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Abstract 

Offset surfaces play an important role in various CAD/CAM applications. Given a set of oriented points, we 

propose a hierarchical method in this paper to fit both the zero-level surface and its offset surface with a single 

implicit function. The implicit function is formed by compactly supported radial basis functions (CSRBFs). 

Different from other existing methods in literature, our approach reconstructs an implicit function which 

interpolates or approximates both the zero-level surface and the offset surface of a given point set simultaneously. 

Employing locally supported functions leads to an efficient computational procedure, while the coarse-to-fine 

hierarchy makes our approach insensitive to the density of scattered data and allows us to reconstruct large parts 

of missing data. The performance of our method is demonstrated by a number of examples and the application of 

adaptive slicing hollowed models in rapid prototyping. 
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1. Introduction 

 Offset surfaces play a very important role in geometry processing and especially in various CAD/CAM 

applications. They can be used for rapid prototyping and tolerance analysis in machine processing. In the context 

of tool path generation for numerically controlled (NC) milling machines, offset surfaces are used to define the 

location surfaces of cutters where the machine tool’s positions are constrained to lie. These location surfaces of 

cutters provide the input for collision-free path planning. Furthermore, offset surfaces are also used in generating 

hollowed or shelled versions of geometric solids, filleting and rounding of 3D models. 

 Rapid advancement of 3D capture technology encourages the growing need for geometric processing 

algorithms of point clouds, which can convert 3D cloudy points (captured by 3D data acquisition sensors) into 

suitable geometric models that are used in downstream applications of product design, analysis and 

manufacturing. Most existing approaches in literature devote to interpolating or approximating the incomplete 

point clouds using parametric surfaces, mesh surfaces or implicit surfaces. Few of them addressed the problem of 

fitting both the surface sampled by input cloudy points and its offset surface simultaneously. 

Offset surfaces are generally created from surface models. Given a point cloud, we can first reconstruct the 

surface from it and then calculate the offset surface by the reconstructed surface. However, this two-step strategy 

suffers from all the problems in existing offset surface generation methods [3-8] and wastes a lot of computing 

time. In this paper, we present a novel method which reconstructs both the zero-level surface (i.e., the surface 

approximating or interpolating input clouds) and its offset surface using a single implicit function. The implicit 

representation in terms of Radial Basis Functions (RBF) is adopted here, which simplifies the reconstruction 

problems and offers an elegant computational framework. An RBF implicit surface offers a compact functional 
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description for a set of surface data, where interpolation and extrapolation are inherent in such a functional 

representation. Gradients and higher derivatives can be determined analytically, and depending on the choice of 

basis function, they can be continuous and smooth. Moreover, surface normals can therefore be calculated 

reliably, and the isosurfaces extracted from the implicit RBF model are two-manifold.  

Problem Definition  Given a point set }p,...,p,p{
~

21 nP   coupled with normal vectors }n,...,n,n{N 21 n  

that is sampled from a surface P, letting P  denote the offset surface to P with distance  , an implicit 

function )p(f needs to be reconstructed that  
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where P
~

 approximates a set of points sampled from P . 

Different from other implicit surface reconstruction methods (e.g. [1, 2, 16-33]), which generate offset 

surface with )p(f based on algebraic distance (actually hard to use in practice), the isosurface based on 

Euclidean distances is required in many applications. Figure 1 shows an example of the isosurface generated 

based on algebraic distance versus Euclidean distance. Colors are employed to present the function values where 

blue denotes negative maximum and red represents positive maximum. 

 

   

(b) 

   

(a) (c) 

Figure 1.  An example of implicit function generated from a dog model with 50k points: (a) the dog model which 

is scaled into a unit bounding box, (b) the isosurfaces with f(x,y,z)=0 and f(x,y,z)=0.025 generated by [2], and (c) 

the isosurfaces with f(x,y,z)=0 and f(x,y,z)=0.025 generated by our method. The cross sections are shown in the 

top view (the first column), the front view (the second column), and the right view (the third column). 

 One straightforward thinking is that: why don’t we simply reconstruct an implicit surface by the points in 

P
~

 for the isosurface )( pf ? This will be explained in more detail later (in section 4). As the offset points in 

P
~

 are generated from P
~

, when the value of offset is large, many of the points will be invalid and removed 

from P
~

. Then, there may be too few points left to describe the offset surface correctly if we reconstruct the 

offset surface directly from these points. Figure 2 shows a simple example for this, where the transparent surface 

is the zero-level surface of a given point set. The distances between zero level-set and corresponding offset 

surface are measured using [42]. For the reconstructed result in (c), the maximal distance from zero level-set to 
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offset surface is 0.404 and the mean distance is 0.371, while from offset surface to zero level-set, the maximal 

distance is 0.418 and the mean distance is 0.377. For reconstructing the result in (d), the corresponding distances 

are 0.374, 0.365, 0.374, 0.3655 respectively. 

    

(a) (b) (c) (d) 

Figure 2.  Original surface and offset surface reconstruction: (a) The sphere model with 180 points, (b) The 

twelve offset points with δ = 0.365, (c) Surfaces reconstructed using [2] two times from the original points in (a) 

and the offset points in (b), and (d) The surfaces generated by our method with one single function.  

 The rest of this paper is structured as follows: In section 2 we review previous works in offset surface 

generation and implicit surface reconstruction. After that, we introduce RBFs and the multi-level CSRBFs 

interpolation method briefly in section 3. The details of duplex fitting of zero-level and offset surfaces are 

presented in section 4, where the compactly supported RBF (CSRBF) is employed to represent the zero-level and 

offset surfaces implicitly. Then, the experimental results and statistics are presented in section 5 followed by the 

application of adaptive slicing. After that, we conclude our paper in section 6. 

2. Related Works 

 Our algorithm consists of two steps. First, we generate a set of offset points from the input point cloud. After 

that, we interpolate (or approximate) the original points and the offset points with a single implicit function. The 

related existing work in literature about the offset surface generation and the implicit surface based surface 

reconstruction will be reviewed below. 

2.1. Offset surfaces 

The offset surface of a solid H  is a set of points having the same distance   (i.e., offset distance) from 

the boundary surface of H . The mathematical basis for offsetting solids is described in the early work of 

Rossignac et al. in [3]. A number of methods for computing offset surfaces have been developed since then. 

