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Abstract 
 

This paper presents a novel feature based parameterization approach of human bodies from the unorganized 

cloud points and the parametric design method for generating new models based on the parameterization. The 

parameterization consists of two phases. Firstly, the semantic feature extraction technique is applied to construct 

the feature wireframe of a human body from laser scanned 3D unorganized points. Secondly, the symmetric 

detail mesh surface of the human body is modeled. Gregory patches are utilized to generate G
1
 continuous mesh 

surface interpolating the curves on feature wireframe. After that, a voxel-based algorithm adds details on the 

smooth G
1
 continuous surface by the cloud points. Finally, the mesh surface is adjusted to become symmetric. 

Compared to other template fitting based approaches, the parameterization approach introduced in this paper is 

more efficient. The parametric design approach synthesizes parameterized sample models to a new human body 

according to user input sizing dimensions. It is based on a numerical optimization process. The strategy of 

choosing samples for synthesis is also introduced. Human bodies according to a wide range of dimensions can 

be generated by our approach. Different from the mathematical interpolation function based human body 

synthesis methods, the models generated in our method have the approximation errors minimized. All 

mannequins constructed by our approach have consistent feature patches, which benefits the design automation 

of customized clothes around human bodies a lot. 
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1. Introduction 
 

In this paper, an approach for the parametric design of human models is developed. The modeled human 

bodies are parameterized for the following design automation of clothes around them. As a first step, we collect 

a database containing the measurements of a representative number of people. These measurements are gathered 

from scanners that generate point cloud data. The point cloud data is analyzed to build a wireframe mesh, which 

is then fleshed out into a complete surface model for the human torso using Gregory patches to interpolate 

curves in the wireframe. The complete mesh surface is further updated according to the scanned points by a 

voxel-based approach. Since the complete mesh surface is with a fixed structure and connection to represent a 

mannequin, every human model reconstructed in this way has been parameterized. After the database is 

finished, the ability of generating 3D parameterized human models from input dimensions is provided – no 

scanning is needed. The parameterization of human models is a necessary step for developing a design 

automation system of apparel products. The parameterized human body by this method gives a point-to-point 

corresponding among a set of human body surfaces with the same overall structure. This kind of point-to-point 

mapping provides us the possibility to encode the relationship between clothes and a human body, so clothes 

around other human bodies can automatically be regenerated by maintaining the same relation. 

The work presented in this paper is an extension of constructing feature-based human models for building a 

3D digital mannequin database [1]. Feature-based human models are fundamentals for developing the design 

automation technology of customized clothes. The features extracted from the human model are the major 

contribution of the database to the fashion industry. In [1-3], the feature curves and points are utilized as the 

semantic features; however, recent developments find that only feature curves and points are not enough for 

modeling 3D digital clothes around human models – feature patches are actually required. In this paper, we 

begin the parameterization with the unorganized cloud points of human bodies obtained from 3D laser scanners. 

The entire human body is subdivided into a certain number of feature patches interpolating the given cloud 

points. The feature patches at the same location on different human bodies are correlated, where the detail 

geometric shape of a human model is given. The sizing parameters are given by feature curves. By the feature 

entities (feature patches, feature curves, and feature nodes), the geometry of a human body is fully registered 

and parameterized.  

Based on the parameterization of a human model, we can easily obtain its sizing dimensions through feature 

curves. The parameterized models are stored in a database using the sizing dimensions as searching criteria. 

After establishing the database, we can construct new models according to user input sizing parameters by 
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synthesizing selected models from the database. This leads to the problems of how to select example models and 

how to synthesize the models. In our approach, we select a number of the closest example models to the given 

sizes; then, a numerical optimization approach is applied to compute the weight coefficients of synthesizing the 

example models. Finally, the requested model is generated by interpolating the examples models with optimized 

weights. This is named as the parametric design of human bodies 

The target example data size of our digital human database is more than 5000 persons. Since human models 

born in different regions have different morphologic features, the samples from different regions are stored 

separately. The working flow of our approach is clearly illustrated by Fig.1. The parameterization has two 

phases: 1) the registration of feature wireframe – this is based on the feature extraction technique (the object 

under our consideration are of the same class, so the semantic feature extraction technique [1] is applied); 2) the 

modeling of surfaces according to feature wireframe and cloud points. After inputting sizing parameters to 

create a new human model, our synthesizer computes the weight coefficients for interpolation and interpolates 

selected examples by the weights – the parametric design result is then obtained. 

Optimization based 

synthesizer

… …

+

… …

Parameterization

Parametric 

Design

  

Fig. 1    The procedure of parameterization and parametric design of human models 

The major contributions of this paper are 1) an efficient feature-based parameterization technique for 

establishing a point-to-point corresponding among a set of human body surfaces with the same overall structure, 
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and 2) a numerical optimization based synthesis technique for constructing a new human body with the by 

specified sizing dimensions – the resultant model with approximation errors minimized. As the example models 

are parameterized, the synthetic result is certainly parameterized, which gives great benefits to the design 

automation of cloth products around human models.  

