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Abstract

Ruled surfaces play an important role in many manufacturing and construction applications. In this work, we explore a multi-
dimensional dynamic programming based ruled surface fitting scheme to a given freeform rational surface, S. Considering two
initial opposite boundaries of S, sampled into a discrete piecewise linear polyline representation, the ruled surface fitting problem
is reduced to a pairing-search between the polylines and elevations above the polylines, in the normal directions of S. A four-

dimensional dynamic programming solution is sought for the four dimensions prescribed by the two polylines and the two elevation
levels along the surface normals. This multi-dimensional dynamic programming is evaluated using highly parallel algorithms running
on GPUs that ensures the best fit to the sampled data. In order to evaluate the fitting error with respect to S, we derive a scheme
to compute a bound from above on the maximal error between a bilinear surface patch (formed by two consecutive point-pairs)
and its corresponding surface region on S. Surface-surface composition is employed to extract the corresponding surface region
on S to compare against. Finally, the above ruled surface fitting approach is also extended into a discrete algorithm to find the
non-isoparametric subdivision curve on S when a discrete recursive piecewise-ruled surface fitting is considered. A five- or seven-
dimensional dynamic programming solution is employed toward this end and once again, surface-surface composition is employed
to extract the two subdivided patches as tensor products.
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1. Introduction

Ruled surfaces are widely used in many applications in
manufacturing as well as civil engineering application. In
manufacturing, while multi-axis CNC processes are well
known, other manufacturing technologies, such as wire
Electrically Discharged Machining (EDM) [1] and 5-axis
CNC flanking milling [2–4] are also in extensive use. In
wire EDM, a conducting wire is discharging electricity
against a conductive stock and evaporates and cuts rul-
ing lines in the material. Tool side CNC machining (e.g.,
flank milling) exploits the linear edge of the rotating tool
to similarly cut along a line after carefully considering the
non-zero thickness of the tool. Interestingly enough, other
manufacturing processes also cut along lines in 3D. Exam-
ples include CNC water jet cutting as well as laser cutting.
In building construction, ruled surfaces are used for the
realization of free-form architecture [5]. Recently, the use
of hot wire cutting in styrofoam was also proposed towards
mold making of surfaces tiles in architecture design [6].
Within all above applications, it is interesting that the

following Ruled Surface Fitting (RSF) is still a highly in-

Email addresses: cwang@mae.cuhk.edu.hk (Charlie C. L. Wang),

gershon@cs.technion.ac.il (Gershon Elber).

vestigated problem:

Problem (RSF): Given a parametric surface S(u, v), find
the best ruled surface fit to S under some metric.

A good solution to the above RSF problem would clearly
increase the usability and quality of all aforementioned
technologies for fabricating a given surface S by swept cut-
ting lines. The accuracy of the resulting artifact would
greatly benefit from such an optimal ruling fit. However, as
a ruled surface is hyperbolic in general [7], one can expect
that only a hyperbolic patch (or parabolic) S will bene-
fit from such a ruled surface fitting. Forced to use a line-
cutting based technology that constructs ruled surfaces, the
benefits for elliptical surface regions cannot be significant.
Nevertheless, one can still hope to find the optimal ruled
surface fit to any surface S under this constrained manufac-
turing technologies. If multiple ruled surface patches may
be tiled together, while fitting S, the solution of the best
Ruled Surface Partitioning (RSP) problem is also highly
desirable:

Problem (RSP): Given a parametric surface S, find the
non-isoparametric partitioning of S into two sub-patches
SL and SR (or more generally several sub-patches), that is
best fitted by two (several) piecewise ruled surfaces, mini-
mizing some metric in RSF.
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Fig. 1. An example of (multi-dimensional) dynamic programming
(DP) based ruled surface fitting: (a) the given freeform surface S, (b)

the fitted ruled surface interpolating the boundary curves of S (which
is obtained by [13] – a 2D-DP with 50× 50 sampled points), and (c)
the ruled surface fitting by also elevating sampled points along the
normal of S (which is solved using a 4D-DP with 504 samples). The
4D-DP based ruled surface fitting reduces the Hausdorff distance
error by 32.8% compared to the 2D-DP based ruled surface fitting.

Finding the global optimum for RSF and RSP is difficult;
unlike the prior work based on numerical optimization, this
paper presents a ruled surface fitting scheme for solving the
RSF and RSP problems in the discrete domain formed by
sample points. The scheme finds an optimal ruled surface
fitting once the discrete piecewise linear sampled sets of the
boundaries of S and the possible elevation (again discrete)
of these points along the local normal of S, are given. Each
discrete ruling line is defined through two elevated sampled
points on two opposite boundaries. The elevation is along
the normal of S and is also discretized.
Two consecutive ruling lines above the discrete sampled

point set define a bilinear surface patch B for which the
corresponding patch of S, Sb, is extracted using a surface-
(bilinear) surface composition. An upper bound on the
Hausdorff distance betweenB and Sb is established by com-
puting a bound on ‖B(u, v)− Sb(u, v)‖.
A four-dimensional dynamic programming problem is de-

fined for all possible pairs of points and all possible allowed
elevations. The best ruling fit to this discrete arrangement
is then determined by solving a four-dimensional dynamic
programming (4D-DP). A simple example can be seen in
Fig. 1. The DP algorithm has two phases. First a multi-
dimensional table is computed for all possible pairing and
elevations, a 4D table in this case. Then, path tracking is
conducted from the source (the first ruling line at the be-
ginning of the two boundaries) to the destination (the last
ruling line at the end of the two boundaries). Special treat-
ment must be made for the end conditions as the first and
last ruling lines can be in arbitrary elevations. Further, if S
is a periodic surface, the first and the last ruling lines must
be the same ruling line.
Both DP steps are of a complexity order that depends on

the dimension of the built table. If each side of the table is
of length n, the 4D-DP has complexity of O(n4). However,
the computation of each entry in the table requires an upper
bound on the Hausdorff distance of ‖B(u, v)−Sb(u, v)‖ and
the construction time of the DP table governs the entire
computation costs. Therefore, we employ highly parallel
algorithms running on Graphics Processing Units (GPUs)
to speed up the construction of the DP table.

