

seal the gap between +
rf ||1 and +

rf ||2 . Hence +
rE || will form a continuous boundary with +

rF ||
(refer to an example as shown in Figure 8.c);

(3) For a valid input model S∂ , each vertex v has a set of neighboring edges e1, e2, …, en. The
constructed cylinders in +

rE || related to ei at v must have an edge that is on the great circle of the
sphere centered at v with radius r. Further, all the edges will have a consistent orientation and we can
use them to form a closed loop. Therefore, we must be able to construct a spherical region bounded
by the reverse edges of the loop to seal the gap between +

rie || (ni ≤≤1). Hence +
rV || will form a

continuous boundary with +
rE || (refer to an example as shown in Figure 8.d-right). □

Figure 8. An illustration of offsetting faces, edges and vertices.

Notice the offset meshes may be degenerated. For example, edge e5 in Figure 8.a has two neighboring
faces with the same normal. Hence the cylinder portion related to e5 is degenerated to a line; and the related
edge 5 ||re + for v is degenerated into a vertex. For S∂ as shown in Figure 8.a, the offset boundary

+++ ∪∪ rrr VEF |||||| is given in Figure 8.d. Based on our point-based method, the reconstructed contour by
removing self-intersections and overlapping surfaces is shown in Figure 8.e.

11

The construction of +
rF || and +

rE || is straightforward since they are the translated faces of F and the
truncated cylinders of E respectively; however, the construction of +

rV || needs further consideration. The
neighboring edges e1, e2, …, en around a vertex v can be both concave and convex. The offset meshes of such
a complex vertex can be challenging to process. Basch et al. (1996) presented a notion of polyhedral tracings
for convolutions between polyhedrons. Three types of polyhedral tracing that are on face, edge and vertex
domains have been developed. It is illustrated that complex self-intersecting path may exist on the sphere
related to the vertex. In our method, we mark such complex vertices and convert their offset meshes into
structured sampling points. Two related filters (small segment and offset property) are then used to process
the sampled points (refer to Section 5.2 and 5.4).

An example of such a complex vertex is shown in Figure 9.a. Among the 7 neighboring edges, e2 and e6
are concave while all other five edges are convex. The offset cylinders for all the edges are shown in Figure
9.b. The cylinders related to e2 and e6 are not shown in the figure since their face normals are opposite to the
viewing direction. However, as shown in Figure 9.c, we can still form a closed loop on the sphere related to
all the edges even thought the loop might have multiple self-intersections. The loop edges related to e2 and
e6 are shown in dotted lines in Figure 9.c. In our method, a spherical region +

rv || will be constructed, whose
boundary Ψ is the reverse edges of the closed loop generated by edges e1~e7. Hence +

rv || and +
rie || will still

form a continuous boundary along Ψ.

Figure 9. An illustration of offsetting a complex vertex.

Our approach of computing the offset meshes for an any given vertex is described as follows. Suppose a
vertex v has a neighboring edge ei with two neighboring faces f1 and f2. Based on a plane defined by the
normals of f1 and f2, we can construct a great circle. Among the two arcs on the great circle, the loop edge
Ψei is always the smaller one. This is because: (i) If ei is a convex or flat edge, the angle α between f1 and f2
must be 0o < α ≤ 180o. The positive normal offset of f1 and f2 will form an angle α−=∠ ovnn 18021 .
Therefore, Ψei is smaller than half of a great circle. (ii) If ei is a concave edge, the angle α between f1 and f2
must be 180o < α < 360o. The positive normal offset of f1 and f2 will form an angle ovnn 18012 −=∠ α .

12

Therefore, Ψei is still smaller than half of a great circle. Such an observation has also been presented in
(Basch et al. 1996). In addition, all the computed arcs Ψei will form a closed spherical loop Ψ (refer to the
example as shown in Figure 9.c).

The spherical loop Ψ may have multiple self-intersections. Our approach of constructing ||rv + based on
such a spherical loop is described as follows.

(1) Suppose Cei is the center of an edge Ψei. We first calculate point O’ for Ψ based on their edge lengths

as

∑

∑

=

=

Ψ

Ψ
= n

i
ei

ei

n

i
ei C

O

1

1

||||

||||
' . We then project O’ onto the sphere to get a point O. Consequently a plane P that is

tangent to the sphere at O can be generated. We then map all the vertices Vi of Ψ onto P (denoted as Vi’) by
ensuring point v, O, Vi, and Vi’ in the same plane and the length OVi’ the same as the arc length OVi.
Consequently, based on such a mapping, the spherical loop Ψ is converted into a 2D planar loop Ψ’.

(2) We then use a triangulation method that is similar to the well-know XOR polygon filling algorithm to
compute a triangulation of Ψ’. That is, we construct a triangulation for each edge Ψei’ individually. An
example of such triangulation result for a boundary Ψ in Figure 9.c is shown in Figure 9.d. Notice to ensure
the continuity of the offset meshes, some triangles O-Ψei may be flipped depending on the direction of Ψei
related to O (refer to O-Ψe2 and O-Ψe6). Therefore the constructed offset meshes for a vertex v may have
overlapping surfaces.

(3) The planar triangulations are refined and mapped back to the sphere. The refinement of triangulation
should be controlled to ensure the same triangulation boundaries are generated between O-Ψei of ||rV + and
the related loop edge of +

rE || . An example of the related ||rV + and +
rE || is shown in Figure 9.e.

(4) As discussed in Section 5, the offset meshes are then converted into sampling points and the point
related to overlapping faces will consequently be filtered by a small segment filter. This is based on the
property of the XOR polygon filling algorithm. That is, the inside/outside property of a point is determined
by the ray casting values at a sampling point p. Two overlapping faces will not change the ray casting value
at p if the two faces have flipped normals.