The offsetting operation can be considered as a special case of the Minkowski sum. Varadhan et al. in [4] 

have proposed a method to approximate the Minkowski sum of polyhedral models, which also covers the 

computation of offset surfaces as a special case. Some surface-based approaches generate offset surface by 

offsetting vertices into spheres, edges into cylinders, and faces into parallel faces, and combining those by 

trimming to get the final offset surface (ref. [3, 5]). This is a very computationally expensive process and the 

trimming at tangential intersections is numerically unstable. Some surface-based approaches for generating offset 

surfaces simply shift the original vertices in offset direction (ref. [6]). This is problematic as self-intersections can 

occur either locally in areas of high curvature or globally when different parts of the input surface meet during the 

vertex shifting. If the input mesh is convex or can be decomposed into convex pieces, the computation then 

becomes simple and effective (ref. [4]). However, such a decomposition is not easy for complex objects (ref. [7]). 

In [8], simplification envelopes were introduced for global error-control in mesh simplification. Their offset 
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surface generation method requires manifold meshes which do not contain any degenerated configurations, so it is 

not general. 

There are many other methods for offset surface generation with the help of other representations (i.e., not 

B-rep). Volumetric methods were presented based on distance volumes and the fast marching method in [9, 10]. 

These methods work on regular voxel grids. Recently, a point-based offsetting approach in [11, 12] was 

introduced, in which point samples are first generated on the input surface and are then moved in normal direction. 

After that, the Minkowski sum volume is rasterized on voxel grids in order to remove self-intersections. In [13, 

14], another offsetting approach was presented which aims mainly at visualizing the offset via surface splats. In 

their cases the classification whether a cell intersects the offset surface is based on conservative estimates for both 

the minimum and maximum distances. While this is sufficient for visualization purposes, it would be non-trivial 

to extract a proper manifold offset surface from it. A hybrid method combining surface and volume was proposed 

in [15]. The algorithm is also based on computing the union of a set of primitives (spheres, cylinders and planes). 

Its computations are stable since the method works on a volumetric representation and hence self-intersections 

can be easily removed by computing the min/max operations applied to distance functions. This method can 

process all kinds of mesh inconsistencies because it treats every triangle independently. Nevertheless, none of the 

above methods can be directly applied to generate offset surfaces P  for the input point cloud 

}p,...,p,p{
~

21 nP   that gives the discrete surface representation of surface P . 

Offsetting is a very important operation in many CAD/CAM applications. In this paper, we generate the 

offset points from a set of oriented points P
~

 by the normal shifting and the removal of invalid offset points. 

There may be holes in the set of offset points although the original points P
~

 are good for representing the 

surface P . Therefore, in order to construct a complete offset surface from the generated offset points, we adopt 

an implicit surface reconstruction method to fit both the point set P
~

 and the offset points generated from it. 

2.2. Implicit surface reconstruction 

Implicit surface is an important tool for surface reconstruction from point cloud. The existing approaches in 

literature usually define an implicit function in 3D to interpolate (or approximate) the input point samples and 

then extract the reconstructed surface as an isosurface of the function (e.g., [1, 2, 16-22]). The advantage of these 

approaches is two-fold: First, the extracted surface is guaranteed to be watertight, resulting in a model with 

well-defined interior and exterior, and second, the use of an implicit function does not place any restrictions on 

the topological complexity of extracted isosurfaces, providing a reconstruction algorithm that can be applied to a 

variety of 3D models. 

Recent developments in geometric modeling with implicit surfaces include level set methods in [23], 

variational implicit surfaces in [22, 24], adaptively sampled distance fields in [25], and multi-level partition of 

unity implicit functions in [1]. New trends in implicit surface modeling are closely related to interpolating and 

approximating point set surfaces using level set methods (ref. [26]), via radial basis functions (RBFs) in 

[2,21,27-29], or by moving least squares (MLS) (ref. [30-32]). As demonstrated in [19, 20], implicit surfaces are 

especially useful for repairing incomplete data since no topological constraints are required. This is a reason why 

we adopt implicit method to reconstruct surface in our paper. 

In general, modeling a surface implicitly with a function ),,( zyxf can be stated as the following. If a surface 

P  consists of all the points ),,( zyx  that satisfy the equation  

0),,( zyxf ,  

we say that f  implicitly defines P . Describing surfaces implicitly with various functions is a well-known 
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technique (ref. [33]). The distinction between our approach and these well-known techniques is that we wish to 

model the entire object with a single function which is continuous, differentiable and can satisfy both the above 

equation at zero-level and the equation ),,( zyxf  where the points ),,( zyx  are on the offset surface with 

distance   to P . Based on the best of our knowledge, there is no similar work in literature found. 

3. Radial Basis Functions for Formulating Implicit Surfaces 

 Scattered data interpolation can be computed using radial basis functions centered at the constraints. A radial 

basis function (RBF) is a real-valued function whose value depends only on the distance from some center points 

c  as | | )cx(| |)cx,( -  . Euclidean distance is usually employed for the norm. Radial basis functions are 

typically adopted to form the interpolation function as 





N

i

iiwf
1

| | )cx(| |)x(  ,             (1) 

where the interpolation function )x(f  is represented as a sum of N  radial basis functions, each associated with 

a different center ic , and weighted by a coefficient iw . A first-degree polynomial can also be added for the linear 

and constant terms of f . 

 According to the support size, RBFs can be classified into two categories (ref. [19]): global and compactly 

supported RBFs. The traditional RBFs fitting method uses global RBF which is a real valued function on [0,∞), 

such as the thin-plate spline )log()( 2 rrr  , the Gaussian )exp()( 2crr  , the multiquadric 22)( crr  , 

the biharmonic spline rr )(  and the triharmonic spline 3)( rr  . However, when using this sort of global 

RBFs, the linear equation system for determining coefficients wi in Eq.(1) is dense. Although the fast multipole 

method employed in [19] can speed up the computation, one has to face the fact that large data sets interpolation 

using these classical functions requires an unacceptable computation time. Therefore, fitting scattered data with 

CSRBFs leads to a simpler and faster computation. Smooth CSRBFs have been constructed in [35-37]. Wendland 

in [37] constructed CSRBFs for particular space dimensions, which possess the lowest possible degree among all 

piecewise polynomial compactly supported radial functions which are positive definite on dR and of a given 

order of smoothness. CSRBFs in [37] have then become a popular tool for surface reconstruction from scattered 

data (e.g., [2, 29, 38]).  