The rest of this paper is organized as follows: after reviewing related works in section 2, section 3 describes 

the necessary steps for registering a feature wireframe on the unorganized cloud points for a human body. In 

section 4, Gregory patch is adopted to construct G
1
 continuous surface interpolating the feature wireframe, a 

voxel-based algorithm is applied to add details on the surface, and the human surface is made symmetric. The 

numerical optimization based synthesis algorithm for the parametric design of human bodies is given in section 

5, where the strategy of choosing appropriate example models from database is also described. Finally, in 

section 6, the application for the design automation of customized clothes, which gains great benefit from the 

technique presented here, is demonstrated. 

2. Literature Review 
 

The human body modeling methodologies in literature can be classified into the creative approaches and the 

reconstructive approaches. Anatomically based modelers [4, 5] can simulate underlying muscles, bones, and 

generalized tissue. They fall into the creative category of human modeling approaches. The interactive design is 

allowed in the anatomy-based modelers; however, these modelers require a relatively slow production time. 

Recently, a lot of the reconstruction approaches has been investigated to build 3D geometry of human 

automatically by capturing existing shape [1-2, 6-9]. As mentioned by Seo and Magnenat-Thalmann [10], the 

disadvantage of these techniques is that it is very difficult to automatically modify the reconstructed models to 

different shapes following the user intends. Example-based shape modeling technique [10-13] is a good 

alternative to overcome this disadvantage. Our parametric design algorithm borrows some idea from the 

example based shape modeling. In the example-based shape modeling, all examples must have the same 

parameterization. Thus, our approach begins from the parameterization of a human model. 

Related to the parameterization of unorganized cloud points, Ma and He [14] presented an approach to 

shape a single B-spline surface with a cloud of points, their work is further enhanced on fitting a hybrid 

mathematical model of B-spline surfaces and Catmull-Clark subdivision surfaces to represent objects with 

general quadrilateral topology [15]; Barhak and Fischer [16] also presented a PDE based method about the 

parameterization for reconstruction of 3D freeform objects from laser-scanned data. Sienz et al. [17] developed 

a fitting technique to generate computational geometric models of 3D objects defined in the form of a point 
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cloud. All the above approaches are pure geometry oriented and feature technology does not benefit the mesh 

construction process. Since human models are feature-based which fall in the same class of objects with 

features, the recognized features on the scanned cloud points will benefit the surface parameterization and 

construction process. 

Blanz and Veter [11] modeled facial variation using a deformable polygonal mesh. Their idea is to create a 

single surface representation that can be adapted to fit all of the example faces. Each vertex’s position and color 

may vary between examples, but its semantic identity must be the same. Therefore, the main challenge in 

constructing the deformable face is to re-parameterize the example surfaces so that they have a consistent 

representation – they adopted the 2D optical flow to achieve that. However, in the case of whole human body 

models, it becomes more difficult since the whole body cannot be parameterized cylindrically. To solve this 

problem, Allen et al. [9] developed a fitting method to register high-resolution template meshes to detailed 

human body range scans with sparse 3D markers. Their approach is based on numerical optimization 

computing, which is usually time-consuming as the number of variables to be determined is three times the 

number of vertices on their high-resolution template mesh. Au and Yuen [18] discussed the issues of applying 

feature technology to the reverse engineering of a mannequin. In their approach, the feature model of a 

mannequin consists of the major features of the torso for garment design. Fitting the generic feature model to the 

point cloud yields the mannequin feature model of a specific person. This is achieved by optimizing the distance 

between the point cloud and the feature surface, subject to the continuity requirements. The process of their 

surface fitting is also very time consuming. Different from [9, 13], the parameterization approach introduce here 

is based on the semantic feature extraction. After detecting key feature points on the oriented cloud points of the 

human models, the feature wireframe and the feature patches are constructed successively. The computing time 

is greatly shortened in our approach as the features are utilized during parameterization. 

In the feature based modeling field, object semantics are systematically represented for a specific 

application domain; in other words, a semantic feature is an application-oriented feature defined on geometric 

elements. In our approach, the semantic features are specific parts on a human body (e.g., waist, chest, hip, 

thigh, knee, ankle, etc.). There are two approaches for building a feature model [19]: 1) The design by feature 

approach creates the feature model of an object by composing the available features in a feature library; 2) The 

feature recognition approach recognizes various feature from a geometric model of an object according to the 

feature templates defined in a feature library. This paper follows the second approach to extract features on the 
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scanned cloud points of a human model. Related researches about freeform feature extraction can be founded in 

literature (ref. [20-23]). Our feature extraction algorithm borrows some idea from them. 

In the approach of Seo and Magnenat-Thalmann [10], they adopted the radial basis functions (RBF) to 

interpolate scattered human examples. The final interpolation of linear combined radial base functions matches 

the examples exactly. However, if the specified sizing parameters has no exactly matched human model among 

all the examples, the interpolation function only gives an approximated human model of the input sizing 

parameters. The approximation errors are not controlled. DeCarlo et al. [15] showed the application of 

constrained optimization on building an anthropometric face model. Our parametric design algorithm is also a 

numerical optimization based approach, but the optimized variables are not the position of each vertex – the 

weight coefficients of synthesis are optimized. Different from example based modeling methods [10-13], this 

optimization based synthesis approach minimizes the approximation error. Accurate results are given if 

appropriate examples are chosen. If inappropriate examples are utilized (e.g., the specified sizing dimensions are 

out of the size range among all examples), our approach can still determine a human model with the minimized 

approximation error comparing to the given dimensions. 