1.1. Related work

To approximate a general surface, S, by ruled surface(s)
Ri, S can be divided recursively into strips along isopara-
metric directions, as in [2], and then each of the strips is
fitted with a ruled surface. In [8], a surface subdivision
with similar ruled surface fitting goals is made but along
isophotes, which bounds the normal deviations but not the
maximal deviation between S andRi. In both cases, the al-
gorithm is greedy and the RSF/RSP computations are not
optimal. Approximation of a general surface using ruled
surfaces is also considered in [9] by solving a non-linear op-
timization function that minimizes distances between the
tangent planes of the original surface and the fitted ruled
surface over the domain. The special case of a surface of
revolution is also considered in [9], exploiting fitted hy-
perboloid of one sheet that are ruled surfaces. Some work
on fitting ruled surfaces was also done by using a curve
representation on the dual Gaussian sphere of a surface
(ref. [10–12]).
The research of [5, 16] focuses on using continuous non-

linear optimization methods to solve the RSF problem over
sampled point sets from the input surface S. They con-
ducted a sequence of quadratic programs to solve the op-
timal surface problem by the Squared Distance Minimiza-
tion (SDM) [17] and applications in architecture has been
demonstrated. A given surface is divided into strips in [16]
by the asymptotic curves computed from the level-set of
field of asymptotic directions – tangents to the intersection
curves between the input surface and the tangent plane at
a surface point. Overall, the result has not Hausdorff dis-
tance guarantee to/from the original input surface. Fur-
ther, this is different from our method, were we tackle the
RSP problem in a discrete domain.
While not much can be found on ruled surface fitting to

general surfaces, there is also a large body of research on
piecewise developable surface fitting to general surfaces [14,
15,18–24]. Developable surfaces are a special type of ruled
surfaces. In [15,20], the input general surface is first divided
into strips (along isoparametric curves in [15]), which are
then fitted with developable surfaces.
Although polygonal meshes are not in the scope of this

work, the construction of ruled and developable sheets for
a mesh representation has captured much attention. Wang
and Tang [13] introduced a fitting of a polygonal strip to a
ruled surface and employs the shortest path algorithm to
find a best fitting on a graph scored by the fitting error,
which is in fact a 2D-DP. The resultant polygonal strips in-
terpolate the boundary curves of the given surface S, end-
ing up in a larger fitting error (see Fig. 1 as an example).
Mesh surfaces are also processed in [21,22] under nonlinear
optimization framework into shapes that converge to devel-
opable surfaces. In [19], the mesh is divided into polygonal
strips and each strip is then laid out flat as a developable
sheet. In [18], the mesh model is first decomposed into
cylindrical shapes that are then fitting with developable
sheets. Other segmentation methods for using developable
mesh surface to approximate a given freeform surface can
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Table 1
Summary of Acronyms

Acronyms Full Description

RSF Ruled Surface Fitting

RSP Ruled Surface Partition

DP Dynamic Programming

GPU Graphics Processing Units

LSAD Line Surface Approximate Distance

SSHB Surface-Surface Hausdorff-distance Bound

VD Voronoi Diagram

Pi

Qj
L
j,l
i,k

Fig. 2. An illustration for the points elevation: Pi → Pi,k and

Qj → Qj,l.

be found in [25].

1.2. Contributions

We present algorithms for solving the RSF and the RSP
problems in a discrete domain formed by sampling points
over freeform input surfaces. The main contributions of our
work include:
– An approach is introduced to find the best ruled surface
fitting for a discrete, piecewise linear, sampled set of a
given general freeform surface, using a four-dimensional
dynamic programming scheme.

– A method is presented to provide a guaranteed yet fairly
tight upper bound on the Hausdorff distance between
the bilinear patch formed out of two adjacent ruling lines
and the corresponding region in the input surface S.

– GPU-based algorithms are employed to speed up the
evaluation of multi-dimensional DP table.

– The presented ruled surface fitting approach based on
dynamic programming is also extended to solve the RSP
problem by a 5D-DP to 7D-DP (which allows to elevate
boundary curves). A locally-optimal partitioning curve
can be determined for a given surface, S, so two ruled sur-
faces can be fitted to the two subdivided patches, while
minimizing some fitting error metric.

The rest of the paper is organized as follows. We present
the multi-dimensional DP based method for solving the
RSF problem in Section 2, with a guaranteed bounds on
the Hausdorff error. The GPU-based algorithms for speed-
ing up the computation are introduced in Section 3. The
extension of this multi-dimensional DP technique to com-

pute a solution to the RSP problem is derived in Section 4.
Examples and performance evaluations of our approach are
described in Section 5. Finally, we conclude in Section 6.
Acronyms will be used in the rest of this paper – a sum-
mary is given in Table 1.

2. Error-bounded Ruled Surface Fitting

In order to offer a viable solution to the RSF problem,
we discretize the solution domain. Without loss of gener-
ality, the vmin and vmax boundary curves of a tensor prod-
uct parametric surface S(u, v) are denoted by C0(u) =
S(u, vmin) and C1(u) = S(u, vmax) with u ∈ [0, 1]. Let
C0(ui) and C1(uj) (i, j ∈ [0, n − 1]) be n uniformly sam-
pled points along C0 and C1:

Pi = C0(ui) = C0((1−
i

n−1 )umin + i
n−1umax),

Qj = C1(uj) = C1((1−
j

n−1 )umin + j
n−1umax).

(1)

Further, let n̂(u0, v0) denote the unit normal vector of
S(u, v) at (u0, v0). The surface normal space above or be-
low C0(u) is discretized into n × (2m + 1) sample points,
Pi,k, with i ∈ [0, n− 1] marches along C0 and k ∈ [−m,m]
along the surface normals, as

Pi,k = C0(ui) + kτ n̂(ui, vmin), (2)

where τ governs the step size along the normal direction.
These points are called P -points.