Our method is stimulated by Ohtake’s method in [2], where his multi-level reconstruction is insensitive to 

the density of scattered data, can restore large parts of missing data, and leads to a fast and memory efficient 

fitting procedure. The method is briefed below. 

3.1 Single-level CSRBF interpolation 

  Considering a set of n  points }p,...,p,p{
~

21 nP   with unit normals }n,...,n,n{N 21 n  which scattered 

along a surface, an implicit surface 0)x( f  is reconstructed such that it interpolates P
~

 and separates the 

entire space into two parts: 0)x( f  and 0)x( f . Ohtake’s method interpolates the set of n  scattered points 

P
~

 by the following equation 

0||)px(||])x([)x(
~

p


P

iii

i

wgf             (2) 

where )/()(  rr   with  
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being Wendaland’s CSRBF in [37],   is its support size, 
iw s are unknown coefficients to be determined, and 

)x(ig  are unknown functions which define a local quadratic approximation of P
~

 in a small neighborhood of 

Pi

~
p  . Here, Eq.(2) can be subdivided into two terms: partition of unity (PU)   ||)px(||)x( iig   and RBF 

approximations   ||)px(|| iiw  . According to the definition of function )x(ig , for each point Pi

~
p  , )x(ig  

can be obtained by approximating P
~

 in a vicinity of ip  with a quadric function. Thus, from Eq.(2), the 

implicit surface can be determined by solving a sparse linear equation system with respect to iw  as 





P

ii

P

ii

ii

gw
~

p
~

p

||)px(||)x(||)px(||   .       (3) 

3.2 Multi-level CSRBF interpolation 

 Although single-level CSRBF interpolation procedure is quite fast, there are several limitations. Firstly, it is 

unable to repair incomplete data and fill holes, and the reconstruction will be slowed down if we enlarge the 

support size. Secondly, a correct surface extraction requires the grid of polygonization algorithms (e.g., [43, 44]) 

to be smaller than the width of the support band generated by CSRBFs. To overcome these problems, Ohtake et al. 

proposed a multilevel interpolation procedure in [2]. Its main idea is to build a coarse-to-fine hierarchy of point 

sets { PPPP M ~
,...,, 21  } and interpolate a point set kP  in the hierarchy by shifting the interpolation function 

used in the previous level that interpolates 1kP . 

The hierarchy of point sets { PPPP M ~
,...,, 21  } can be constructed by subdividing the points of P

~
 into 

eight equal octants recursively. For each cell, the centroid of all points in this cell is computed and assigned with 

the unit average normal determined from these points. The centroids equipped with unit normal vectors of cells in 

level k are then considered as point samples in kP . After that, Ohtake et al. interpolate (or approximate) a point 

set of the hierarchy kP  as an offsetting of the interpolating function computed at the previous level 1kP . 

Therefore, the interpolating function for kP  is defined as 

),...,2,1(0)x()x()x( 1 Mkhff kkk    

with a base function 1)x(0 f . The offsetting function )x(kh has the same form as Eq.(2) used in the 

single-level interpolation. The coefficients k

iw  are evaluated by solving a linear system 
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p

||)px(||)x()p(||)px(||   ,      (4) 

where local approximations )x(k

ig are determined by least square fitting to kP . 

 The approaches based on CSRBFs are sensitive to the density of interpolated/approximated scattered data. In 

order to adapt the interpolation to scattered data of different densities, it is clearly necessary to be able to scale the 

support size,  , of each basis function  . If   is too small, the approximation will be poor; the surface may 

exhibit small peaks and flat spots, holes and gaps. On the other hand, if too large values are chosen for  , the 

linear equation system for computing wis is no longer sparse. Therefore, a careful selection of the support size for 

CSRBFs is necessary. Ohtake et al. presented a method to determine the support size k  and the number of 

subdivision levels M  in [2]. The support size k is defined by 21 kk   , L 1 , where L  is the length 

of a diagonal of the bounding box of P
~

. The parameter   is chosen such that an octant of the bounding box is 

always covered by a ball of radius 1  centered somewhere in the octant. The number of subdivision levels M  

is determined by 1  and 0 , where 0  is the support size for the single-level interpolation and equals to three 

fourth of the average diagonal of the leaf cells which contain no more than eight points of P
~

. The equation 

 ))2((log 10

2 M  provided in [2] is used to get the number of levels. In our implementation later, we will 

also determine the support size and the number of levels using this method in [2].  
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Although our duplex surface interpolation method uses the multi-level interpolation idea in [2], there are two 

essential differences: the first is that the fitting function )x(f is formulated by standard RBFs instead of the sum 

of PU and RBF terms; the second is that our method can fit the zero-level and offset surface at the same time with 

a single function instead of just for zero-level points. In next section, we will detail our surface reconstruction 

method and the reason for selecting different techniques. 

4. Duplex Surface Interpolation and Approximation 

Offsets of solids, which are defined as grown or shrunken versions of the solid, have been defined precisely 

using the point sets theory in [3]. In [11, 12, 15], offset results are generated individually for surfaces, edges and 

vertices of a solid model and then combined by a Boolean union. Differently, the solid is represented by points in 

this paper, so we use an implicit function to fit the zero-level and the offset surface simultaneously after 

generating offset points.  

4.1. Overview 

In our fitting algorithm, we assume the given data is a set of oriented points. According to the density of the 

point set, the support size and the number of levels are determined. In each level, we firstly generate the point set, 

its offset points and the off-surface points from the original point set P
~

, and then construct the fitting function. 

All steps of our method are illustrated in pseudo-code below.  