 

3. Feature Wireframe Construction 
 

The input cloud points in our approach is assumed to have no noisy points, and have its orientation fixed – 

facing the x direction. During feature extraction, the x-axis is defined to point out of the screen, the y-axis is 

horizontally pointing to the right in the screen plane, and the z-axis is vertically pointing upwards in the screen 

plane. The raw scans have to be filtered and reoriented to satisfy our input requirements (e.g., using the 

algorithms presented in [1]). Building the feature wireframe consists of three steps: 1) extracting the key feature 

points on the cloud points; 2) using anthropometrical rules to determine the semantic feature points; 3) linking 

all the feature points by feature curves interpolating the cloud points. The linked feature points and the linking 

feature curves constitute the feature wireframe, the topology of which keeps consistent to all processed human 

models.  
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Back Neck Point

Front Neck Point

Underarm Points

Busty Points

Belly-button Point

Crotch Point

 
Fig. 2    Key feature points on a human body 

3.1 Key feature points 

 

The key feature points on the surface of a human body, including the underarm points, the crotch point, the 

belly-button point, the front neck point, the back neck point, and the busty points (illustrated in Fig.2), must be 

extracted first. The fuzzy logic based approach [1] is adopted here. The basic idea is that: using some planes to 

intersect the 3D unorganized points of a human body’s scan or projecting points onto some planes to obtain 2D 

contours. We can determine turning points on the 2D contours by the “sharp” angles along the contour, where 

the definition of “sharpness” follows the fuzzy logic concept. On a 2D polygon, if the positions of three adjacent 

points 1−ip , ip , and 1+ip  make the value of angle 11 +−∠ iii ppp  smaller than a threshold, we say that ip  is a 

turning point. With the help of turning points, we can detect the key feature points. The procedures are briefly 

described as follows. 

 For the crotch point, cutting the human body from its ½ height downwards, once the intersection break into 

two circles, the crotch point Pcrotch is located at the center of the bounding box of two legs’ contour (ref. [1]). 

After projecting the right view of a human body to obtain its silhouette (see the left part of Fig. 3), based on two 

turning points P1 and P2, we have determined the position of the front neck point (by P1) and the height of the 

busty points, Hbusty, (according to P2). Then, the closest point on the right boundary of the silhouette – P3 

indicates the location of the back neck point. The height from the back neck point to the highest point of scan is 

the head height, Hhead. The height of belly-button is usually about the height of crotch point Hcrotch plus Hhead. 

Thus, by cutting several horizontal planes around the height of Hcrotch + Hhead (right lower part of Fig. 3), if the 

turning point P4 is determined, it is the belly-button point. To determine the exactly busty points, we cut the 
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cloud points at the height of Hbusty to obtain a contour as shown in Fig. 3, the left lowest point and the right 

lowest points on the contour are the two busty points. After the height of the belly-button point Hbelly and the 

height of the back neck point Hbackneck are determined, the height of the underarm point Hunderarm can be 

computed by an anthropometrical equation: Hunderarm= Hbelly +0.55(Hbackneck -Hbelly). Therefore, we cut the cloud 

points there and find the 4 turning points on the contours. The underarm point is in the middle of the front and 

the back turning points on the cutting plane (see Fig. 3). 

Belly-

button Point

Busty Points

P3P1

P2

Turning Points

Underarm 

Points

 

Fig. 3    Determine the key feature points 

Based on the above methods, the key feature points can be automatically determined on more than 85% 

samples. For the 15% examples that lead to the automatic extraction fail, we need to manually locate the key 

feature points on the scans (which is similar to [9]).  

3.2 Semantic feature points 

 

The location of the semantic feature points on the surface of a scanned human body can be roughly 

determined according to the anthropometrical rules by the key feature points. To accurate locate the semantic 

feature points, we should also adopt the feature extraction algorithm with fuzzy logic concept (ref. [1]). The 

basic idea is similar to the approach of detecting key feature points – using cutting planes and projection planes. 

The unnecessary detail of the procedure is omitted here. An example result of the key feature points and the 

semantic feature points extraction is as shown in Fig. 4a. Every semantic feature point has its anthropometrical 

meaning (e.g., the middle-front-knee points and the two outer-side-ankle points are specified in Fig. 4a), and the 

overall structure of the semantic feature points is fixed (e.g., a knee point cannot appear at the elbow region).  
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3.3  Wireframe structure 

 

Now, to construct the feature wireframe, we need to link feature points with parametric curves. The linking 

curves are called feature curves as each curve has its semantic meaning according to sizing dimensions (e.g., 

four bold red curves specified in Fig. 4b give the final left thigh girth). The curves should pass through the 

feature points and approximate the shape of scanned human bodies. The parametric curves utilized in our 

implementation are 4
th

-order Bézier. Each curve has four control points. The first and the last control points are 

coincident with feature points, so only the middle two control points can be adjusted to approximate the scanned 

body shape. Every feature curve lies on a plane, which is determined by the anthropometrical rules (e.g., the 

plane to determine lower waist curves passes the bellybutton and parallels the ground). When computing the 

control points of a curve fc , we first intersect the cloud points by the plane containing this curve to obtain a 

contour of points (e.g., the red points in Fig. 5b). Then, using the semantic feature information and the two 

endpoints of fc  to select points for approximating the feature curve (e.g., see the red points in Fig. 5c). Here, 

the semantic feature information is usually a bounding box to specify where is the possible region of fc . 