In a similar fashion, we define a set of Q-points around
C1(u) as

Qj,l = C1(uj) + lτ n̂(uj , vmax), (3)

where j ∈ [0, n − 1] and l ∈ [−m,m]. An illustration for
this point elevation is given in Fig.2.
Every (Pi,k, Qj,l) pair defines a ruling line, L

j,l
i,k =

Pi,kQj,l, with O(n2m2) possible ruling lines in all. Once
discretized, the RSF problem can be reduced to finding a
sequence of ruling line segments Γ:

Γ =
〈

L
0,l0
0,k0

, · · · ,Ljt,lt
it,kt

,L
jt+1,lt+1

it+1,kt+1
, · · · ,L

n−1,l|Γ|−1

n−1,k|Γ|−1

〉

, (4)

where it ≤ it+1 and jt ≤ jt+1. The set of ruling lines, Γ,
defines a piecewise ruled surface, R, and spans all domain,

starting from L
0,l0
0,k0

and terminating at L
n−1,l|Γ|−1

n−1,k|Γ|−1
. R, in

turn, should minimize some fitting error metric to the input
surface S(u, v).
The ruled surface constructed in this way is G1 when

n → ∞. In practice, the 4D-DP creates a dense list of ruling
lines, Γ (i.e. Eq. (4)), which is monotone (but not strictly
monotone) in both i and j. If a smooth result is desired,
one can fit a pair of smooth and regular spline curves to the
sequence of corresponding points on Γ. This curve fitting
should ensuremonotonicity, on one hand, and should bound
the error it introduces, on the other.
We now introduce the metrics under which the fitting

takes place, and then present methods for evaluating these
metrics. Lastly, the DP algorithm to find the best Γ, given
points Pi,k and Qj,l, will be discussed.

3



2.1. Metrics for Fitting

The Hausdorff distance has been widely used to evalu-
ate the shape similarity between two surfaces. However, the
computation of the precise Hausdorff distance is typically
time-consuming [26] and therefore difficult to use as a met-
ric to search for the best set of ruling line segments.
Here, seeking the best (piecewise) ruling fit of Γ to

S(u, v), we offer two computationally tractable alternatives
to [26], one that is based on line-surface distance compu-
tations and one that is based on surface-surface distance
computation. The latter also provides an upper bound on
the precise Hausdorff distance:
(i) Line-SurfaceMetric: Themaximal distance from

line Lj,l
i,k to S(u, v) is

D̃H(Lj,l
i,k,S) = max

p∈L
j,l

i,k

min
u,v

‖p− S(u, v)‖, (5)

where D̃H is the one-sided Hausdorff distance from
L
j,l
i,k to S(u, v). Assuming S is C1, one can derive an

upper bound on D̃H(Lj,l
i,k,S) by searching for the bi-

normal line to both L
j,l
i,k and S(u, v), a problem that

can be formulated as three algebraic constraints in
three variables and that can be further reduced to
two constraints in two variables by projecting this
arrangement to a plane orthogonal to L

j,l
i,k.

The sought ruled surface should minimize the fol-
lowing line-surface metric in average error:

DL
Avg(Γ,S) =

∑

L
j,l

i,k
∈Γ A

j
i D̃H(Lj,l

i,k,S)

AS
(6)

where AS is the total area of the input surface S

and A
j
i is the supporting area of line L

j,l
i,k in S, or

the area L
j,l
i,k is considered contributing to. Aj

i can be

estimated as the area half way between L
j,l
i,k and its

previous ruling line and half way to the next ruling
line. Alternatively, the supporting area of ruling line
L
j,l
i,k can be estimated as the area of the bilinear patch

formed byLj,l
i,k and its previous ruling line, next ruling

line, or the average of the two.
As an alternative to the average error we can also

employ the L∞ norm:

DL
L∞

(Γ,S) = max
L

j,l

i,k
∈Γ

D̃H(Lj,l
i,k,S). (7)

Assuming S is C1 and is Lipschitz continuous,
DL

L∞
(Γ,S) converges to the one-sided Hausdorff

distance from Γ to S as the distance between two
neighboring line segments in Γ is shrinking.

In the ensuing discussion, the computation of Line
Surface Approximate Distance is denoted by LSAD.

(ii) Surface-Surface Metric:

The Line-surface metric is simple to evaluate. How-
ever, it is one sided and as a result, regions on S can
be arbitrarily far from the ruling lines, between sam-
pled points. A better, yet somewhat more expensive

computationally, symmetric error-bound, that con-
sider surface-surface distances, is now described.
Considering two consecutive ruling line segments

L
jt,lt
it,kt

and L
jt+1,lt+1

it+1,kt+1
. A bilinear surface patch

Bt =
〈

Pit,kt
,Qjt,lt ,Qjt+1,lt+1

,Pit+1,kt+1

〉

(8)

is defined between the four end points 1 of the
two ruling segments, Pit,kt

,Qjt,lt ∈ L
jt,lt
it,kt

and

Qjt+1,lt+1
,Pit+1,kt+1

∈ L
jt+1,lt+1

it+1,kt+1
.

Let (uit , vkt
), (ujt , vlt), (ujt+1

, vlt+1
), (uit+1

, vkt+1
)

be the four corresponding parameters of these corners
of Bt in the parametric space of S and let bt(r, s),
r, s ∈ [0, 1] be a bilinear surface defined through
these four (u, v) parametric locations. Finally, Let
Sbt be the supporting area of S to Bt, in Euclidean
space, as Sbt = S(bt(r, s)). The Hausdorff distance
between Bt and Sbt is

DH(Bt,Sbt) =max

(

max
p∈Bt

min
r,s

‖p− Sbt(r, s)‖,

max
r,s

min
p∈Bt

‖p− Sbt(r, s)‖

)

, (9)

and in Section 2.2 we describe how the bound on
DH(Bt,Sbt) is computed. Here again, one can con-
sider the average error or the L∞ norms:

DB
Avg(Γ,S) =

∑

Bt∈Γ A
j
iDH(Bt,Sbt)

AS
, (10)

DB
L∞

(Γ,S) = max
Bt∈Γ

DH(Bt,Sbt), (11)

where Aj
i is the area of patch Sbt and AS is the whole

area of S(u, v).
One should note that in Eqs. (6) and (10), only the nu-
merator needs to be evaluated as the denominator, AS , is
constant for a particular input surface S.