Algorithm 1.  Duplex multi-level fitting  

Input: An oriented point set P  

Output: A single function f consisted of a set of RBFs 

(1) Determine the support size 1 and the number of subdivision levels M according to the given point 

set P  

(2) For each level k  

(3)     Generate the point set kP of level k  

(4)     Generate offset points kP and off-surface points k

dP  

(5) Obtain the RBF centers using center reduction (optional) 

(6)     Get the offsetting function ko by solving the system (5), and then get the function kf  

(7) Set kff  and return. 

As the reconstruction involving offset points at the non-zero-level set, the single-level method can hardly 

provide a correct reconstruction. Details will be explained in Section 4.4. If the point set is with noises in normal 

and position, we will apply a pre-processing for denoising the points. This will be discussed in Section 4.5. 

Our method in Algorithm 1 has the following advantages: 

1) For a given set of oriented points P
~

 and the offset points P
~

 generated from P
~

 with an offset 

distance  , a single function formed with RBFs is used to describe a zero-level set and its offset surface 

simultaneously, satisfying )
~

x(0)x( Pf   and )
~

x()x(  Pf  . The reconstructed implicit function actually 

gives an elegant mathematical model for the hollowed model of a given object sampled into P
~

.  

2) A hierarchical computation method has been developed in this paper which makes the algorithm 

insensitive to the density of scattered data and allows us to reconstruct large parts of missed data. 

4.2. Offset points generation 

 Consider a set of points }p,...,p,p{
~

21 nP   with unit normal vectors }n,...,n,n{N 21 n  that indicates the 
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oriented boundary surface of input solid. The offset points can be represented in 

}
~

p,))p,p(min(|p{
~

PdisP iijj   . In practice, the points in P
~

 can be generated from range scanners and the 

normals in N  are usually estimated from range data during shape acquisition phase by local least-square fitting. 

When generating offset points from a point cloud, we consider all points as face points and produce 

corresponding offset points in two steps: 

 Generating the candidate offset points for all points in P
~

 by offsetting a distance   along the points’ 

normal directions; 

 Removing the invalid offset points that locate in the sphere centered at other surface points with radius 

 .  

After these two steps, the remaining candidate offset points form the offset point set P
~

. 

As illustrated in Figure 3, it is not difficult to find that there are holes near corners in the offset point set. 

This is one of the major reasons why we select the implicit surface to reconstruct the offset surface as it can fill 

the gaps or holes automatically. In the following two subsections, we will detail the technology of constructing 

the zero-level surface and the offset surface simultaneously using CSRBFs. 

 

Figure 3.  The illustration of offset points generation in 2D: the black points are the original points, the union of 

red and blue points are the set of candidate offset points shifted from the original points along the normal direction 

(purple arrows), the red points are removed candidate offset points, and the blue points are the remaining offset 

points in the offset point set. The grid cells are used to accelerate the processing of point removal. 

4.3. Multi-level CSRBFs 

 Let us consider a set of n  points }p,...,p,p{
~

21 nP   with unit normals }n,...,n,n{N 21 n . A set of offset 

points }p,...,p{
~

1 mnnP   is obtained via the offset operation in Section 4.2. We wish to find a function )x(f  

which implicitly defines a 3D scalar field so that it satisfies the equations ),...,1(0)p( nif i   and 

),...,1(0)p( mnnif i  . In order to avoid the trivial solution that f is zero everywhere when there are 

no offset points to be interpolated, extra off-surface points in set dP  are appended to the input data and are given 

values as their signed Euclidean distance to P
~

. Experience has shown that it is better to augment a sample point 

in P
~

 with two off-surface points – one on each side of the surface. However, in our implementation, we 

consider the offset points as an off-surface point set and just need to generate off-surface points on the opposite 

side of the offset surface to be constructed. To make the reconstructed surface in a good shape, n off-surface 

points are expected. More specifically, we move each point in P
~

 along the normal vector with distance +d or –d 

where the sign is determined by the moving direction. In our implementation, we choose 10/d . Again, the 

invalid off-points generated in this way will also be removed by the method of offset point selection in Section 
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4.2. 

 The interpolation problem can then be restated as follows. Considering a set of n  points }p,...,p,p{
~

21 nP   

scattered along a surface, a corresponding set of )( nnn   off-surface points }p,...,p,p{ 21 mnnmnmndP  , 

and a set of )( nmm   valid offset points }p,...,p,p{
~

11 mnnnP  , we will compute a 3D scalar field defined 

by )x(f  such that its zero-level-set 0)x( f  interpolates P
~

 and the δ-level-set )x(f  interpolates P
~

. 

 We interpolate P
~

 and P
~

 by 
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where )(r ,   and iw s are defined as in Eq.(2).  

 Thus, we determine the coefficients iw  from the interpolation conditions that 
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,       (6) 

therefore Eqs.(6) lead to a sparse system of linear equations with respect to iw . Since Wendaland’s compactly 

supported RBFs are strictly positive definite (ref. [37]), the )()( mnnmnn   interpolation matrix 

}{ ij  is positive definite unless the points in P
~

, P
~

 and dP  are co-planar, which seldom happens in 

practice . 

Due to the local property of CSRBF, the isosurface of the δ-level-set cannot be correctly reconstructed with 

the single-level method. Details will be explained in next sub-section. The multilevel interpolation procedure 

described in the following eliminates this problem. 

Borrowing the idea of Ohtake et al. [2], we build a multiscale hierarchy of point sets { PPPP M ~
,...,, 21  } 

and interpolate a point set 1mP  in the hierarchy by shifting the interpolation function determined at the previous 

level that interpolates mP . After that, according to the point set kP  in the k  level, we can generate the 

corresponding offset point sets }p,))p,p(min(|p{ k

iijj

k PdisP   and the off-surface point sets  

}p,))p,p(min(|p{ k

iijj

k

d PddisP   using the method described in section 4.2. These sets also form two 

hierarchies: {  PPPP M ~
,...,, 21  } and { d

M

ddd PPPP ,...,, 21 }. For those points in kP  whose corresponding normal 

is zero-vector, the off-surface points and the offset points are difficult to compute. Therefore, they are simply 

neglected. Then, our multilevel interpolation procedure works in the coarse-to-fine way to interpolate a point set 
kP  in the hierarchy by shifting the interpolation function defined in the previous level 

1kP . Figure 4 shows the 

support spheres of the original and offset points, the reconstructed surfaces using our multilevel interpolation 

approach, and the cross-sections of the implicit function. 