(5) In addition, we further identify all the sampling points Pi that are constructed by a complex vertex v
(i.e. v has both concave and convex neighboring edges) and classify them as valid or invalid if its related face
normal is the same or reverse to vPi respectively. Such classification will be used in the offset property filter
to remove internal shells, if any, that contain invalid points of complex vertices.

Based on the processed points, a manifold offset contour can be reconstructed (refer to an example as
shown in Figure 9.f). The resulted contour can be further decimated as shown in Figure 9.g. Our approach
of removing self-intersections and overlapping surfaces in the offset meshes || || ||r r rF E V+ + +∪ ∪ is discussed
in the next section.

5. Compute Boundary Points based on LDNIs
Directly trimming self-intersections and overlapping surfaces based on the boundary representation is

quite challenging to be implemented robustly. In our method, we use a point-based representation, layered
depth normal images (LDNIs) to extract the boundary surfaces of)(* rS ↑∂ . Based on a required resolution,
we first generate a set of sampling points from the offset meshes. We then use three filters to separate the

13

points into two groups: boundary and inner points. All the inner points will be discarded; only boundary
points will be used in reconstructing the offset contour.

5.1. Layered Depth Normal Images
The Layered Depth-Normal Images (LDNIs) is a point representation which sparsely encodes the shape

of solid models in three orthogonal directions (Chen and Wang, 2008). A structural set of Layered Depth-
Normal Images (LDNIs) consists of x-LDNI, y-LDNI and z-LDNI along X, Y, and Z axis respectively. The
three images are located to let the intersections of their rays form the ZYX www ×× nodes of uniform grids
in ℜ3. A LDNI in an axis is a sequence of two-dimensional images. For each pixel (i, j), we shoot a ray from
its center along the axis and calculate the intersections of the ray and the surfaces under sampling.
Consequently, for each pixel (i, j), we can build a sequence of four-tuple),,,(zyx nnnd , where d specifies
the depth from an intersection point P to the viewing plane, and NP(nx, ny, nz) is the surface normal at P.

The construction of a LDNIs model for a polygonal model can be performed rather quickly with the aid
of graphics hardware (Chen and Wang, 2008). We can set the viewing parameters by the working envelope,
which is slightly larger than the bounding box of the model. An orthogonal projection is conducted for
rendering so that the intersection points from parallel rays can be generated by the graphics hardware. In
order to get an accurate surface normal, we encode a unique ID of every polygonal face into a RGB-color.
After rendering all the faces by the encoded colors, we can easily identify a face that is intersected with a ray
and accordingly retrieve its surface normal from the input model. The accuracy of a generated LDNIs model
depends on the pixel width used in the rendering process. We can use volume tiling to achieve high accuracy
requirement by splitting the bounding box of a model into multiple smaller tiles. A LDNIs model for each
tile can then be generated and processed independently (either sequentially or in parallel).

Therefore, from the offset surfaces +++ ∪∪ rrr VEF |||||| , we can compute a LDNIs model, in which the
sampling points can capture all the boundary information along pre-defined uniform grids. For a pixel (i, j)
in a LDNI, we got a set of sampling points P1~ Pn within a range (dmin, dmax) along the axis. Point P1~ Pn can
be sorted according to their distances from dmin. We can easily calculate the normal index number INorm for
all the line segments of the ray (dmin, dmax). That is, INorm is an accumulated integer value along a ray such
that for any point Pi with unit normal NPi, we increase INorm by 1 if 0pi rayN N⋅ < and decrease INorm by 1 if

0pi rayN N⋅ > . The unit normal Nray is along the LDNI axis from dmin to dmax. Refer to an example in Figure
5.c. It is obvious that each line segment will have a unique integer value INorm (can be positive or negative).
Such INorm value is called winding numbers in (Guibas et al. 1983).

We present three point filters for removing inner points therefore removing self-intersections. The first
filter, named small segment filter, determines if a pair of sampling points comes from two overlapping
surfaces and should be filtered. The second filter, named ray casting filter, determines if a sampling point is
an inner point by judging its two neighboring INorm values. The third filter, named offset property filter,
determines if a set of sampling points that form a shell are inner points by judging if any points are generated
from invalid edges. The three filters are discussed in more details in Sections 5.2 ~ 5.4 respectively.

5.2. Small Segment Filter
Suppose for a pixel (i, j) in a LDNI, a set of sampling points P1~ Pn has been calculated and further

sorted based on their distances to dmin. By going through P1~ Pn, we can identify a pair of points Pi and Pj

14

that satisfy |dPi – dPj| < ε and 0<⋅ PjPi NN , where ε is a small segment tolerance (e.g. 10-5 in our
implementation) and NP(nx, ny, nz) is the surface normal at P. If a pair of such points is identified, both points
are removed from the LNDI. We first apply the small segment filter to delete the overlapping surfaces in

+++ ∪∪ rrr VEF |||||| that are generated by the same geometric element in ()S∂ (refer to an example in
Figure 9.c). The small segment filter will then be used to remove all the gaps or thin-shells whose thickness
is less than ε in the offset model. Such small gaps and thin-shells are usually non-manufacturable in most
CAD/CAM applications.

5.3. Ray Casting Filter
The ray casting filter is designed based on the normal index number INorm.

Proposition 5.1. Suppose a point Pi along a ray (dmin, dmax) has two neighboring normal index numbers
INorm1 and INorm2. The difference |INorm1 - INorm2| = 1.
Proof. If a sampling point Pi is generated along a ray, we know 0≠⋅ raypi NN , where NPi is the face
normal at Pi and Nray is the unit normal of the ray. Therefore, 112 += NormNorm II if 0<⋅ raypi NN and

112 −= NormNorm II if 0>⋅ raypi NN . □
Proposition 5.2. Suppose a LDNI is computed from a polygonal model that is two-manifold and regulated.
INorm of any point P on a ray (dmin, dmax) is 0 or 1. Further P is inside the model if INorm(P) = 1; otherwise, it
is outside the model.