2.2. Surface-Bilinear Surface Hausdorff Distance Bound

Reconsider the composition S(bt(r, s)). This composi-
tion extracts the region of S that is supporting the bilinear
region bt(r, s). By support region we hint to the fact that
this region is typically going to be the closest region in S to
Bt. Other unrelated regions of S might be closer, but this
support region provides an upper bound that is expected to
be fairly tight. Further, the supporting region follows the
parameterization of bt(r, s). A simple scheme to compute
the surface-surface composition, in the Bézier domain, can
be found in the Appendix.
We now have two surfaces in Euclidean space: surface

Sbt(r, s) that is confined to the bilinear domain bt(r, s)
and a bilinear surface patchBt(r, s) (i.e., Eq. (8)). Further,
both surfaces share the [0, 1]2 domain but do not share the

1 In fact, the final ruled surface obtained from Γ can be approxi-

mated in the discrete form by the collection of these bilinear patches.
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same functional space (i.e. orders and knot sequences of B-
spline surfaces). However, one can apply degree elevation to
the surface with the lower orders (i.e., the bilinear surface
patch Bt) and insert missing knots as necessary, to make
the functional space compatible. Then,

DH(Bt,Sbt)≤max
r,s

‖Sbt(r, s)−Bt(r, s)‖

=max
r,s

∥

∥

∥

∥

∥

∥

ku
∑

i=0

kv
∑

j=0

P
Sbt

ij Bi(r)Bj(s)−

ku
∑

i=0

kv
∑

j=0

PBt

ij Bi(r)Bj(s)

∥

∥

∥

∥

∥

∥

=max
r,s

∥

∥

∥

∥

∥

∥

ku
∑

i=0

kv
∑

j=0

(

P
Sbt

ij −PBt

ij

)

Bi(r)Bj(s)

∥

∥

∥

∥

∥

∥

≤max
i,j

{

‖P
Sbt

ij −PBt

ij ‖
}

, (12)

where P
Sbt

ij and PBt

ij are the control points of Sbt and Bt,
respectively, and ku and kv are the respective lengths of
the control meshes of the surfaces. By this formulation, one
should simply examine the maximum difference between
corresponding control points of the two surfaces for the
error-bound of DH(Bt,Sbt). Hence after, the computation
of the Surface-Surface Hausdorff-distance Bound following
Eq. (12) is denoted as SSHB.
When degree raising (or refining) the bilinear surfaceBt,

two options can be used - either place the new control points
uniformly in Bt or let the control points of Bt proportion-
ally distributed according to the control points of Sbt , a
method we denote projected parameterization (see Fig. 3 for
an illustration). Specifically, the control points of Bt are

PBt

ij =
[

1− i
ku

i
ku

]





Pit,kt
Qjt,lt

Pit+1,kt+1
Qjt+1,lt+1









1− αj

αj



(13)

with αj =
j
kv

in the uniform parameterization. When tak-
ing projected parameterization on Bt,

αj (j 6=0) =

∑j
a ‖P̂

Sbt

0,a−1P̂
Sbt

0,a ‖
∑kv

a ‖P̂
Sbt

0,a−1P̂
Sbt

0,a ‖
, α0 = 0, (14)

where P̂
Sbt

0,j is the projected point of Sbt ’s control point,

P
Sbt

0,j , on the line Pit,kt
Qjt,lt . Note that, αj defined in this

way is monotonic and αj ∈ (0, 1), and the shape ofBt(u, v)
will keep as a bilinear patch. While projected parameteriza-
tion is somewhat more expensive computationally, it also
provides a tighter bound on DH(Bt,Sbt) as will be demon-
strated in the results section.

2.3. Best Ruling Fit

Having the ability to bound DH(Bt,Sbt) (i.e., Eq. (9)),
we are now ready to derive the optimal ruling lines for

(a) (b)

Fig. 3. Tightening the error-bound by projected parameterization

(See Section 2.2): (a) the control mesh of Bt is computed using uni-
form parameterization and (b) the distribution of Bt’s control points

is adjusted to follow P
Sbt
i,j

, the control points of Sbt . To highlight
the difference on the distribution of control points on Bt, the corre-

spondence between P
Sbt
ij

s and P
Bt
ij

s are illustrated by yellow lines
in the zoom views. In this example, when using projected param-
eterization, the error of the computed Hausdorff distance bound is
reduced by two orders of magnitude.

approximating S. Assume, for now, that S is open and
hence the first ruling line must be between P0,k0

and Q0,l0

(i.e., L0,l0
0,k0

), where all elevated combinations of k0 and l0
should be examined as initial candidates and selecting the
best fit. Similarly, recalling we sampled n samples inC0 and

C1, the last ruling line must be L
n−1,l|Γ|−1

n−1,k|Γ|−1
. Considering an

intermediate ruling line L
jt,lt
it,kt

, the next ruling line can be
obtained by succeeding in
(i) a P -point only (i.e., it+1 = it + 1 and jt+1 = jt),
(ii) a Q-point only (i.e., it+1 = it and jt+1 = jt + 1), or
(iii) both P - and Q-points (i.e., it+1 = it + 1 and jt+1 =

jt + 1).
Each such point succession has three choices of moving
(i) upward, in the normal direction, by assigning kt+1 =

kt + 1 (or lt+1 = lt + 1),
(ii) downward, in the reversed normal direction, by as-

signing kt+1 = kt − 1 (or lt+1 = lt − 1), or
(iii) staying at the same elevation by keeping kt (or lt)

unchanged.

Assume the successor line of L
jt,lt
it,kt

is line L
jt+1,lt+1

it+1,kt+1
.

Then, the approximation error between the bilinear patch

formed by L
jt,lt
it,kt

L
jt+1,lt+1

it+1,kt+1
and S can be computed by

SSHB, introduced in Section 2.1. The supporting area of

the bilinear patch L
jt,lt
it,kt

L
jt+1,lt+1

it+1,kt+1
is approximated by the

summed area of two triangles: △Pit,kt
Qjt+1,lt+1

Qjt,lt and
△Pit,kt

Qjt+1,lt+1
Pit+1,kt+1

, or a refined tessellation on the
given surface S(u, v). By this formulation, the optimal set
of ruling lines, which minimize the metrics DB

Avg(Γ,S), are
determined by dynamic-programming [27], in two phases:

Phase I of DP: Scoring

To compute the minimal averaged-error of bilinear

patches to S in some path from L
0,l0
0,k0

to L
n−1,l|Γ|−1

n−1,k|Γ|−1
, we
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initialize a 4D score table for the dynamic-programming
(DP) with dimensions: n× n× (2m+ 1)× (2m+ 1).