For the k th level of the hierarchy of point sets with offset points and off-surface points, the offsetting 

function kh  is defined as 

 
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Thus, the coefficients k

iw  are found by solving the following system of linear equations 
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Here, the support size k and the number of subdivision levels M are determined by the method in Section 3.2.

  

 

Figure 4 Multilevel interpolation with offset points ( =0.06). The hierarchies of original points (first column) and 

offset points (second column) are shown with the radii of the spheres at each level k being 0.2 times of the support 

size of RBFs used. Reconstructed zero level-set and offset surfaces (third column) are polygonized at each level of 

the hierarchy. The zero level-set was rendered in transparent mode. Last column shows the cross-sections of implicit 

functions, where the bold black lines show the zero level sets and the  -level sets of the functions.  

4.4. Single-level vs. multi-level interpolation 

By experiments, we find that even if single-level interpolation is employed here, the reconstructed RBF 

function still defines a scalar distance field which interpolates the sample points and the offset points. The 

isosurface of the zero-level is correct. However, for the   level-set, two parts — one correct part and one extra 
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part are generated. Figure 5 shows such an example. This is because the constructed implicit function f is not 

monotonic around the isovalue   since f is defined by compactly supported basis functions. Using global RBF 

can solve this problem – Figure 6 gives an illustration for this. However, using global RBF will slow down the 

reconstruction process significantly when there is a large number of point data. Besides, there are another two 

problems as stated in [2]. Firstly, using this single-level interpolation, there is no ability  to repair incomplete 

data – in particular interpolating irregularly sampled data and filling holes. Secondly, the constructed implicit 

function has a narrow band support, so it requires the grid of later polygonization program (e.g., the Marching 

Cubes algorithm in [43]) to be smaller than the width of the support band. This will generate too many triangles. 

The multilevel interpolation procedure solves these problems. 

      

(a) Points (b) Reconstruction by single-level (c) by multi-level CSRBF 

Figure 5. Single-level vs. multi-level CSRBF interpolation: original points and the offset points with  =0.1 (a), and 

cross-sections of the isosurfaces reconstructed by (b) single-level and (c) multi-level CSRBF interpolation method, 

where the bold black lines correspond to the zero level-set and the   level-sets of the functions. 
 

   

(a) (b) (c) top – CSRBF and bottom – global RBF 

Figure 6 The fields of two single-level functions which were formed with (a) CSRBFs and (b) global RBFs  

respectively. From (c), we can easily find that there are multiple intersections for   level-set on CSRBF but only 

one intersection on global RBF. 

4.5. CSRBF vs. PU+CSRBF 

Before using the method presented in this paper, we also tried to use Ohtake et al.’s method (ref. [2]) to 

reconstruct the surfaces with offset points’ constraints. Ohtake et al. interpolate a given set of n  scattered points 

P
~

 by the equation (2). It combines partition of unity (PU) and RBF approximations together. As the offset points 

at the non-zero-level set are involved, the normalized version of radial basis function 

  | | )px(| || | )px(| | ii    are used in Eq.(2). The function can then be rewritten as 

 



P

i

P

iii

ii

wgf
pp

||)px(||||)px(||])x([)x(   .      (9) 

Although this method does not need off-surface points for interior/exterior constraints (i.e., the size of the 

linear equation system is )()( mnmn   instead of )()( mnnmnn  ), we found that it can only give 

correct offset surface when the offset distance is less than the support size of RBF. However, enlarging the 



 
 

12 

support size will greatly slow down the fitting process. Contrary to this, our method can generate good results in 

which the offset distance is less constrained by the support size of RBF. With different offset distances, the results 

generated by multi-level normalized PU and CSRBFs, and multi-level CSRBFs are shown in Figure 7 

respectively.  

 

      

δ = 0.01 

σ = 0.028 

δ = 0.025 

σ = 0.028 

δ = 0.04 

σ = 0.028 

(b) results by the multi-level PU+CSRBFs [2] 

      

δ = 0.01 

σ = 0.028 

δ = 0.025 

σ = 0.028 

δ = 0.04 

σ = 0.028 

(a) (c) results by our duplex fitting 

Figure 7. The offset surfaces generated by the multi-level PU+CSRBFs (ref. [2]) versus our duplex multi-level 

CSRBFs  on (a) a given Moai model with 14.8k oriented points. (b) and (c) show three groups of the cross-sections 

of reconstructed implicit function respectively. Each group shows a pairs of zero-level and offset surface where black 

contours mean the surfaces with different offset values. δ gives the offset value, and σ is used as the support size of 

CSRBF.  

4.6 Noisy point data 

 Both positions and normals of the given point samples can have noise embedded. If noises only appear in 

normal vectors, we can  simply use the method in [16] to estimate the correct normals from cloudy points. For 

the data set with position noise, we tried two methods to process it: 1) approximation (as Ohtake et al. did in [2]) 

and 2) bilateral filtering.  

Approximation: By inverting the interpolation matrix   in eq.(6) to a regularized matrix I , the 

reconstruction procedure will be switched from interpolation to approximation, where   is a smoothing 

parameter and I  is the identity matrix. In [2], Ohtake et al. used this method to fitting zero-level set from noisy 

scattered points. Here, we approximate the zero-level set and the offset surface from the given noisy data in the 

same way. The value of   is set as ksk   where s  is a float number given by users and k is the level of 

hierarchy. The approximating results with different   values are shown in Figure 8. It can get satisfactory 

reconstruction for neither zero-level set nor offset surface. This is because the offset points generated from noisy 
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cloudy points actually enlarge the level of noise. 

    

(a) (b) (c) s = 0 

    

(d) s = 0.3 (e) s = 0.5 

Figure 8. The dog model in (a) is artificially corrupted by Gaussian noise in (b). The surface approximated by our duplex surface 

reconstruction method with different smooth parameter are shown in (c) – (e) respectively – all are for the offset value 025.0 . 