The boundary of S grown by r must lie in the outside of S; while the boundary of S shrunk by r must lie
in the inside of S. Therefore, if an input polygonal model is two-manifold and regulated, points of)(* rS ↑∂
and)(* rS ↓∂ must lie in the regions that have INorm = 0 and INorm = 1 respectively (refer to an example as
shown in Figure 10). This is also shown in the properties of winding number (Guibas et al. 1983).

Figure 10. An illustration of offsetting a face and an edge.

Table 1. INorm Effect of different geometric elements on offset meshes.

Change of INorm Geometric

Element of S∂ S grown by r S shrunk by r

Face +1 -1

Edge (Valid) +1 -1

Edge (Invalid) -1 +1

Vertex (Valid) +1 -1

Vertex (Invalid) -1 +1

15

Example of f||r
+, e||r

+ and f||r
- are shown in Figure 10.b and c. Regions Rf and Re that are defined by (f,

f||r
+) and (e, e||r

+) respectively are also shown in the figure. Obviously for a point P inside Rf or Re, INorm(P)
will be changed by 1 due to the addition of the related offset meshes.
Proposition 5.3. The offset meshes (f||r

+, e||r
+ or v||r

+) of a geometric element (f, e or v) in)(S∂ will change
INorm by 1 for all the points in the region R defined by the offset meshes and the related geometric element.
Further, the effects of such changes on INorm for different geometric elements are shown in Table 1.

Since the offset faces +++ ∪∪ rrr VEF |||||| will change INorm of the points between)(S∂ and)(* rS ↑∂ , we
can identify the boundary points of)(* rS ↑∂ by judging point’s INorm values. Therefore we can avoid the
distance field computation that is usually more computationally expensive. Notice INorm at a point P can be
computed by accumulating the INorm changes defined by the related offset regions that contain P. For
example, offset meshes f1||r

+, e||r
+ and f2||r

+ for a given S grown by r are shown in Figure 11.a. The related
offset regions Rf1, Re, and Rf2 are also shown Figure 11.b. Their effects on INorm changes can be identified
from Table 1. Hence INorm of any given points (e.g. P1 ~ P6) in the offset result can be computed based on the
original INorm values and related INorm changes. The computed results are shown in Figure 11.c. Accordingly
some offset meshes can be identified as invalid (marked as ‘×’) even though no distance computation is
performed between the offset and original meshes.

Figure 11. A classification of INorm changes with an illustration example.

Theorem 5.1. Suppose a point Pi along a ray (dmin, dmax) has two neighboring normal index numbers INorm1
and INorm2. Pi is a boundary point only if INorm1 = 0 and INorm2 = 1, or INorm1 = 1 and INorm2 = 0.
Proof. (1) For S grown by r, Pi in LDNIs must be generated by the offset meshes of a face, a valid edge, or a
valid vertex in order for it to be valid. In addition, Pi must be outside of S (i.e. the initial value of INorm = 0).
Hence the offset meshes will increase INorm1 of Pi from 0 to 1. Therefore, if no other offset faces affecting Pi,
Pi is a boundary point with INorm1 = 1 and INorm2 = 0. However, if INorm1 or INorm2 is bigger than 1, Pi must lie
within a region between another offset meshes and its related geometric element in)(S∂ . Therefore, the
smallest distance from Pi to)(S∂ must be smaller than r. Hence Pi is not a boundary point of)(* rS ↑∂ .
Notice Pi may also be generated by the offset meshes of an invalid edge or an invalid vertex, or located
inside S. Such Pi is not a boundary point; however, we may still get INorm1 = 0 and INorm2 = 1 for Pi. We will
address such cases in Section 5.4. (2) Similarly, we can prove for S shrunk by r. □

Therefore, based on the normal index number INorm related to offset meshes +++ ∪∪ rrr VEF |||||| , the ray
casting filter is designed as follows. For a LDNIs model, we process its x-LDNI, y-LDNI and z-LDNI
separately (sequential or in parallel). For each LDNI, we go through each pixel (i, j) to sort points P1~ Pn.

16

We then calculate INorm for each line segment along the ray. Finally, the calculated INorm can be used to delete
all the inner points whose two neighboring INorm1 or INorm2 are not (0, 1) or (1, 0) from the LDNIs model.

5.4. Offset Property Filter
A sampling point Pi is not a boundary point if its INorm1 and INorm2 are not (0, 1) or (1, 0); however, Pi may

still be an inner point even if its INorm1 and INorm2 are (0, 1) and (1, 0). This is due to the interaction of
multiple offset surfaces. A 2D example in shown in Figure 6.c. A 3D illustration example is shown in
Figure 12. For a simple cube in Figure 12.a, the offset surfaces and related LDNIs points are shown in
Figure 12.b and Figure 12.c respectively. The processed sampling points after the first two filters are shown
in Figure 12.d. Notice the points at the eight corners are inner points while their INorm1 and INorm2 are (0, 1).
We will address such invalid shells by using an offset property filter. The resulted points after applying the
offset property filter are shown in Figure 12.e and the related offset contour is shown in Figure 12.f.

Figure 12. An illustration of removing inner points by filters.

Proposition 5.4. All the LDNIs points with INorm1 = 0 and INorm2 = 1, or INorm1 = 1 and INorm2 = 0 will form
one or multiple shells and each shell defines a separate volume (in the side of INorm = 1).
Proof. After the small segment filter, the LDNIs points related to singular edges and non-manifold vertices
will be removed. Therefore, rS *↑ and rS *↓ will be separated into individual volumes that are defined by
one or multiple shells. □
Proposition 5.5. Suppose a shell contains a set of points Pi with INorm1 = 0 and INorm2 = 1, or INorm1 = 1 and
INorm2 = 0. If any of the point is an inner point, the whole shell is inside the offset distance to S∂ .