Finally, a least-square fitting [24] is adopted to determine the positions of middle 2 control points. The 

procedure of computing an example feature curve – one segment of chest curve is shown in Fig. 5. After 

determining all feature curves, the feature wireframe is smoothed by adjusting the control points to let 

neighboring coplanar curves have G
1
 continuity. As the feature curves are actually measurement curves for 

sizing dimensions, by the feature wireframe, the full dimension table of a scanned human can be easily 

calculated. 

Since the feature wireframes are consistent to all human models, topology graphs by connecting feature 

curves with face entities are also consistent to all human models. This topology graph is a starting point of 

generating feature patches interpolating the feature wireframe. Fig. 4c shows an example topology graph 

according to the feature wireframe shown in Fig. 4b. It is easy to find that not only 4-sided patches but also 5-

sided patches are included.  
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(a) with all feature points 

determined 

(b) the final feature wireframe (c) topology graph 

Fig. 4    Feature wireframe and it related topology graph 

 

⇒  

  

(a) two feature points to be linked  (b) the contour of points by intersection 

  ⇓  

 

⇐  

 

(d) resultant feature curve  (c) point to approximate the curve 

Fig. 5    Steps of determining a feature curve 

 

4 Feature patches Generation 
 

As mentioned at the beginning of this paper, a feature human model without feature patches usually makes 

troubles to exactly locate cloth vertices when designing them around the body. For example, if the position of a 

vertex actually needs to be determined by points on a patch, encoding its position by the points on the 

boundaries of the patch may distort its final location. Also, without the in-between surface information, the 

shape of a human model is not well defined. Therefore, including feature patches is necessary to a parameterized 

feature human model. The generated feature patches should interpolate the feature wireframe constructed in 
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section 3, and maintain enough details from the cloud points. In this section, the feature patches interpolating the 

feature curves are first generated using Gregory patch [25, 26]; the feature patches are then updated according 

to the scanned points by a voxel-based algorithm; finally, the mesh surface is adjusted to become symmetric. 

4.1 Interpolation surface 

 

We start generating the feature patches from the topology graph of a human body. By each face on the 

topology graph, we fill a Gregory patch which interpolates not only the feature curves, but also the cross 

tangents. 

)(vQ

)(uP

)(vTQ

)(uTP

u

v

 

Fig. 6    Define a Gregory corner interpolator 
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Fig. 7    GΡ  of a Gregory patch with five sides Fig. 8    Define a Gregory patch 

 

Let )(uP : 10 ≤≤ u  and )(vQ : 10 ≤≤ v  be two regular curves in 3ℜ  with )0()0( QP = , and 

)(uTP : 10 ≤≤ u  and )(vTQ : 10 ≤≤ v  be two 1C  vector functions in 3ℜ  satisfying 
0

)(
)0(

=

=
v

P
dv

vdQ
T  and 

0

)(
)0(

=

=
u

Q
du

udP
T , the Gregory corner interpolator of the four, { )(uP , )(vQ , )(uTP , )(vTQ }, is a surface in 

3ℜ  defined by 

vu

TuTv
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−−−−+++=
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The Gregory corner interpolator function ),( vur  agrees with )(uP  and )(vQ  along the two sides (i.e., 

)()0,( uPur =  and )(),0( vQvr = ) (Fig. 6). Also, its partial derivatives with respect to u and v agree with )(uTP  

and )(vTQ  along the respective sides – )(
),(

0

uT
v

vur
P

v

=
∂

∂

=

 and )(
),(

0

vT
u

vur
Q

u

=
∂

∂

=

 since )0()0( QTP
′=  and 

)0()0( PTQ ′= . For an n-sided 3D surface, n such interpolator functions can be defined on the n corners; the 

final surface is the weighted sum of the n functions [25-28].  

The parametric domain of a Gregory patch with n sides is defined as a unit length regular n-gon in the 

ηξ −  domain. We name the parametric domain of a Gregory patch G  as GΡ , where all corners kX  

( 1,,1,0 −= nk K ) are ordered in the anti-clockwise (as shown in Fig. 7). Given a point ),( 00 ηξ=X  inside GΡ , 

when computing its three dimensional position defined by a Gregory corner interpolator ),( kkk vur , the 

parameters ),( kk vu  of the point corresponding to the kth corner kX  are defined as 

),(),(
211

1

kk

k

kk

k
kk

dd

d

dd

d
vu

++
=

−+−

−                                                             (2) 

where kd  represents the perpendicular distance from X  to the side 1+kk XX . It is easy to find that if ),( 00 ηξ  

lies on the side 1+kk XX , 0=kv  since 0=kd ; if ),( 00 ηξ  is on kk XX 1− , 0=ku  since 01 =−kd ; when ),( 00 ηξ  

and 1+kX  coincides, we have 1=ku  by equation (2); and when ),( 00 ηξ  and 1−kX  coincides, we have 1=kv . 