 

Bilateral Filtering: The filter for mesh surface used in [45] is modified to denoise point cloud data here. For 

a point p in a noisy point set Q , the estimate 'p is found by  





Q

qqq s
q

||)p)p(K(||||)pq(||)p(K
)p(

1
'p 


,      (10) 

where )(  is a normalization factor (sum of the weights) 





Q

qqsp
q

||)p)p(K(||||)pq(||)(  , 

)p(Kq  is the projection of p  on the tangent plane of q  and qs  is the area at point q . Here, we simply 

compute qs  by )(2 qNsq   with   being the support radius of RBF at q and N(q) being the number of 

points in this support region. )(  and )(  are the spatial weight and the influence weight Gaussian as 

2

2

2
)( 

r

er


  and 
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2

2
)( 

r

er


 . 

The widths  and   control the amount of smoothing. 

 Simply interpolating the filtered points will not always generate good results (e.g., the one in Figure 9(b)). 

Therefore, we approximate the filtered points by the aforementioned method with s = 0.2. Better results can be 

obtained in this way as shown in Figure 9(c). In denoising, we choose aveR4    where 

 


Q
qave s

N
R

q

1 . 
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(a) (b) (c) 

Figure 9. The dog model (a) is filtered from the noisy Dog model in Figure 8(b) by our denoising method, (b) the interpolation 

result on filtered points, and (c) the approximation result on filtered points with s = 0.2. The offset surfaces are reconstructed with 

025.0 . 

5. Results and Application 

 In this section, we applied the developed method to a variety of point sets. All examples were computed on a 

PC with Intel Core 2 Quad 2.4GHz CPU and 2.0GB RAM, and our program is written in Visual C++. As 

described in section 4.2, we generate offset points by a user given offset  . The initial offset points are generated 

by shifting along the normal vector with the distance   from each point. Then, we remove the invalid offset 

points to get the final offset point set. In our implementation, the offset points can be obtained within one second 

for all examples except the high resolution Fandisk model in Table 2, which is with more than 550k points and 

requires 3.1 seconds. After generateing the offset points, our algorithm described in section 4 is used to 

reconstruct the zero-level and offset surface simultaneously. After computing the implicit surface function, the 

mesh surfaces for zero-level-set and δ-level-set are extracted by the polygonization algorithm in [44]. 

5.1. Duplex multi-level CSRBFs fitting results 

 Our method puts the reconstruction of zero-level and offset surfaces in one system. This not only 

reconstructs a single function to define the model surface and the offset surface with different iso-values, but also 

improves accuracy of the offset surface for given points. Such improvement is significant especially when the 

generated offset points are sparse. Figure 10 shows an example for this. Figure 10(a) is the given model Fandisk 

with 8k points, Figure 10(b) shows the generated offset points, and Figure 10(c) shows the implicit surfaces 

reconstructed from the original points and the offset points separately. The result using our method is shown in 

Figure 10(d). The surfaces that interpolate the original points are shown in transparent. It is easy to find that our 

method can construct more accurate offset surface than the method which fits the offset points along. Similar 

conclusion can be made on the results of filigree, hub, and eight-shape models in Figure 11-13. 

    

(a) (b) (c) (d) 

Figure 10. Separate reconstruction of zero-level and offset surfaces versus our duplex fitting result: (a) the fandisk 

model with 8,030 points – low resolution, (b) 4,433 offset points are generated with  = 0.025, and (c) the two 

surfaces generated separately from (a) and (b), and (d) the surfaces reconstructed simultaneously by our method. 
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(a) (b) (c) (d) (e) 

Figure 11. The duplex fitting result from irregularly sampled data of filigree with  =0.017: (a) the given point set 

with 31.4k points, (b) the generated offset points, the reconstructed result – (c) the zero-level and (d) offset 

surfaces , and (e) superimposition of two surfaces where the zero-level is rendered in transparent. 
 

     

     

(a) (b) (c) (d) (e) 

Figure 12. The duplex fitting result from irregularly sampled data of the hub model in high resolution with  =0.025 

in front (top row) and back (bottom row) views: (a) the given point set with 118.6k points, (b) the generated offset 

points, the reconstructed result – (c) the zero-level and (d) offset surfaces, and (e) superimposition of two surfaces 

where the zero-level is rendered in transparent. 
 

   

(a) (b) (c) 

(d) (e) 

Figure 13. The reconstruction of zero-level and offset surfaces on eight-shape model with δ = 0.05: (a) the given 

point set with 110.6k points, (b) the generated offset points, (c) superimposition of two surfaces where the zero-level 

is rendered in transparent, (d) the hole in offset points which is flagged with red lines, and (e) the reconstructed 

offset surface with the hole filled.  
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The example of eight-shape model in Figure 13 demonstrates that our method can fill holes and reconstruct a 

shape for offset surface as accurately as possible according to the sharp features defined by the given sample 

points. The original concave sharp features lead to no inside offset points (see Figure 13(b) and (d)). Our method 

can reconstruct the missing portion of offset surface with the help of the zero-level set defined by the given point 

set (as shown in Figure 13(c) and (e)). A similar case happens on the gear model example in Figure 14. Figure 15 

shows the results of using the method of Ohtake et al. in [2] to reconstruct the zero-level and the offset surfaces 

separately from given points and the offset points. It is easy to find that the quality of the resultant offset surfaces 

is very poor. Table 1 gives the quantitative comparison of our method versus the method in [2]. In Table 1, the 

fitting times for separate reconstruction are computed by the implementation of sequential code on CPU. In our 

duplex fitting, we speed up the computation by using GPU to solve sparse linear system [46] and the 

multiple-threads code on CPU for the offset points generation and the function value evaluation.  

     

(a) (b) (c) (d) (e) 

Figure 14. The duplex fitting result from irregularly sampled data of gear model with =0.025: (a) the given point set 

with 53.8k points, (b) the generated offset points, the reconstructed result – (c) the zero-level and (d) offset surfaces, and 

(e) superimposition of two surfaces where the zero-level is rendered in transparent. 
 

  

 

(a) (b) (c) 

Figure 15. Reconstructing zero-level set and offset surfaces separately using the method in [2]: (a) the filigree model in 

Figure 11, (b) the hub model in Figure 12, and (c) the eight-shape model in Figure 13 – some unwanted parts are 

generated on the offset surfaces. 
 

Table 1. Comparisons of fitting times and distances from offset surfaces to original surfaces. 