17

Proof. We can define the offset rS *↑ and rS *↓ by the boundary)(* rS ↑∂ and)(* rS ↓∂ which have one or
multiple shells. All the sampling points on the boundary are not inner points. Therefore, if some points on a
candidate shell are inner points, the shell must not belong to)(* rS ↑∂ and)(* rS ↓∂ . □

As discussed in Section 4, we require the offset meshes +++ ∪∪ rrr VEF |||||| form a continuous boundary.
Therefore the offset meshes ||rE + and ||rV + may flip their surface orientations due to self-intersections. In
our method, we classify all the edges and vertices of S∂ based on such offset property. We define invalid
edges as all the concave edges for S grown by r and all the convex edges for S shrunk by r, and all the other
edges are valid. An example of S grown by r for an invalid edge is shown in Figure 11. Notice for an invalid
edge e, the surface orientation of related +

re || is flipped (i.e. surface normals pointing to e instead of away
from it). Hence we can classify all the related points of ||rE + as invalid or valid edge points. Similarly as
discussed in Section 4, we identify all the complex vertices of S∂ that has both concave and convex
neighboring edges and process the related sampling points of ||rV + . We define invalid vertex points as the
points whose normal is flipped (i.e. pointing to v instead of away from it), and all the other points are valid.
Obviously for S grown by r, the effect of such invalid offset surfaces will decrease INorm(P) by 1; while the
effect of all other offset surfaces will increase INorm(P) by 1 (refer to Table 1).

Therefore, due to the offset surfaces of invalid edges and vertices, there may exist some holes inside the
region between S∂ and)(* rS ↑∂ for S grown by r, and some islands inside the region between S∂ and

)(* rS ↓∂ for S shrunk by r. For an example as shown in Figure 12.d, INorm at the eight cubic corners will be
changed by the offset regions of three faces and three invalid edges since

1 2 3 1 2 3
()f f f e e eP R R R R R R∈ ∩ ∩ ∩ ∩ ∩ . Therefore, from the initial INorm value of 1 (i.e. inside S∂ for

*S r↓), INorm will be modified based on the effects of related faces and edges (refer to an example as shown
in Figure 11.c). Hence the points inside the shell will have INorm = 1 -1-1-1 +1+1+1 = 1. Consequently they
will pass the ray casting filter.
Proposition 5.6. Suppose a point Pi has INorm1 = 0 and INorm2 = 1, or INorm1 = 1 and INorm2 = 0. If Pi is an
inner point, it must be within the offset regions of some invalid edges or vertices.
Proof. If Pi is an inner point, it must be within the offset regions of some other geometric elements. As
shown in Table 1, only an invalid edge or vertex can decrease its INorm value for S grown by r and increase its
INorm value for S shrunk by r. Therefore, if none of the geometric elements are invalid edges or vertices, INorm
> 1 for S grown by r and INorm < 0 for S shrunk by r. Hence these geometric elements must contain some
invalid edges or vertices in order to make INorm = 0 or 1. □
Proposition 5.7. Suppose a shell contains a set of points Pi with INorm1 = 0 and INorm2 = 1, or INorm1 = 1 and
INorm2 = 0. If the shell is inside the offset distance to S∂ , some of the points Pi must be generated from the
offset faces of invalid edges or vertices.
Proof. If a shell is inside the offset distance to S∂ , there must exist some points Pi on the shell that are inner
points. Therefore, Pi must be within the offset regions of some invalid edges or vertices in order for the point
to have INorm = 1. □
Theorem 5.2. A shell containing a set of points Pi belongs to the offset boundary)(* rS ↑∂ or)(* rS ↓∂ only
if none of the points Pi are marked as invalid edge or vertex points.

Therefore, the offset property filter can be designed as follows. We first mark all the invalid edge and
vertex points in a generated LDNIs model. An invalid LDNI point can then be used as a seed for flood

18

filling operation to remove all the points in the same shell. Notice the ambiguity cases for flood filling are
removed by the small segment filter by removing small gaps and shells. We can also implement the offset
property filter in the reconstructed mesh level. That is, after extracting mesh surfaces from the LDNIs model,
we cluster polygonal faces into shells by their connectivity. If some triangles of a shell are generated from
invalid LDNI points, we will remove the shell from the resultant polygonal model. With such a filter, the
complex shells as shown in Figure 6.c and Figure 12.d can be effectively removed.

The discussed three filters are sequentially applied to remove inner points in a LDNIs model.
Consequently only boundary points will remain in the processed LDNIs model. From such a LDNIs model,
a polygonal model can be reconstructed as discussed in the following section.

6. Reconstructing Offset Contour
The generated LDNIs model is an implicit representation of a solid defined by *S r↑ or *S r↓ .

However, most computer-aided manufacturing systems, such as computer numerical control (CNC) and
rapid prototyping machines, require polygonal meshes as input CAD models. We briefly describe our
approach of converting a LDNIs model into a polygonal model.

6.1. Adaptive Sampling for Cell Representation
As discussed in Section 5.1, the accuracy of a generated LDNIs model depends on the pixel width δ used

in the construction process. Hence a small δ value will lead to a better resolution and, at the same time, a
large number of sampling points. If we directly construct polygonal meshes from such a LDNIs model, the
constructed polygonal model will have a larger number of triangles. Most of the triangles will be much
smaller than the feature sizes of)(* rS ↑∂ and *()S r∂ ↓ . Therefore, it is generally not efficient and practical
to directly construct contours from a highly accurate LDNIs model.