If )(0 uC , )(1 uC , …, )(1 uCn−  are n regular 3D curves that form a closed loop in three dimensional space, 

that is )0()1( mod)1( nkk CC +=  ( 1,,1,0 −= nk K ), and )(
0

uTC , )(
1

uTC , …, )(
1

uT
nC −

 are n continuous 3D vector 

functions defined on the )(uCk s respectively, the Gregory patch of )(uCk s and )(uT
kC s is defined as a mapping 

from GΡ  to 3ℜ  

∑
−
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=
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j
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j
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Xw  , and ),( kkk vur  represents the Gregory corner interpolator function for the kth 

corner of the four items { )(uCk , )(vCk , )(uT
kC , )(vT

kC }, )1()( uCuC kk −= , and )1()( uTuT
kk CC −= . 
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In our feature patch interpolation, the )(uCi s are the feature curves in a feature wireframe. What are the 

)(uT
iC s? After the topology graph Γ  of a human model is determined, the cross normal iN  of the ith edge on 

Γ  is computed by normalizing the mean of its left face normal and right face normal. The ith edge on Γ  has a 

corresponding feature curve )(uCi . As )(uCi  is a parametric curve – 4
th

-order Bezier, its tangent vector 

function satisfies C
1
. Thus, we determine )(uT

iC  by 

u

uC
NuT i

iCi ∂

∂
×=

)(
)( ,                                                                  (4) 

which also satisfies C
1
 continuity. To have a continuous connecting across the feature curves, the Gregory 

patches on different sides of a feature curve should have the same number of grids along the curve. Fig. 9a 

shows the topology graph with cross normal vectors displayed as short black line segments; in Fig. 9b, some 

Gregory patches have been filled on the feature wireframe; Fig. 9c, 9d, and 9e give the result of all interpolation 

patches generated. 

     
(a) topology graph 

with cross normals 

(b) curves and 

patches on a 

human body 

(c) all feature 

patches generated 

(d) the mesh 

structure of the 

patches 

(e) checkerboard 

pattern to verify 

the feature patches 

Fig. 9    Gregory interpolation of feature patches  

 

4.2 Surface refinement 

 

From Fig. 9c, it is found that the interpolation surface does not give necessary detail of the human body’s 

surface. To add the details, we introduce an algorithm to iteratively improve the fitting accuracy by minimizing 

the shape difference between the mesh surface M and the scanned data. To have a better performance at the 

computing speed, a voxel-based technique is adopted. The procedure of surface refinement consists of three 
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basic steps: 1) voxel construction, 2) vertex position update, and 3) mesh relaxation. The second and the third 

steps are executed iteratively until a satisfied mesh is obtained. 

Voxel Construction: The work in this step is to prepare voxels for updating the position of each vertex on the 

interpolation mesh surface. If the size of each voxel is chosen as δ  (the criterion of choosing δ  will be given in 

the description of the second step), and the bounding box of scanned cloud points is determined as 

),,(),,( maxmaxmaxminminmin zyxzyx × , we can construct lnm ××  voxels where 1minmax +
−

=
δ

xx
m , 

1minmax +
−

=
δ

yy
n , and 1minmax +

−
=

δ

zz
l . Each voxel contains a list of points within a specific range of 

coordinates. For a voxel kjiV ,, , its range of point coordinates is  

[ ) [ ) [ )minminminminminmin )1(,)1(,)1(, zkzkyjyjxixi +++×+++×+++ δδδδδδ . 

Thus, by the index of a voxel, we can easily figure out the points within a range in a constant computing time. 

r

nq2L

q

 

Fig. 10    Effective region Γ  around a vertex  

Vertex Position Update: For every vertex on the interpolation surface, we update its position by the points in a 

cylindrical region around it. As illustrated in Fig. 10, for a vertex q with its normal direction nq on the mesh 

surface, all scanned points in the region Γ  specified by r and L should be considered. Here we use a threshold 

of r = 1.125cm and L = 1.5 cm in our experiments. Among all the scanned points fall in Γ , we search out a 

point p that is farthest to q. The vertex q is moved to be coincident with p. To accelerate the point-selecting 

computing, the voxels constructed in the first step is utilized. If the coordinate of q is (xq, yq, zq), only the points 

in the nine voxels ]1,1[],1,1[],1,1[ +−∈+−∈+−∈ γγββαα kjiV  are tested, where  

)(
min

δ
α

xx
INT

q −
= , )(

min

δ
β

yy
INT

q −
= , )(

min

δ
γ

zz
INT

q −
=  

with INT(…) computing the truncation of a real number. Therefore, the chosen of δ  is related to the value of L. 