Consider an intermediate ruling line L
j,l
i,k, and denote

its (so-far) score value by D
i,j,k,l
Avg . For this averaging case,

and considering the predecessors of Di,j,k,l
Avg , the score table

entries are updated by the following rule:

D
i,j,k,l
Avg = min

jt, lt, it, kt

{

D
it,jt,kt,lt
Avg +DH(Lj,l

i,kL
jt,lt
it,kt

,S)
}

,(15)

with

(it, kt) = {(i, k), (i− 1, k), (i− 1, k − 1), (i− 1, k + 1)},

(jt, lt) = {(j, l), (j − 1, l), (j − 1, l − 1), (j − 1, l + 1)},

0 ≤ it, jt, < n −m ≤ kt, lt ≤ m. (16)

To avoid singularities and self-intersections in the DP com-
putation, we do not allow P - or Q-points to move upward
or downward without moving forward (i.e. the predeces-
sor options of (i, k ± 1) and (j, l ± 1) are excluded). Only
straight-forward, up-forward, down-forward or stay station-
ary moves are allowed). Furthermore, stationary movies of
both (it, kt) = (i, k) and (jt, lt) = (j, l) cannot be selected
simultaneously. In summary, Eq. (16), offers 15 different
possible movements of the P -Q ruling lines.
Similarly, for minimizing the maximal error case, we have

(compare with Eq. (15)):

D
i,j,k,l
L∞

= min

jt, lt, it, kt

{

D
it,jt,kt,lt
L∞

, DH(Lj,l
i,kL

jt,lt
it,kt

,S)
}

(17)

with the same set of candidate combinations of (it, kt) and
(jt, lt) as in Eq. (16).
All the entries of the 4D table can be updated row by row,

top to bottom, left to right in four nested loops – i.e., letting
i, j = 0 ⇒ n − 1 and k, l = −m ⇒ m. The computational
complexity of this update is in the order of the number of
entries in the table, or O(n2m2).

Finally, as a standard step of DP, every entry (i, j, k, l)
in the 4D score table should be record which predecessor is
used to update the score at (i, j, k, l), so we can back trace
it.

Phase II of DP: Back-tracking

Once all the scores of all the entries in the 4D table are
computed, the optimal solution path can be determined by
the following two steps:

– Checking all the entries with i = j = n−1 to find an entry
(n− 1, n− 1, ko, lo) with minimal value Dn−1,n−1,ko,lo

Avg =

mink,l{D
n−1,n−1,k,l
Avg }. If there are more than one such end

ruling line with minimal score value, we can randomly
pick one or adopt some heuristic to choose one (e.g.,
selecting the ruling line with min{|k|+ |l|} which is less
elevated from the given surface).

– Starting from the selected end ruling line, and using the
recorded predecessor of each entry, the sought sequence
of ruling lines can be traced back one by one. The process
of back-tracking stops when reaching an entry with i =
j = 0.

At every step, either i or j (or both), are decreased in the
back-tracking procedure that hence always terminates. The
piecewise ruled surface that globally minimizes the desired
discrete norm for S can hence be created in O(n+m).

2.4. Fitting Periodic Surfaces

The above multi-dimensional DP based method for
searching for the best ruled surface in the discrete do-
main can be extended to fit periodic surfaces as well.
Finding the best periodic ruled surface can be real-
ized by a 5D dynamic-programming with dimensions:
n × n × (2m + 1) × (2m + 1) × n, where we introduce
an additional dimension of size n to consider shifting the
starting ruling line from L

0,l
0,k to Lq,l

0,k along this new dimen-

sion (denoted the Q-shifting dimension). The update rules
for the score table entries are similar to what are intro-
duced above. Specifically, the value of table entry D

i,j,k,l,q
Avg

can only be updated by the other entries with the same q

shift. From Eq. (15), we obtain

D
i,j,k,l,q
Avg =min{Dit,jt,kt,lt,q

Avg +

DH(L
(j+q)modn,l
i,k L

(jt+q)modn,lt
it,kt

,S)}. (18)

As a result, we do not really need to run a 5D-DP. Instead,
we conduct n 4D-DP’s by using different shift values of q ∈
{0, 1, · · · , n − 1}. Similarly, for Di,j,k,l,q

L∞
and following Eq.

(17), we get

D
i,j,k,l,q
L∞

=min{Dit,jt,kt,lt,q
L∞

,

DH(L
(j+q)modn,l
i,k L

(jt+q)modn,lt
it,kt

,S)}. (19)

One difficulty in using the above DP to fit a periodic
ruled surfaces stems from the fact that the starting ruling
line and the ending ruling line must coincide (see Fig. 4

for an example). We enforce the coincidence of L0,l0
0,k0

and

L
n−1,l|Γ|−1

n−1,k|Γ|−1
by modifying the score updating rule as follows:

– At the initialization step, the scores of all Dn−1,n−1,k,l,q
Avg / L∞

are assigned to infinity.
– During the score update, not only the predecessors but
also the ‘source’ of the first ruling line L

q,l0
0,k0

which con-

tributes to the score Di,j,k,l,q is recorded in each entry of
the scoring table.

– When the updating process gets to the end with i = n−1
and j = n − 1, the score updating of Dn−1,n−1,k,l,q

Avg / L∞
is

only allowed if the ‘source’ of its predecessor is at the
same level in normal elevation (i.e., k = ks and l = ls

when the ‘source’ of its predecessor is L0,ls
q,ks

).
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Fig. 4. Fitting a periodic surface: (a) the 4D-DP result without
enforcing the coincidence of starting and ending ruling lines – gaps
are generated at the places highlighted by dashed red squared (and
scaled up), and (b) the result after applying the coincident constraint.

3. GPU-based Algorithms for Efficient Computing

We now present the GPU-based algorithms for comput-
ing the ruled surface approximating to a given surface S in
the discrete domain. First, a method for computing SSHB
is introduced, which can be parallelized and run on GPUs.
Second, we develop a method to conduct the approximate
distance queries between a ruling line and S in a more effi-
cient way with the help of distance-field on GPUs.
In practice, SSHB was mainly used in 4D-DP, and LSAD

in higher dimensions DP (e.g., 5D-DP for fitting periodic
surfaces), mainly due to the excessive computing and mem-
ory needs of the SSHB method.

3.1. GPU/CPU computation for SSHB

The surface-surface distance computation with a tight
error-bound is time-consuming. For a 4D-DP with dimen-
sion 502 × 412, it takes more than an hour on a PC with
iCore 7 CPU. Most of the computation time is spent on
the surface-surface distance query (i.e., the step that fills
the score table of the DP). To reduce the computing time,
a GPU/CPU hybrid scheme is developed to compute the
SSHB for the score table used in the DP.
At first, we compute the set of control meshes for all pos-

sible surface regions on the given surface S(u, v) accord-
ing to the boundary samples C0(ui) and C1(uj). As i, j ∈
{0, · · · , n− 1}, there are
(i) (n − 1) × n triangular patches formed by C0(ui),

C0(ui+1) and C1(uj) (called P -succeed patches),
(ii) n × (n − 1) triangular patches formed by C0(ui),

C1(uj) and C1(uj+1) (called Q-succeed patches),
(iii) and (n−1)×(n−1) quadrangular patches formed by

C0(ui), C0(ui+1), C1(uj+1) and C1(uj) (called PQ-
succeed patches).