In our method, we construct another type of implicit representation, an adaptive cell representation, from
a LDNIs representation. The adaptive cell representation contains two types of cells, uniform cells and
octree cells (Chen 2007). The uniform cells are used for rough sampling; for a uniform cell which has
complex geometry such as small features, we then use octree cells to refine it. An adaptive sampling
approach to construct a cell representation from a LDNIs representation including the approaches of handling
volume titling is presented in (Chen and Wang 2008). During the adaptive sampling test, we calculate an
error-minimizing point of a cell from all the sampling points within the cell and explicitly compare the
approximation error with a given tolerance ε. If the approximation error is smaller than ε, we will use the
calculated error-minimizing point in the contouring process; otherwise, we subdivide the cell until it reaches
the finest level. In essence, we intelligently down-sample a LDNIs model into an adaptive cell model hence
denser samples will be used only in a region with more complex geometries.

6.2. Manifold-Preserved Mesh Reconstruction
After a cell representation is constructed, we use a modified dual contouring method for reconstructing

polygons (Wang and Chen 2008). Unlike the marching cube algorithm, the dual contouring algorithm will
not generate cracks for an adaptive grid with different grid sizes. Further, two strategies to generate
manifold-preserved mesh surfaces are presented for overcoming the topology ambiguity that may occur

19

inside the finest octree cells after the maximum subdivision. The constructed polygonal model is manifold
with no gaps or overlapping surfaces.

7. Implementation Discussion
In the section, we discuss some implementation techniques related to the efficiency, accuracy and

robustness of our method.

7.1. Decimation of Input Mesh
Mesh decimation has been extensively studied for computer graphics applications (Garland 1999). It

produces a lower number of polygons to approximate an input solid. The approximation accuracy can be
controlled by a decimation tolerance α. A mesh decimation algorithm will try to delete as many triangles as
possible while ensuring the maximum approximation error is smaller than α. Therefore, we can first process
an input polygonal model by using such a mesh decimation algorithm. The decimation tolerance α can be
set as a fraction of θ where θ is the required offsetting accuracy. In most cases, the decimation of an input
polygonal model can significantly reduce the number of geometric elements in S∂ and consequently
improve the speed of generating offset surfaces +++ ∪∪ rrr VEF |||||| .

7.2. Approximation Errors of Cylinders and Spheres
For an input polygonal model, offset faces F||r+ are exact. However, offset faces E||r+ and V||r+ are an

approximation of the cylinders and spheres related to edges and vertices respectively. Suppose r is the offset
distance. We know: (i) E||r+: the maximum approximation error of a cylinder is 2 2(0.25)r rλ ξ= − − • where ξ
is the maximum edge length used in the approximation of an arc; (ii) V||r+: the maximum approximation error
of a sphere is 2 2(0.5)r rλ ξ= − − • where ξ is the maximum edge length of a triangle for the approximation of
a spherical patch. Therefore we can set ξ based on a required offsetting accuracy θ and offset distance r such
that λ < θ. By using a smaller ξ, we will get a better approximation of the cylinders and spheres; however
more triangles will be generated in ||rE + and ||rV + .

7.3. Constructing Offset Meshes for Different Offset Distances
Without considering the approximation errors of cylinders and spheres, the offset meshes with different

offset distances +++ ∪∪ rrr VEF |||||| actually have the same topological connections regardless of the size of
offset distance. Therefore, if we calculate the offset meshes for an offset distance r1 and save them as a
polygonal model, we can directly scale all its polygonal vertices by a scale factor r2/r1 for another offset
distance r2. The scaled model can be used directly as the offset meshes for r2. The approach can speed up
the step of computing offset meshes especially for interactively displaying the results. In order to know the
scale center, we store an additional tag for each polygonal vertex in the offset meshes. The tag value is an
index number of an corresponding vertex in the input model S∂ . Notice if r2 >> r1, the approximation errors
of a cylinder and a sphere may be large. Also the valid/invalid edges are different if r1 and r2 have a different
sign. In those cases, we may recalculate the offset meshes.

7.4. Volume Titling for High Accuracy
In generating a LDNIs model for offset meshes +++ ∪∪ rrr VEF |||||| , we can set a pixel width δ

according to a required offset accuracy θ. However, if θ is rather small or the input model has a large

20

dimensional size, the required LDNI resolution may exceed the image resolution of graphics hardware (e.g. a
typical resolution of 1280x1024). In these cases, we split the bounding box of the model into multiple
smaller tiles. We display each tile and construct a LDNIs model independently. Each tile also needs a buffer
region around its boundary to ensure the continuity of the reconstructed surfaces (Chen and Wang 2008).
Some examples as shown in Section 8.1 require multiple tiles (e.g. a liberty and a tutor model).

7.5. Speedup via Parallelization
A significant advantage of our method is the simplicity of parallelizing it. The construction of a LDNIs

model from a polygonal model can be aided by a graphics hardware such as NVIDIA GeForce 8800 GT that
we used in our tests. Based on highly parallel structure, the graphics hardware can construct a LDNIs model
rather quickly (usually within seconds). All the generated LDNIs models can be saved in a network-
connected hard disk, which can be accessed from a cluster of PCs (Chen and Wang 2008). The LDNIs
model of each tile can then be processed separately without other tiles’ information. Therefore we can use a
PC cluster to parallelize the tasks of computing boundary points from a LDNIs model and reconstructing
offset boundary from the computed boundary points.

7.6. Verification of Polygonal Models
In our method, we require an input polygonal model as two-manifold. Therefore, the model should have

no gaps. Otherwise, our method will fail. In addition, we further require each input polygon have a valid
normal (that is, Nf ≠ 0). If a triangle has no area and consequently its normal is zero, we will also have
difficulty in generating its offset surfaces to form a continuous boundary. Therefore, before using our
approach, we need to verify an input model by sealing gaps and cleaning non-regular triangles (i.e. triangle
area is 0).

In addition, the calculation of INorm for the sampling points of a LDNI model requires the offset meshes
+++ ∪∪ rrr VEF |||||| to form a continuous boundary. Due to the floating-point arithmetic in geometric

computations, the corresponding vertices of ||rF + , ||rE + , and ||rV + may have small numerical errors. Hence
the constructed offset meshes need to be verified by sealing the boundary before computing LDNIs.