When letting L=δ , all possible scanned points falling in Γ  have been include in the voxels whose indexes 

satisfy ]1,1[ +−∈ ααi , ]1,1[ +−∈ ββj , and ]1,1[ +−∈ γγk . 
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Mesh Relaxation: Simply updating the position of each vertex on M by the above point selection procedure will 

not result in a very attractive mesh, because neighboring parts of M could get mapped to disparate parts on the 

scanned data. To overcome this disparity, the relative deformation between vertices within M is expected to be 

minimum. Also, the vertices derived from the feature curves should be constrained on the feature curves. Given 

the current position of a vertex q, the relaxation energy at q is defined as 

FC

j

qvj ElqvE
j

+−=∑ 20
)(                                                              (5) 

where vj is a neighboring vertex of q on M, 0
qv j

l  is the distance between vj and q on M before the surface 

refinement, and EFC is the energy defined on the vertices lying on a feature curve. In a polygonal mesh, not only 

the vertices with edges connecting q but also other vertices on the faces containing q without edge connecting to 

q, are called its neighborhood – so when computing E, they also need to be counted. For q originally lies on a 

feature curve, we have 

2
0 )( qqEFC −=                                                                        (6) 

where q0 is the position of q on the feature wireframe; otherwise, EFC = 0. The mesh relaxation is actually the 

procedure of minimizing the energy E vertex by vertex. 

The mesh refinement is performed by iteratively running step 2 and step 3 until the average distance error 

between the vertices on M and the scanned points is less than a threshold ε  (our implementation adopts 

ε =0.1mm). However, the refinement result is annoyed by the high frequency noises in the scanned cloud points 

– see Fig. 11c, the noises effect the smoothness of resultant surface a lot. We simply solve this problem by 

applying the 2
nd

-order fairing operator [29] on each vertex one time after every ten iterations of step 2 and step 3. 

The final refinement result with all the factors considered is much better (e.g., Fig.11d). Benefit by the semantic 

feature technology, the surface construction can be finished within one minute on a computer with standard 

settings (PIII 900 MHz CPU + 256 MB RAM), where the scanned point cloud has about 100,000 points. 
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(a) interpolation surface (b) scanned data (c) with noises (d) result with 1.0=ε  

Fig. 11    Surface refinement  

4.3 Making symmetric 

 
The human body generated from the scanned data is usually asymmetric. When the human model is 

generated for sizing survey or for mannequin manufacturing, the symmetric models are requested. If this is the 

case, the refined mesh surface has to be further modified. Let us name the resultant surface after mesh 

refinement as M
+
, the feature wireframe as F

+
, and the scanned cloud points as S

+
. First of all, the entire data set 

of a human body including M
+
, F

+
, and S

+ 
are transformed to let the crotch point on the origin. For every feature 

curve C in F
+
, there is a dual curve C* in F

+
, where they should be symmetric on a symmetric wireframe. Also, 

for each feature node P in F
+
, there should exist a symmetric dual node P* of it in F

+
. By this property, we can 

construct a feature wireframe −
F  which is symmetric to F

+
.  In detail, for each feature node P, we update its 

position by the mirrored coordinate of P* according to the x-z plane, and vice-versa; for each feature curve C, its 

control points are updated by the mirrored copy of the data points on C*. Then, we mirror the coordinates of all 

points in S
+
 to obtain −S . After applying the surface interpolation and refinement algorithms on −

F  and −S , 

we obtain a refined mesh surface −
M  of the mirrored human body. The symmetric model surface is obtained by 

the interpolation of M
+
 and −

M : 
2

−+ +
=

MM
M

S
; at the same time, we can have the symmetric feature 

wireframe S
F  by 

2

−+ +
=

FF
F

S
. Fig. 12 shows a set of S

+
, F

+
, M

+
, −S , −

F , −
M , M

S
 and F

S
. 
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Fig. 12    Making symmetry  

 

5 Parametric Design of Human Model 
 

All the parameterized human bodies are stored in a 3D digital human model database Π . When we have 

enough data, a new human body can be generated according to the specified sizing dimensions by synthesizing 

example models from Π . Giving different sizing parameters, different human bodies can be synthesized – so 

called the parametric design of human bodies. One might ask why not just modify the sizing parameters related 

curves in a feature wireframe F to satisfy the given dimensions input, and then shift the displacement map of the 

human model mesh onto the modified wireframe. The reason is that such an approach hardly guarantees realistic 

shape in the resultant geometry. To guarantee the realistic, an example-based synthesis approach is adopted. In 

this section, the numerical optimization based synthesis algorithm is first introduced, and followed by the 

strategy of choosing examples for the synthesis. 

5.1 Example model based synthesis 

 

A smooth interpolation is sought to transform the sizing dimensions into a model in the body geometric 

space by using scattered examples as interplants. Many example-based methods [10-13] adopt mathematical 

interpolation functions to describe the interpolation; however, no matter how accurate an analytical interpolation 

function is, the approximation errors are not controlled when the given parametric vector has no coincident 
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example in the sample set. Therefore, in order to minimize the approximation errors, we adopt a numerical 

optimization based scheme here.  