The control points of all P -succeed, Q-succeed and PQ-
succeed patches are computed at the CPU side with the
help of IRIT library [28] and stored in three arrays.
The three arrays are copied to the memory of the GPU,

and the solution of a 4D-DP is computed by a CPU/GPU
hybrid approach. According to the update rules of the score
table (e.g., either Eq. (15) or Eq. (17)), we construct 15
surface-surface distance tables (in 4D) – according to the
15 possible P - and Q-succeeding options presented in Eq.
(16). The entries of these tables are filled in a highly parallel

Fig. 5. The discrete VD (res.: 5123) of a cubic NURBS surface: (a)
the input NURBS surface, (b) the discrete VD where the regions

have the same site are displayed in the same color, and (c) the

corresponding distance-field of VD. Shown are main sectional planes

of the different fields.

manner. Specifically, the 15 surface-surface distance tables,
Θ1,···,15(i, j, k, l), are for the items, DH(Ljt,lt

it,kt
L
j,l
i,k,S) (with

(it, kt) and (jt, lt) as given in Eq. (16)), that are checked
during the 4D-DP score table update. Each thread fills one
entry of the score table by computing the corresponding
distance between the bilinear patch formed by the two rul-
ing lines Bt =< LtLt+1 > and its corresponding surface
region Sbt . Specifically, the control points of Bt are refined
to follow the surface Sbt , by a projected parameterization
(see Section 2.2). An error-bounded distance is then estab-
lished by Eq. (12). Both steps are implemented in a highly
parallel way running on GPUs.
Copying the entries of Θ1,···,15(i, j, k, l) back to the CPU

side, the score table of 4D-DP can be updated according
to Eqs. (15) or (17). Lastly, the best ruling lines accord-
ing to the scores can be determined at the CPU side by
the back-tracking method proposed in Section 2.3. For the
4D-DP with a table of size 502 × 412, this GPU/CPU hy-
brid approach can generate the optimal fitting in around 5
seconds.

3.2. Approximate distance queries on GPUs

One drawback of the above method is that the surface-
surface distance tables can easily exhaust the graphics
memory when the dimension of DP or the sampling rate
(i.e., n and m) increases. To realize the computation on
high dimensional DP and dense samples, the line-surface
distance based metrices can be adopted (i.e., Eqs. (6) and
(7)). In the update rules of the 4D-DP, the error term in-
troduced by a bilinear patch (Eq. (9)) are changed to the
error introduced by a new ruling line (Eq. (5)). By this
change, a more efficient but less accurate (and no error
bound) GPU-based algorithm can be realized (i.e., LSAD).
A discrete Voronoi diagram (VD) sampled on uniform

voxels using a GPU-based distance transformation [29] is
constructed to help conducting line-surface distance queries
to the given freeform surface S(u, v). The VD employed
here is a discrete one. The voxels containing any point of
S(u, v) are labeled as site points of VD. Every voxel stores
the coordinate of its nearest site point in the discrete do-
main Z

3 of voxels, specifically for a voxel (i, j, k) the value
I(i, j, k) ∈ Z

3 gives the coordinates of its nearest site. Fig-
ure 5 shows the example VD of a NURBS surface.
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Fig. 6. Subdivision by optimal fitting of ruled surfaces: (a) a given Bézier surface patch with order 9 and 6 in u, v-directions, (b) the ruling
line segments of 4D-DP composite fitting with dimensions: 303×10, (c) the mesh of subdivided surface patches obtained by 4D-DP composite
fitting, (d) the fitting result by applying our ruling line approximation (4D-DP with dimensions: 502 × 112) on two sub-surfaces, and (e)
subdivided surface patches obtained by 7D-DP composite fitting with dimensions: (30× 11)3 × 10.

To evaluate the distance between a line segment qsqe

and S(u, v) (with qs and qe ∈ ℜ3), we need to first find out
all the voxels (it, jt, kt) that are swept by a point q(t) =
(1 − t)qs + tqe with t ∈ [0, 1]. Then, the closest distance
between the centers of these voxels and qsqe is used as an
approximation of the one-side Hausdorff distance between
qsqe and S(u, v), which can be efficiently computed in par-
allel on GPUs.

4. Optimizing the Surface Subdivision in a

Discrete Ruled Surface Fitting

The dynamic programming based method for computing
optimal ruled surface fitting can be further extended to
determine an optimal ruling subdivision curve for S – i.e.,
the RSP problem. The solution domain is discretized in a
higher dimension. The boundary curves C0(u) and C1(u)
of S(u, v) are uniformly sampled into n P - and n Q-points
as in Eq. (1). However, the interior region of surface S is
now also sampled by n× d points as

Ma,b = S((1− a
n−1 )umin + a

n−1umax,

(1− b+1
d+1 )vmin + b+1

d+1vmax)
(20)

with a ∈ [0, n − 1] and b ∈ [0, d − 1]. These new points
are denoted M -points. By this formulation, picking one
P -point, one Q-point and one M -point can form a pair
of ruling line segments: Li,(a,b) ≡ PiMa,b and Lj,(a,b) ≡
Ma,bQj . The RSP problem is reduced to finding a sequence
of such pairs of ruling line segments. For a set of ruling line
pairs, Υ, the solution of RSP problem needs to minimize the
difference between the ruled surfaces and S(u, v), where the
ruled surfaces are approximated by {Li,(a,b)} and {Lj,(a,b)}.
Again, to avoid self-intersections in the DP computation,

we allow P - or Q-points to either move forward or keep
their current position. For an M -point, it can move left-
forward, straight-forward, right-forward or stay stationary.
Finally, it is not allowed to keep all three points stationary.
The optimal M -curve in the form of a sequence of M -

points can be determined by the dynamic programming
framework. If none of the P -,Q- andM -points is allowed to
be elevated above/below S(u, v), the result can be obtained
by a 4D-DP. If onlyM -points can be elevated along surface
normals, a 5D-DP is used. The dimension of DP can be
further raised to 7D if all P -, Q- and M -points are allowed
to be elevated (see Fig. 6 for an example).