8. Experimental Results and Applications
We used C++ programming language with Microsoft Visual C++ compiler to implement the presented

algorithm. In this section, we present our test results by highlighting the accuracy and the performance of
our algorithm. We also present some applications based on the developed offsetting method.

8.1. Experimental Results
Accuracy. We used four simple models (a cube, a pyramid, a sphere, and a cylinder) to test the accuracy

of our method. The models are selected because their offset results are known based on theoretical analysis.
We fit the size of all the input models into a unit cube (1 1 1× ×) and test the offset distance -0.1 (shrinking
the model). Both the input models and the ideal offset models are constructed in a CAD software system.
To compare the construct offset models by our method, a publicly available Metro tool (Cignoni, Rocchini et
al. 1998) was used. The shape approximation errors are measured with reference to the unit length of the
input model. The offset accuracy based on orthogonal distance between two comparing models is given in

21

Table 2. The maximum edge length ξ used in constructing offset faces E||r+ and V||r+ is 0.025. The related
maximum approximation error λ is 0.00078 and 0.0016 for cylinders and spheres respectively. The pixel
width δ used in constructing LDNIs is 0.005 (i.e. the image resolution required for the unit cube is 200x200).
The tolerance ε used in the adaptive sampling is 0.001. Since the offsetting accuracy is quite satisfactory, the
same setting is used in all other tests.

Table 2. Offset Accuracy Test Results.

Polygonal Mesh Error
Models Offset

Dist Size Maximum Error
Distance (Emax)

Average Error
Distance (Emean)

Root Mean
Square (RMS)

Cube 0.1 1.0 x 1.0 x 1.0 0.000005 0.000001 0.000002
Pyramid 0.1 1.0 x 1.0 x 1.0 0.001643 0.000004 0.000018
Sphere 0.1 1.0 x 1.0 x 1.0 0.001311 0.000224 0.000290

Cylinder 0.1 1.0 x 1.0 x 1.0 0.001263 0.000246 0.000381

Performance. We performed tests on geometries with various complexities and sizes, as well as various

offset distances (both grown and shrunk). All the tests are done in a PC with a 2.4 GHz Intel Core Quad
CPU Q6600 and 4GB DRAM running Windows Vista. The test results on algorithm performance are given in
Table 3. Beside the information of the input models, the main memory requirements of our approach are
also given. The running time of the three major steps of our method is presented, that is: (i) generating offset
faces (refer to Section 4); (ii) generating and processing a LDNIs model (refer to Section 5); and (iii)
reconstructing offset model (refer to Section 6). For input models with a relatively large size (e.g. a liberty
and a tutor model), multiple tiles are used. The given running time is for all the tiles. As shown in the
results, the step of generating and processing a LDNIs model takes the biggest portion of the running time,
which can be sped up by using a parallelization approach.

Comparing the experimental results by our method and a point-based offsetting method (Chen, Wang et
al. 2005), the required running time based on our method is much less (1/5~1/15 of running time) for the
same test cases such as bunny and dragon. In addition, since the software application of (Lien 2007) is
available online (www.cs.gmu.edu/~jmlien), we performed comparison tests with it by using the same PC and
similar settings. The test results of three cases are shown as follows. Notice the running time of our software
only includes the steps of generating offset faces and processing LDNIs since Lien’s software can only
generate boundary points. However, notice the comparison is somehow unfair since the method presented in
(Lien 2007) can be used for general Minkowski sum while our approach is just for uniform offsetting.

Running Time Octa-Flower (r=0.15) Bunny (r= 0.06) Tutor (r= 0.06)

Lien’s Software 70.2 Second 200.0 Second Out of memory

Our Software 7.6 Second 15.2 Second 39.4 Second

In addition to Figure 3 and Figure 4 for a dragon and a hub model, some additional screen captures of the
generated offset results are shown in Figure 13 to 18.

22

Table 3. Algorithm performance of our test results.

Memory Running Time (Second)

Models Tri #
(K) Size

Off-
set

Dist.
Offset
Tri #
(K)

LDNIs
Point #

(K)

Generate
Offset
Faces

Generate &
Process
LDNIs

Construct
Offset
Model

Total

Accuracy Test Cases
Cube
(Fig. 10) 0.012 1 x 1 x 1 -0.1 0.8 153.6 0.008 0.69 0.30 1.0

Cylinder 0.4 1 x 1 x 1 -0.1 5.0 142.6 0.05 1.11 0.37 1.5
Sphere 10.2 1 x 1 x 1 -0.1 0.8 74.0 0.008 0.61 0.30 0.9
Pyramid 0.006 1 x 1 x 1 -0.1 20.3 120.4 0.26 3.04 0.41 3.7

Freeform Models
0.02 105.0 140.2 1.25 6.85 1.50 9.6
0.04 105.0 158.9 1.25 10.17 1.56 13.0
0.06 105.0 176.7 1.24 13.96 1.67 16.9
-0.02 105.0 99.1 1.24 7.58 1.32 10.1
-0.04 105.0 76.0 1.25 14.12 1.10 16.5

Bunny
(Fig. 13) 69.6

X: 0.93
Y: 0.93
Z: 0.72

-0.06 105.0 62.0 1.25 33.72 0.87 35.8
0.02 286.5 186.4 3.24 31.77 2.82 37.8 Dragon

(Fig. 3) 693.5
X: 1.23
Y: 0.87
Z: 0.55 -0.02 286.5 105.0 3.31 32.96 2.07 38.3

0.02 1,198.6 824.8 12.84 350.3
(1x1x3)