Assume that we have n human bodies: Hi (i = 0, …, n-1), the synthesized human body Hs can be obtained 

through interpolation as ),,,,,,( 111100 −−Ι= nnS HwHwHwH L  where )(LΙ  is the interpolation function, wis 

are the weights of interpolation satisfying 1

1

0

=∑
−

=

n

i

iw  and 0≥iw . We also define a measurement function 

)(HMΨ  whose input is a human body H, and output is a dimension vector of H. Forming a vector D by the 

input sizing parameters, DHM −Ψ )(  gives the difference between the given human body H and the specified 

dimensions of parametric design. Also, in order to increase the degree-of-freedom, every human example Hi can 

be scaled by a scale factor iα  during the interpolation ( 0≥iα ). Therefore, based on a set of example human 

bodies: His, the problem we are going to solve here is to determine the weights of interpolation and the scale 

factors.  

Setting a vector X containing 2n scales to be determined: ),,,,,,,( 110110 −−= nn sssX LL ωωω , the 

synthesis human body on X is determined by ),,,,,,( 1
2

12

2
1

1
2
12

2
1

0
2
02

2
0

−−
−

∑∑∑
Ι= nn

i
i

n

i
i

i
i

S HsHsHsH
ω

ω

ω

ω

ω

ω
L  

where iis α=2  and j

i
i

j
w=

∑ 2

2

ω

ω
. Thus, when 02 ≠∑i

iω , the requirements on 0≥iw  and 0≥iα  are 

satisfied by any X. The vector X is the variable to be determined during the optimization. The synthesis human 

body can be considered as a function of X – Hs(X). The parametric design is formulated as an optimization 

problem, where we search for a configuration of X leads to the minimum difference between Hs and the inputs: 

min 
2

))(( DXH sM −Ψ                                                                   (7) 

Based on the above equation, 
2

))((][ DXHXJ sM −Ψ=  is defined as the objective function of numerical 

optimization. At the beginning of optimization, the values of X are given as 1== ii sω . To ensure 02 ≠∑i
iω , 

we just simply fix the value of 0ω  when all 62 10−<iω  during the optimization. 

We compute the optimized J with respect to X by a conjugate gradient method which includes the iterative 

process of computing gradients at current X and searching an optimum point along the conjugate direction [30]. 

The gradients are computed numerically. The unnecessary details of the conjugate gradient method are omitted 

here. During the iteration of optimization, the value of objective function decreases while the number of 
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iteration increases. Usually, these two factors are utilized together to give the terminal criterion of iterations. 

Thus, our terminal condition is either ε<
− −

][

][][

0

1

XJ

XJXJ
ii

 or the iteration number is greater than maxN , 

where ][ iXJ  is the value of the objective function in the ith iteration (current value), ][ 0XJ  is the value of the 

objective function before optimization, maxN  is the maximum iteration number, and ε  is a small number (we 

choose %01.0=ε  and 100max =N  in all of our testing examples). Since the )(LMΨ  function only has 

relationship to the feature wireframe of a human body, to speed up the numerical optimization, the interpolation 

is only applied to the feature wireframe but not the mesh surface of a human body during optimization. After 

determining the interpolation weights and the scale weights, the mesh surface of the new human model is 

generated at the final step. 

5.2 Example choosing strategy 

 

To support the numerical optimization based synthesis algorithm, appropriate examples are required to be 

performed as interpolants. The appropriate here means both the appropriate number and the models with 

appropriate sizing dimensions. Our example choosing strategy gives constraints on both of them. 

Let’s consider the number of examples first. If ∑ Ψ=Ψ
i

iMisM HwH )()( , by the theorem of linear 

algebraic, for m input sizing parameters, we need as least m human models whose returned vectors of )(LMΨ  

are not linear correlated. However, we cannot guarantee ∑ Ψ=Ψ
i

iMisM HwH )()(  as the measurements may 

be nonlinear to the synthesis; so the number of examples can only be determined by experiences. Too many 

examples lead to long computing time for the synthesis algorithm, while too small amount of examples can 

rarely get a human model fully satisfying the given dimensions (can only give an approximation). From our 

testing experience, using 4m models with appropriate dimensions usually works well.  

For a vector of input parameters D, the distance from a human model H to D in the sizing parameter space 

is defined as the Euclidean norm of DHM −Ψ )(  as 

DHL M −Ψ= )( .                                                                       (8) 

In our example selecting strategy, the smaller L is given from a human model H, the more appropriate the 

human body is to be served as a synthesizing example.  

In summary, by a given D with m components, we sort all model in the 3D digital human model database 

Π  according to their Ls in ascending order. Then, the first 4m models are selected as examples for the synthesis 
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algorithm. If the optimization gives inaccurate result according to D (i.e., the iteration stops at the Nmax criterion 

and the returned value of ][XJ  exceeds some threshold), add m more models as the examples. The algorithm 

repeatedly selects models, and synthesizes models until the new model with accurate dimensions to D is 

obtained. The same as other example-based approaches, this approach also relies on the number of models store 

in Π . Thus, building a 3D digital human model database with a large number of models is quite an important 

work. To let the synthesized human model have the morphology features of geography, the human models born 

in different regions should be stored separately. 
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Fig. 13    Synthesis of a human body 