Virtual refinement: The subdivision of a given surface
S(u, v) by a general interior curve bM (t) = (u(t), v(t)) into
two surface patches SL and SR that together precisely rep-
resent the original shape of S is not trivial and typically
necessitates the use of surface-surface composition. More-
over, such a subdivision will increase the complexity of the
resulting surfaces (e.g., raise the degrees due to the com-
position and hence the number of control points). Further
recursive subdivision of the surfaces, toward a finer ruled
surfaces’ fitting (as is shown in Fig. 11), expands the mag-
nitude of this degree raising difficulty. Hence, we adopt a
strategy of virtual subdivision to overcome this problem.

For a given tensor surface S(u, v), its four boundary
curves are represented by four straight lines, in the para-
metric domain. Assume, w.l.o.g., the initial subdivision
curve bM (t) = (u(t), v(t)) according to the M -points in
the u, v-domain spans from the u = 0 boundary to the
u = 1 boundary. The two new subdivided surface patches
SL(u

l, vl), ∀ul, vl ∈ [0, 1] and SR(u
r, vr), ∀ur, vr ∈ [0, 1]

can be represented as follows:
(i) A continuous mapping ΩL from ul, vl ∈ [0, 1] to the

u, v region which is bounded by {u = 0, u = 1, v =
0,bM (t)} is constructed with the help of a Coons
patch interpolation [31]. Similarly, a mapping ΩR

from ur, vr ∈ [0, 1] to the u, v region which is bounded
by {u = 0, u = 1,bM (t), v = 1} is formulated as an-
other Coons patch interpolation.

(ii) When using the method in Section 2 to evaluate the
shape error, every point in the ul, vl (or ur, vr) do-
main is mapped to a point in the u, v domain by ΩL

or ΩR, evaluating the surface-surface composition on
a point-by-point basis.

5. Results

This section highlight the performance of our algorithm
on different examples. All the results reported here were
generated on a PC using an Intel Core i7 3.10GHz CPU +
8GBRAM and a GeForce GTX580 GPUwith 3GB of video
memory. We implemented our algorithms in C++ with the
help of Visual Studio 2008, the IRIT [28] library, and the
nVidia CUDA SDK library.
The first two examples shown in Fig. 1 and Fig. 7 are two

open Bézier surfaces, which are quite well fitted with a rul-
ing approximation as these input surfaces are hyperbolic.
The statistics in terms of fitting errors, the average error –
DB

L2
(Eq. (10)) and the maximal error –DB

L∞
(Eq. (11)), are
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Fig. 10. The ruling approximation of a periodic B-spline surface (a). The result by 5D-DP with dimensions: 503 × 102 is shown in (b) and
(c), and the result by 5D-DP with dimensions: 1003 × 102 is shown in (d) and (e).

Fig. 11. The subdivision of a surface using different methods: (top row) uniform refinement by iso-parametric curves v = 0.25, 0.5, 0.75,
(middle row) refinement at M -curves determined by 4D-DP based optimal fitting (res.: 30× 30× 30× 10), and (bottom row) refinement at

curves determined by 7D-DP based optimal fitting (res.: (30× 5)3 × 10). The last column shows the results of ruling approximation on the
refined surface patches (4D-DP res.: 502 × 112).

shown in Fig. 8, where the optimal fitting results by 4D-DP
are compared with the results of 2D-DP by using the bench-
mark with different sampling rates (i.e., n = 30, 50, 100).
In addition and for further assurance, the maximal errors
(Emax) and the mean errors (Emean) between the surfaces
are estimated with the help of the publicly available Metro
tool [33] – see Fig. 9. When 4D-DP is conducted (rather
than 2D-DP), the maximal error Emax and the mean error
Emean can drop up to 40% and 35% respectively.
The example shown in Fig. 4 is a periodic surface. An-

other example of a periodic surface is shown in Fig. 10. Our
fitting results present maximal errors: Emax = 0.0193L̄ in
the example of Fig. 4) and Emax = 0.0109L̄ in the example
of Fig. 10), where L̄ denotes the diagonal length of input
surface’s bounding box. Again, the errors are estimated by

the third party software – the Metro tool [33].
Figure 6 shows the results of applying the subdivision

based on optimal fitting using 4D-DP. An example for
the comparison of using 4D-DP and 7D-DP in determin-
ing the optimal subdivision is given in Fig. 11. Fig. 12
gives the error comparison on the fitting results obtained
on the 4D-DP/7D-DP based subdivisions vs. the uniform
subdivision (i.e., subdivision on iso-parametric curves v =
0.25, 0.5, 0.75 – see the top row of Fig. 11). The fitting re-
sults are all generated by 4D-DP with dimensions: 502 ×
112. Subdivision based on 4D-DP gives much better re-
sults than the uniform subdivisions. The subdivision curve
determined by 7D-DP is only slightly better than 4D-DP
(in terms of maximal errors); however, 7D-DP has a much
higher consumption of both memory and computing power
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Fig. 7. The ruling approximation of an open Bézier surface (a).
Computations using different sampling rate in 4D-DP converges to
a similar shape – (b) 254, (c) 504, and (d) 1004 (in cyan) which is
displayed together with the result of 504 (in gray).

(a) Example I – Fig. 1

(b) Example II – Fig. 7

Fig. 8. Error analysis on the fitting results of ruling approximation
by SSHB: 2D-DP (Dim.: n× n) vs. 4D-DP (Dim.: n× n× 41× 41)
with n = 30, 50, 100. The average errors (DB

Avg
) and the maximal

errors (DB
L∞

) are evaluated by Eqs. (10) and (11) respectively.

(see Table 3). During the computation of optimal subdivi-
sion, the maximal error, DL

L∞
(Γ,S) (Eq. (7)), is used. As

a result, mean errors on the results of 7D-DP subdivision
could be slightly larger than 4D-DP subdivision.
The last example (see Fig. 13) is employed to demon-

strate the expected benefits of the projected parameteriza-
tion. The rulings result obtained by 4D-DP gives inferior
approximation when the uniform parameterization is used
compared to the projected parameterization.
In our algorithm, the control meshes of sub-surface

patches are generated with the help of the IRIT library.
For the cases with n < 100, the computation can be fin-
ished in 2 seconds by using only one CPU. Table 2 lists the
statistics on the example shown in Fig. 1 when using dif-
ferent resolutions in both SSHB 4D-DP and LSAD 4D-DP.
The LSAD 4D-DP is more efficient as it can be fully eval-
uated on GPU with the help of discrete Voronoi diagram.