Models Fig. 
Inside 

offset  

Separate reconstruction Duplex fitting 

Fitting 

time 

Distance from offset surface to 

original surface 
Fitting 

time 

Distance from offset surface to 

original surface 

Maximum Mean Maximum Mean 

Sphere 2 0.365 0.02s 0.404 0.371 0.3s 0.371 0.365 

Fandisk (lr) 10 0.025 2s 0.042 0.245 3s 0.031 0.025 

Filigree 11 0.017 24.6s 0.0265 0.0167 24.5s 0.0305 0.017 

Hub (hr) 12 0.025 93.64s 0.13 0.0345 100.5s 0.0313 0.025 

Eight-shape 13 0.05 28.15s 0.11 0.046 22.9s 0.052 0.05 
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Generally, an RBF fitting will employ all input data points for interpolation and as centers of the RBF. 

However, such an interpolation is not needed in many applications. Using fewer centers will be able to 

approximate the input data within a desired accuracy. When duplex fitting the zero-level and offset surfaces using 

a hierarchy, we test points in the current level by the function in previous level. If the maximal distance from all 

points to the surfaces defined by the points in last level is less than a user defined fitting tolerance, the fitting 

procedure stops. Such center reduction often results in a shorter fitting time and is optional in our algorithm. 

Reconstruction using our duplex multi-level CSRBFs is robust with respect to variations of point density – 

two examples are shown in Figure 16 and 17. Figure 16 shows a fitting result from a scattered point data set with 

non-uniform density on vase model. The given points in Figure 17(a) come from the Igea mesh where its right 

part was first 90% decimated and then with all connectivity information removed. 

     

(a) (b) (c) (d) (e) 

Figure 16. The duplex fitting result from a scattered point dataset of vase with non-uniform density, and the offset 

distance is set as δ = 0.025: (a) the given point set with 51k points, (b) the generated offset points, (c) and (d) are 

the reconstructed result – the zero-level and offset surfaces respectively, and (e) the superimposition of two 

surfaces where the zero-level is rendered in transparent. 
 

      

(a) given points and generated offset points 

      

zero-level surface  =0.05  =0.1  =0.15  =0.2  =0.25 

(b) reconstructed zero-level and offset surfaces 

Figure 17. Duplex surfaces fitting with different offset distance on Igea model. (a) Original points and offset points 

with different distances and (b) the reconstructed surface of zero-level set (first column) and offset surfaces with 

different offset distances (other columns). 
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As stated before, when the value of offset becomes large, many of the points will be invalid and removed 

from P
~

. Although our duplex fitting method can help to improve the reconstructed offset surface (e.g., in Figure 

2, 10 and 13), for models with complex shape, the error can still be large. In Figure 17, we reconstruct the 

zero-level set and offset surface with different distances ranging from small distance (0.05) to large distance (0.25) 

respectively. As the offset distance becomes large, the remaining points become few. In some parts of the model, 

it results in large distortion on offset surfaces (e.g., the eye part on the Igea model in Figure 17). 

 Our duplex fitting algorithm is developed for points – the nature of point representation makes it easy to be 

modified to a parallel algorithm. Moreover, the local supporting property of CSRBF makes the linear system 

sparse so that it can be solved with the help of GPU (ref. [46]). To take these two advantages, we speed up the 

fitting procedure by using GPU-based numerical solver and programming our code in a multi-threads mode. The 

comparison of computing time between with and without using this speed up is listed in Table 2. It is easy to find 

that even if working on huge numbers of points, the computation can be completed within two and a half minutes. 

From Table 2, we can also find that using multi-threads and GPU can increase the efficiency in about 2-6 times 

without losing the accuracy, which is measured by the maximum function error. 

 Table 2. Computational Statistics of duplex multi-level RBFs fitting  

Models Fig. 
Number of 

points 
Levels 

CPU Multi-threads + GPU 

Fitting 

time 

Maximum Function Error 
Fitting 

time 

Maximum Function Error 

Zero 

level-set 

Offset 

surface 

Zero 

level-set 

Offset 

surface 

Fandisk(lr) 10 8,030 6 6.4s 5108.2   5101   3s 51065.2   5106.8   

Fandisk(hr) N/A 550,340 9 940.1s 4102.3   51034.4   150.8s 4106.1   5105.1   

Hub(lr) N/A 29,426 6 88.7s 4102   5103   28.5s 4105.1   51013.2   

Hub(hr) 12 118,566 7 352.7s 51014.6   5105.1   100.5s 5107.3   51025.1   

Moai 7 40,002 7 37.6s 7103.4   7105.2   7.12s 6107.5   6104   

Filigree 11 31,400 7 44.4s 9102   0 8.57s 6104.6   6103.5   

Gear 14 53,816 7 91.68s 6108.4   61015.2   24.5s 6101.6   51014.1   

Eight-shape 13 110,628 7 81.54s 5106   5105.1   20.26s 5107.8   5107.1   

Dog 1 49,998 7 119.3s 9107.3   0 22.9s 6101.7   6101.2   

Igea 17 72,545 7 78.86s 7106.1   8104.2   13.12s 6107.6   6108.4   

Vase 16 51,081 8 63.57s 10108   0 13.88s 61084.2   6106   

*Note that: 1) all models are scaled into a box with unit width, and 2) the maximum function error from points is generated by 

the iterative numerical solvers – preconditioned biconjugate gradient (PBCG) is employed in CPU solver and the 

Jacobi-preconditionned conjugate gradient is used in GPU solver. 

To verify the accuracy of resultant offset surfaces by our method, we used two models created in SolidWorks 

(ref. [48]). For PART1 model in Figure 18 and PART2 in Figure 19, we generate offset surfaces with distances 0.1 

and 0.025 inside it. The point clouds are generated by remeshing the original model and removing the 

connectivity information. The publicly available error measurement tool in [42] is employed to compare the offset 

results generated by our algorithm and the ideal offset results constructed in SolidWorks. The comparisons are 

provided in Table 3. 
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(a) (b) (c) (d) (e) 

Figure 18. Offset points and surfaces for model PART1 ( =0.1): (a) the input points, (b) inside offset points, (c) the 

reconstructed zero-level surface, (d) the reconstructed offset surface, and (e) the superimposition of two isosurfaces. 
 