19.78
(1x1x3) 82.9 Liberty

(Fig. 12) 38.0
X: 2.09
Y: 2.09
Z: 6.93 -0.02 1,198.6 1,700 12.67 434.33

(1x1x3)
20.29

(1x1x3) 467.3

0.02 52.5 217.2 0.61 2.07 1.68 4.4
0.06 52.5 255.9 0.62 5.13 1.87 7.6

Octa
Flower
(Fig. 16)

15.8
X: 1.38
Y: 1.37
Z: 0.98 0.15 52.5 342.5 0.62 7.04 2.17 9.8

0.02 94.2 701.7 1.17 8.10 4.20 13.5 Statue
(Fig. 17) 5.0

X: 2.50
Y: 1.91
Z: 1.39 -0.02 94.2 632.4 1.02 8.94 3.92 13.9

Statue
+0.02
(Fig. 17)

14.2
X: 2.54
Y: 1.95
Z: 1.43

-0.02 172.7 664.3 1.88 16.42 4.05 22.4

Statue
-0.02
(Fig. 17)

12.9
X: 2.46
Y: 1.87
Z: 1.35

0.02 156.6 666.3 1.72 23.72 3.99 29.4

Engineering Models
0.05 2.5 289.7 0.016 1.40 0.67 2.1 Case 1

(Fig. 14) 0.044
X: 1.02
Y: 1.02
Z: 2.03 -0.05 2.5 434.3 0.015 1.14 1.20 2.4

0.05 4.0 743.4 0.039 1.30 2.08 3.4
Case 2 0.38

X: 2.03
Y: 1.02
Z: 2.03 -0.05 4.0 554.4 0.037 1.35 1.30 2.7

0.06 38.2 1,346 0.37 38.99
(2x4x2)

77.9
(2x4x2) 117.3 Tutor

(Fig. 15) 1.4
X: 4.59
Y: 9.56
Z: 4.01 -0.06 38.2 1,336 0.36 30.96

(2x4x2)
67.1

(2x4x2) 98.4

0.05 117.5 386.6 1.17 27.19
(2x2x1)

5.82
(2x2x1) 34.2 Hub

(Fig. 4) 17.9
X: 2. 94
Y: 2.94
Z: 0.49 -0.05 117.5 129.1 1.17 19.49

(2x2x1)
2.03

(2x2x1) 22.7

23

Figure 13. Screen capture of the offset results for a liberty model.

Figure 14. Screen capture of the offset results for a bunny model.

Figure 15. Screen capture of the offset results for a case1 model.

24

Figure 16. Screen capture of the offset results for a tutor model.

8.2. Applications
The presented uniform offsetting operation has a wide range of applications. We present some of these

applications with our test results.
Single offsetting operation. The uniform offsetting can be used to create a thin shell of a solid model by

simply merging an input model S∂ and an offset model *()S r∂ ↓ with flipped normals. In addition, we can
add a wide variety of cellular structures inside the hollowed portion of the model for better physical
properties (Chen 2007). The CAD model of the external thin-shells with complex internal structures can be
manufactured by solid freeform fabrication (SFF) processes.

Multiple offsetting operations (same type). We use the uniform offsetting operation in the tool path
planning for CNC machining. Due to the accuracy limitation of casting and forging processes, we need to
enlarge a CAD model such that sufficient extra materials can be ensured for CNC machining. The uniform
offsetting is ideal for such purpose since it can ensure the uniform cutting depth during the machining. An
example based on an octa flower model is shown in Figure 17. The offsetting results related to different
offset distance from 0.02 to 0.15 are shown in the figure. We put two pair of the models together to show the
uniform cutting depth that can be achieved.

Multiple offsetting operations (different types): Rounds and fillets are transitional faces that are
common in most machined, cast and molded parts. They are important mechanical design features that serve
to relieve stress concentration, to simplify fabrication, and to improve appearance. We can use the uniform
offsetting to automatically add fillets and rounds in a CAD model (Chen, Wang et al. 2005). That is, S
filleted by r can be defined as rrr SSF ↓↑=)(. And S rounded by r can be defined as rrr SSR ↑↓=)(. An
example of added fillets and rounds in a Beethoven statue model are shown in Figure 18. The algorithm
performance of the offsetting operations is also given in Table 3. Compared to the experimental results
presented in (Chen, Wang et al. 2005), the method based on LDNIs is much faster.

25

r =0.02
r =0.06

r =0.15

Input model

Offset models (grown)

Figure 17. An example of multiple offsetting operations (same type).

Figure 18. An example of multiple offsetting operations (different types).

9. Conclusion and Future Work
Uniform offsetting is a fundamental and significant geometric modeling operation. However, due to the

dramatic topological changes in the offset solid, computing offset boundary is a rather challenging problem.
We believe a promising approach for the offsetting operation is to compute an approximated boundary based

26

on point representations. In this paper, we presented a novel LDNIs-based uniform offsetting method for any
input polygonal model and an arbitrary offset distance. In our approach, each face, edge, and vertex of an
input solid model generates a set of offset faces which then form a continuous boundary. We construct a
LDNIs model from the offset faces, which contains a set of well-structured sampling points. Accordinlgy
three point filters have been developed to delete all the inner points. Finally the offset model can be
reconstructed from the processed LDNIs model based on adaptive sampling and manifold-preserved
contouring.

Our offsetting approach has several advantages which have not been provided by existing methods. Our
approach is general that can handle both grown and shrunk operations for an arbitrary offset distance on
freeform objects with complex geometry. The algorithms of our method are simple and can be easily
implemented. The experimental results on a variety of CAD models have verified the effectiveness and
efficiency of our algorithms.

Some future work we are investigating includes: (1) we are investigating approaches for improving our
algorithm on handling solid models with degenerated data; (2) we are exploring the usage of our offsetting
method in new applications; (3) we plan to extend our method to other solid operations such as general
Minkowski operations.

References

Allen, S. and D. Dutta (1998). "Wall Thickness Control in Layered Manufacturing for Surfaces with Closed Slices."
Computational Geometry: Theory and Application, Vol. 10, pp. 223-238.