5.3 Synthesis results 

 

With the input sizing parameters, we can construct a lot of different human bodies. Fig. 13 shows an 

example female model generated by inputting sizing parameters (the parameters are listed in the figure); the 

utilized example models and their final weights and scales for synthesis are also depicted. Fig. 14 shows a serial 

of female models according to different parameters listed in Table 1. In Fig. 15, six male models are generated 

according to the dimensions given in Table 2. Fig. 16 shows the parametric design results of the female models 

with the same height but different hip sizes, and Fig. 17 gives the resultant male models through specifying the 

same height but different waist girths. 
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(a) (b) (c) (d) (e) (f) 

Fig. 14    Female models generated according to the dimensions listed in Table 1 

Table 1    Input sizing parameters to generate female models in Fig. 14 

Model Height Neck Girth Bust Girth Under Bust Waist Girth Hip Girth Inseam-Length 

(a) 159 32 85 74 66 89 69 

(b) 168 32 83 77 66 90 77 

(c) 165 39 107 94 92 108 70 

(d) 163 33 92 77 72 95 70 

(e) 156 31 85 73 65 87 67 

(f) 159 34 95 82 75 96 68 

Table 2    Input sizing parameters to generate male models in Fig. 15 

Model Height Neck Girth Chest Girth Waist Girth Hip Girth Inseam-Length 

(a) 175 42 110 105 109 74 

(b) 184 39 97 84 101 84 

(c) 169 39 95 86 98 70 

(d) 175 40 98 85 99 76 

(e) 170 40 100 90 99 69 

(f) 174 45 115 112 114 71 

 

      

(a) (b) (c) (d) (e) (f) 

Fig. 15    Male models generated according to the dimensions listed in Table 2 
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Hip:88cm Hip:92cm Hip:96cm Hip:100 cm Hip:104cm Hip:108cm Hip:112cm 

Fig. 16    With hip/height ratio changed (Height:165cm) 

      

Waist:76cm Waist:80cm Waist:84cm Waist:88cm Waist:92cm Waist:96cm 

      

Waist:100cm Waist:104cm Waist:108cm Waist:112cm Waist:116cm Waist:120cm 

Fig. 17    With waist/height ratio changed (Height:175cm) 
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6 Application for Design Automation of Customized Clothes 
 

The application, which gains the greatest benefit from the technique presented in this paper, is the design 

automation of customized clothes. The most significant differences of the human model generated in this paper 

and the feature human in [1] are the feature patches. The human model generated in [1] only have feature curves 

but not patches, so the clothes generated around the human model can only be encoded on feature curves or 

feature nodes – which greatly limits the freedom of design. When having the feature patches provided in this 

paper, not only structure curves which are the entities encoded in [3], but also the entire mesh surface of a piece 

of cloth is encoded around the feature human body. Fig. 18 gives a preliminary example of the design 

automation of customized apparel products. After designing and encoding a piece of waistcoat and a piece of 

pants on a parameterized human body H which guarantees fit, the encoded relationship between the clothes and 

the mannequin can be applied to different human models to generate the customized 3D clothes fitting 

individual bodies – so the design automation of customized apparel products is implemented. The His are from 

the synthesis results previously shown in Fig. 14. 

Encoded Relationship

Design Relationship 

Encoding

+ + +++

H4 H5H2 H3H1

H

 

Fig. 18    Example of cloth design automation benefited from the technique of parameterized mannequins  
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7 Conclusion and Discussion 
 

A new framework for generating feature-base whole human bodies according to the specified measurement 

dimensions is presented. Our contributions include: 1) the feature based parameterization approach of human 

bodies from the unorganized scanning points, which is more efficient than the template fitting approaches; 2) the 

numerical optimization based example synthesis method by giving sizing dimensions, where the approximation 

error is minimized. The constructed and synthesized feature models by our approach are patch-based, so not 

only feature nodes and curves but also feature patches are modeled. These feature entities give great benefits to 

the successive design automation of customized clothes. An example application for showing this benefit is also 

included in the paper. 

There is one hidden assumption during the feature point extraction – though not necessarily identical, the 

posture of the scanned human body is similar. If the posture is quite different, the feature extraction method may 

give incorrect resultant points that will lead the failure of our parameterization approach. In this case, we need to 

specify the key feature points on the scanning points manually. A possible future work is to employ a more 

robust feature extraction algorithm for the key feature points. 

Our parametric design algorithm is example-based, so if the specified dimensions are out of range (e.g., the 

hip to height ratio is much greater than all examples stored), the resultant synthesized human body will just be 

an approximation of the given sizing parameters; in other words, cannot achieve the exact given dimensions. If 

this is the case, one possible future work is to further modify the feature curves to satisfy the given dimensions, 

and then shift the displacement map of the synthesized model to fit the modified feature wireframe. The 

drawback is that the resultant model might be less realistic since it has been manually modified. 

Finally, another research possibility is related to the input. Current input of the human construction 

approach presented is limited to the sizing dimensions. Photo is another convenience input for constructing a 

three-dimensional model of a human body. Therefore, we are going to borrow the idea from [2, 7] to develop a 

new method of human model construction by this input. 
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