     

(a) (b) (c) (d) (e) 

Figure 19. The reconstruction of zero-level and offset surfaces with  =0.025 for model PART2: (a) the given point 

set, (b) the generated offset points, (c) and (d) are the reconstructed results of the zero-level and offset surfaces 

respectively, and (e) the superimposition of two surfaces where the zero-level is rendered in transparency. 

Table 3.  Measurement of shape error 

Models Inside offset  

Shape error 

Forward distance Backward distance 

Maximum Mean Maximum Mean 

PART1 0.1 0.005 0.0002 0.009 0.00022 

PART2 0.025 0.00795 0.000105 0.01115 0.000135 

 

5.2. Application in adaptive slicing 

One example application of the implicit function generated by our method is adaptive slicing in rapid 

prototyping. During the slicing process, we need to generate 2D contours and calculate the layer thickness, where 

the layer thickness is determined adaptively by the curvature of a planar curve on the reconstructed RBF surfaces. 

From Section 4, we have already obtained a CSRBF implicit function (x)f  with Tzyx ),,(x  , whose 

isosurfaces at zero-level and the  -level give the boundary surfaces of hollowed models. In this application, 

only the curvature of a planar curve is used in determining layer thickness, which is given in Appendix A.  

2D contours are generated by intersecting the horizontal slicing plane with the isosurface of the implicit 

function determined above. This is very important to the slicing procedure. In [41], the authors proposed an 

adaptive 2D contour generation method by a marching process, which has trouble to output loops with correct 

topology at the layer with critical point (i.e., the point where two loops join into one). When slicing the hollowed 

models, we need to generate 2D contours for both the zero level-set and the   level-set. Here, we adopt the 

marching square method in [47] to generate 2D contours which can find all contours easily (e.g., Figure 20). 
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(a) (b) z = 0.4 (c) z = 0.25 (d) z = 0.1 

Figure 20.  Slicing of a head model (the top row) and a torus (the bottom row) with three horizontal planes (blue) on the resultant 

implicit function of our duplex fitting. Black points are input oriented sample points and the yellow points are offset points. 

Locations of the three slicing planes are shown in (a), and the 2D contours are given in (b)-(d). 

We adopt the strategy presented in [40, 41] to compute adaptive thickness of layers which are determined by 

the cusp height and the vertical normal curvature at all points on each layer. Two slicing results are illustrated in 

Figure 21. In Figure 21(d) and (e), the red lines represent the slicing planes, where the slicing results in Figure 

21(d) are obtained by considering the zero-level surface only whereas the results in Figure 21(d) are obtained by 

considering both the zero-level and the offset surfaces. Compared with Figure 21(d), it is easy to find that more 

layers are generated in Figure 21(e). 

      

     
 

(a) (b) (c) (d) (e) (f) 

Figure 21 Adaptive slicing results (Top row – a head model:  =0.05 with cusp height  =0.01, grid size 0.005; 

Bottom row – a torus model:  =0.1 with cusp height  =0.01 and grid size 0.01): (a) input point sets, (b) offset 

points, (c) reconstructed surfaces, (d) slicing results obtained by only considering the zero-level surface (head 

model: 88 layers and torus model: 67 layers), (e) slicing results obtained by considering both the zero-level and the 

offset surfaces (head model: 114 layers and torus model: 75 layers), and (f) the isometric views of slices in (e). 

6. Conclusion 

 In this paper, we proposed an implicit surface reconstruction method to interpolate (or approximate) the 
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original points and offset points simultaneously using a single function. Given a set of oriented points P
~

, we first 

generate the offset points P
~

 by selecting the valid points shifted along the normal direction with a distance . 

Then, we use CSRBFs to form a single function and make it satisfy )
~

x(0)x( Pf   and )
~

x()x(  Pf  . The 

reconstructed implicit function actually gives an elegant mathematical model for the hollowed model of a given 

object sampled into P
~

. A hierarchical computation method has been developed in this paper which makes the 

algorithm insensitive to the density of scattered data and allows us to reconstruct large parts of missing data. 

Lastly, one application of the reconstructed implicit function in adaptive slicing is given to demonstrate its 

functionality in rapid prototyping. 

 In our work, the offset points were generated by shifting from the original point set along the normal 

direction. This method makes the quality of final reconstructed offset surface dependent on the original points 

tightly. Furthermore, from the discrete normals coupled with the given sample points, the generated offset points 

will be sparser or there will be larger holes or gaps when the value of offsetting is larger. This will also 

downgrade the accuracy of reconstructed offset surface. How to generate a set of offset points with good quality 

from a point cloud will be one of our future works. Another work which is under planning is to verify the adaptive 

sliced objects with the computational results – however, errors could be generated from both the manufacturing 

and the measurement steps too. Furthermore, the theoretical analysis about why PU+CSRBF cannot generate 

valid results may also become a very interesting research topic in the future. 
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Appendix A Curvature on Planar Curves 

Any plane curve on these isosurfaces can be defined as the intersection of the isosurface and a plane, for 

example  

}0)x({}0)x({  dczbyaxgf . 

For a more elegant expression of this planar curve, we can transform coordinate system so that the plane 

0)x( g  is transformed to the xy-plane 0)x(  zg . Then the expression for the implicit curve will be reduced 

to 
i

i yxwyxf ),(),(   which is a function of variables x and y only. 

 Applying a curvature formula given in [39], we have the curvature of this implicit planar curve as 
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 is the gradient of f , and ))(()( ffH  is the Hessian matrix of f .  

With Eq.(5), we can derive the formulas for f  and )( fH . Here we just give the resulting formulas. The 

gradient of f  can be expressed as 
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The Hessian matrix of f can be expressed as 
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where I  is the identity matrix. Notice that if the sign of the resulted curvature k  is negative, the curvature 

vector k  is opposite to the direction of normal n , or the planar curve is convex at this point; otherwise, k  and 

n  have the same direction, or the planar curve is concave. It is important to distinguish between the convex and 

concave properties of the planar curve since different formulas of the layer thickness will be applied to these two 

different cases (ref. [40, 41]). 
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