Breen, D. E. and S. Mauch (1999). Generating Shaded Offset Surfaces with Distance, Closest-Point and Color Volumes.
Proceedings of the International Workshop on Volume Graphics.

Basch, J., L. J. Guibas, G. D. Ramkumar, and L. Ramashaw (1996). Polyhedral Tracings and their Convolution.
Algorithms for Robotic Motion and Manipulation, A. K. Peters, Ltd, Wellesley, MA.

Chen, Y. (2007). "3D Texture Mapping: A Microstructure Design Method for Rapid Manufacturing." Computer-aided
Design and Application, Vol. 4, No. 6, pp. 761-771.

Chen, Y. (2007). "An Accurate Sampling-based Method for Approximating Geometry." Computer-Aided Design, Vol.
39, No. 11, pp. 975-986.

Chen, Y. and C. C. L. Wang (2008). Layer Depth-Normal Images for Complex Geometries - Part One: Accurate
Modeling and Adaptive Sampling. Proceedings of ASME International Design Engineering Technical Conferences,
Brooklyn, New York.

Chen, Y., H. V. Wang, D. W. Rosen, J. R. Rossignac (2005). Filleting and Rounding Using a Point-based Method.
Proceedings of ASME International Design Engineering Technical Conferences, Long Beach, CA.

Cignoni, P., C. Rocchini, R. Scopigno (1998). "Metro: measuring error on simplified surfaces." Computer Graphics
Forum, Vol. 17, No. 2, pp 167-174.

Farouki, R. T. (1985). "Exact Offset Procedures for Simple Solids." Computer-Aided Design, Vol. 2, No. 4, pp. 257-
279.

Frisken, S. F., R. N. Perry, A. P. Rockwood, T. R. Jones (2000). Adaptively Sample Distance Fields: A General
Representation of Shape for Computer Graphics. Proc. of ACM SIGGRAPH, New Orleans, LA.

Frosyth, M. (1995). Shelling and Offsetting Bodies. Proceedings of Third Symposium on Solid Modeling and
Applications, Salt Lake City, Utah.

27

Garland, M. (1999). Quadric-Based Polygonal Surface Simplification. PhD Dissertation, Computer Science. Carnegie-
Mellon University, Pittsburgh, PA.

Gibson, S. F. (1999). Calculating the Distance Map for Binary Sampled Data. TR99-26, Mitsubishi Electric Research
Laboratory, Cambridge, MA.

Guibas, L. J., L. Ramshaw, and J. Stolfi (1983). A Kinetic Framework for Computational Geometry. In Proc. 24th Annu.
IEEE Sympos. Found. Comput. Sci., pp. 100-111.

Hartquist, E. E., J. P. Menon, K. Suresh, H. B. Voelcker (1999). "A Computing Strategy for Applications Invovling
Offsets, Sweeps, and Minkowski Operations." Computer-Aided Design, Vol. 31, pp. 175-183.

Kim, S.-J., D.-Y. Lee, and M. Y. Yang (2004). "Offset Triangular Mesh Using the Multiple Normal Vectors of a
Vertex." Computer-aided Design and Applications, Vol. 1, No. 1-4, pp. 285-291.

Kim, Y. J., G. Varadhan, M. C. Lin, and D. Manocha (2003). Fast Sweep Volume Approximation of Complex
Polyhedral Models. ACM Symposium on Solid Modeling and Applications.

Lam, T. W., K. M. Yu, K. M. Cheung, and C. L. Li (1997). "Octree Reinforced Thin-Shell Rapid Prototyping." Journal
of Materials Processing Technology, Vol. 63, pp. 784-787.

Lee, S. H. (1999). Offsetting Operations on Non-manifold Boundary Representation Models with Simple Geometry.
ACM Symposium on Solid and Physical Modeling. Ann Arbor, MI, pp. 42-53.

Lien, J.-M. (2007). Point-based Minkowski Sum Boundary. Pacific Conference on Computer Graphics and Applications,
Maui, Hawaii.

Maekawa, T. (1999). "An Overview of Offset Curves and Surfaces." Computer-Aided Design, Vol. 31, No. 3, pp. 165-
173.

McMains, S., J. Smith, J. Wang, C. Sequin (2000). Layered Manufacturing of Thin-Walled Parts. Proceedings of ASME
Design Engineering Technical Conference, Baltimore, Maryland.

Nadler, S. B. J. (1978). Hyperspaces of Sets. New York, Marcel Dekker.

Pavic, D. and L. Kobbelt (2008). "High-Resolution Volumetric Computation of Offset Surfaces with Feature
Preservation." EUROGRAPHICS, Vol. 27, No. 2.

Pham, B. (1992). "Offset Curves and Surfaces: A Brief Survey." Computer-Aided Design, Vol. 24, No. 4, pp. 223-229.

Qu, X. and B. Stucker (2003). "A 3D Surface Offset Method for STL-format Models." Rapid Prototyping Journal, Vol.
9, No. 3, pp. 133-141.

Rossignac, J. R. and Aristides A. Requicha (1986). "Offsetting Operations in Solid Modelling." Computer Aided
Geometric Design, Vol. 3, pp. 129-148.

Satoh, T. and H. Chiyokura (1991). Boolean Operations on Sets Using Surface Data. ACM SIGGRAPH: Symposium
on Solid Modeling Foundations and CAD/CAM Applications, Austin, TX.

Varadhan, G. and D. Manocha (2006). "Accurate Minkowski Sum Approximation of Polyhedral Models." Graph.
Models, Vol. 68, No. 4, pp. 343-355.

Wang, C. C. L. and Y. Chen (2008). Layer Depth-Normal Images for Complex Geometries - Part Two: Manifold-
Preserved Adaptive Contouring. Proceedings of ASME International Design Engineering Technical Conferences,
Brooklyn, New York.