(a) Example I – Fig. 1

(b) Example II – Fig. 7

Fig. 9. Error analysis on the fitting results of ruling approximation
by SSHB: 2D-DP (Dim.: n× n) vs. 4D-DP (Dim.: n× n× 41× 41)

with n = 30, 50, 100. The maximal errors (Emax) and the mean
errors (Emean) between two surfaces are estimated with the help of
the publicly available Metro tool [33].

Fig. 12. Error comparison for different subdivision methods on two
examples in Figs.6 and 11 – uniform subdivision, optimal subdivi-
sion by 4D-DP and optimal subdivision by 7D-DP. The maximal
errors (Emax) and the mean errors (Emean) between the input sur-
faces and the fitting results (by 4D-DP with dimension: 502 × 112)
on subdivided patches are evaluated with the help of the publicly
available Metro tool [33].

Table 2
Statistics of Computational Time (ms) on SSHB 4D-DP and LSAD
4D-DP with Different Dimensions.

Dimensions: m2 × 492 m = 50 m = 60 m = 70 m = 80

Generation of Control-Meshes 312 468 671 967

Surf-Surf Distance Evaluations 5,320 7,691 10,530 13,853

4D-DP Score Updating 811 1,076 1,513 2,137

Total Time† (SSHB) 6,474 9,282 12,777 17,035

Line-Surf Distances Evaluation 141 203 296 375

4D-DP Score Updating 749 952 1436 1,763

Total Time‡ (LSAD) 905 1,201 1,763 2,184

† The total time includes the back-tracing time and the time for
memory allocation and release.
‡ The total time includes the generation of discrete Voronoi
diagram, the back-tracing and the memory management.

Statistics of computational time on a periodic surface (the
example in Fig. 4 by using LSAD) is given in Table 4.
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Table 3
Statistics of the Optimal Subdivisions in Fig. 11.

Strategies 4D-DP 7D-DP

Dimensions 30× 30× 30× 10 (30× 5)3 × 10

Time (ms) 2,993 7,530

CPU Memory (MB) 3.09 386

GPU Memory (MB) 12.1 523

Fig. 13. The tightness of the error-bound in SSHB can be improved by
using projected parameterization (see Section 2.2). For a given sur-
face (a), the uniform parameterization leads to a loose error-bound
so that the fitting result does not give a good shape approxima-
tion (see (b) and (c)) – by 4D-DP (dimensions: 502 × 112). The er-

ror-bound can be tightened by using the projected parameterization
– see the results using 4D-DP with the same dimension in (d) and
(e). In this case, the Hausdorff distance between the input surface
and the fitting result is reduced by 15%.

6. Conclusion and Discussion

In this work, we presented a method to compute an op-
timal set of ruling lines to solve the discrete RSF problem.
Multi-dimensional dynamic programming is conducted to
find the global optimum in a discrete domain. We sam-
pled the boundary curves of a given surface and elevate
them along surface normals. The discrete domain has four
degrees-of-freeform for solving the RSF problem and is for-
mulated over these samples.
In our current implementation, the discrete domains are

formed by the sample points on S(u, vmin) and S(u, vmax)
and the points evaluated along surface normals on these
two curves. One may wish to generate the discrete domain
on other iso-parametric curves (e.g., S(u, vmin + ∆) and
S(u, vmax − ∆)). However, by allowing normal deviation,
the 4D-DP sampled space subsumes the space of samples
covered by sampling betweenS(u, vmin+∆) andS(u, vmax−
∆).
Our current implementation computes the optimal rul-

ing approximation to periodic surfaces by using the line-
surface metric. To employ the better SSHB, we need to
overcome the (technical) difficulty of computing the com-
position across the boundary of S(u, v). A possible solution
can first split the u, v patch when it crosses the boundary,
divide the split regions into rectangles and compute the
composition for the divided pieces. In the future, we will
work on how to incorporate the manufacturing constraints

Table 4
Computational Time (ms) on a Periodic Surface Fitting (5D-DP).

Boundary Sampling Normal Elevation Total Time (ms)

100× 100× 100 21× 21 73,523

50× 50× 50 21× 21 9,313

50× 50× 50 11× 11 2,636

(e.g., collision between the cutter and the workpiece) into
the procedure of optimal fitting.
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Appendix: Surface-Surface Composition of Two

Bézier Surfaces

Consider the 3-space Bézier surface

S1(u, v) = (x1(u, v), y1(u, v), z1(u, v))

=
n
∑

i=0

m
∑

j=0

Pijθ
n
i (u)θ

m
j (v), Pij ∈ IR

3, u, v ∈ [0, 1],

where θni (u) =
(

n
i

)

ui(1−u)n−i is the i’th Bézier basis func-
tion of order n and consider the planar Bézier surface

s2(r, t) = (u2(r, t), v2(r, t))

=

a
∑

k=0

b
∑

l=0

(qukl, q
v
kl)θ

a
k(r)θ

b
l (t), q

u
kl, q

v
kl ∈ IR, r, t ∈ [0, 1].

The composition of S12(r, t) = S1(s2(r, t)) equals

S12(r, t)

=
n
∑

i=0

m
∑

j=0

Pijθ
n
i (u2(r, t))θ

m
j (v2(r, t))

=

n
∑

i=0

m
∑

j=0

Pij

(

n

i

)

u2(r, t)
i(1− u2(r, t))

n−i

(

m

j

)

v2(r, t)
i(1− v2(r, t))

m−j

=

n
∑

i=0

m
∑

j=0

Pij

(

n

i

)

(

a
∑

k=0

b
∑

l=0

quklθ
a
k(r)θ

b
l (t)

)i

(

1−

a
∑

k=0

b
∑

l=0

quklθ
a
k(r)θ

b
l (t)

)n−i

(

m

j

)

(

a
∑

k=0

b
∑

l=0

qvklθ
a
k(r)θ

b
l (t)

)i

(

1−

a
∑

k=0

b
∑

l=0

qvklθ
a
k(r)θ

b
l (t)

)m−j

. (21)

Products and summations of polynomial Bézier basis
functions are polynomials Bézier basis functions. Eq. (21)
consists of merely summations and products of polynomial
Bézier basis functions and hence is computable and repre-
sentable as a Bézier surface (of high degrees).
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