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Abstract

This paper addresses the problem of computing planar patterns for compression garments. In the
garment industry, the compression garment has been more and more widely used to retain a shape of
human body, where certain strain (or normal pressure) is designed at some places on the compression
garment. Variant values and distribution of strain can only be generated by sewing different 2D
patterns and warping them onto the body. We present a physical/geometric approach for computing
2D meshes that, when folded onto the 3D body, can generate a user-defined strain distribution
through proper distortion. This is opposite to the widely studied mesh parameterization problem,
whose objective is to minimize the distortion between the 2D and 3D meshes in angle, area or length.

Keywords: physical/geometric modeling; compression garment.

1. Introduction

In the clothing industry, compression garment has been receiving more and more attention. It is
employed to plastic the shape of a human body so that certain specified strain (or compression) can
be obtained at some designated places on the body. This type of garment needs to be customized
since different bodies have different shapes and thus different required value and distribution of strain.
The 3D body shape can be obtained by any 3D popular data-acquisition means (e.g., a human body
laser scanner, see [1, 2]). However, it is the 2D patterns - whose corresponding fabricated 3D shape
realizes the desired strain distribution - that have to be determined. At present, this 2D pattern
design task is accomplished by trial-and-error only, which is inefficient and inaccurate. Moreover,
the trial-and-error procedure is costly as many prototypes have to be produced. Therefore, it is
natural to ask for a computer program that can automatically generate 2D patterns from an input
3D shape that, when fabricated into the final 3D garment, the 2D patterns give the designed strain
and pressure on the human body. This motivates the work presented in this paper. Here, we focus
only on the task of computing an optimal 2D cloth piece from a given 3D patch, and leave the work
of defining cutting curves on 3D human bodies to the designers. However, in general, pieces with
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Figure 1: Computing optimal strain values on 3D garment pieces whose 2D patterns satisfy certain
compression requirements. The color map shows the strain distribution on the human body with the
suit fabricated from the 2D patterns in the right.

too large area are difficult to satisfy prescribed normal pressures while too small pieces will make
the computation have limited degree-of-freedom in optimization.

We exploit a physical/geometric approach to model the relation between the 3D mesh surface and
a 2D planar pattern. Every triangle edge on the 3D mesh is considered as a linear truss bar where
the force equilibrium equation is established at the tangent plane at each end of the bar. We then
establish a formulation that relates the normal pressure at a vertex to all the incident truss bars
at the vertex. Geometric constraints are set up at all interior vertices so that the triangles around
them can be locally flattened into the plane without distortion when the triangles’ edges are given
the relaxed length of truss bars. A numerical solution is given in this paper to compute the optimal
strain values in the truss bars with the tensile state of the bars ensured (i.e., the garment pieces
compress the human body). Figure 1 gives an example of computing optimal 2D patterns that will
generate expected compression configurations.

1.1 Related Work

In computer graphics, the pioneer work in [3] provided a general physically-based modeling method
for elastic objects, which employs the finite-element and the finite-difference methods to solve the
dynamic governing equations that simulate the deformation of objects like cloth, rubber, metal,
etc. Following that work, much effort has been given to improving the simulation of cloth, either in
verisimilitude or efficiency aspects, which includes the methods using particle or spring-mass systems
[4, 5, 6, 7, 8, 9, 10, 11], the simulations based on continuum solid mechanics [3, 12, 13, 14, 15, 16],
and the numerical schemes that enhance the computational stability and speed [8, 10, 17, 18, 19].
Recently, in order to accurately describe the behavior of materials that are strongly resistant to
stretch and shear but weakly to bending, the structural buckling model has also been proposed
[10, 20]. In all of these works, however, the input is a planar pattern (tessellated), and their common
purpose is to simulate/predict the three-dimensional shape and motion under some physical theorem.
The problem to solve in this paper is the inverse - given a 3D shape and certain associated required
physical properties (e.g., strain or pressure), how to determine the 2D patterns that can generate
such physical properties. No above existing approaches can be directly applied here.

In literature, another sort of research related to our work is mesh parameterization and surface
flattening. Similar to our work here, the parameterization of a given 3D mesh surface concerns
with finding the corresponding 2D parametric domain via surface flattening. In general, a surface
parameterization inevitably introduces distortion in either angle or area. All the known parameteri-
zation methods are based on how to minimize the distortions (see [21] for a detailed review). Among
the abundant literature of mesh parameterization, only a few schemes [26, 22, 24, 25, 23, 27, 28]

2



generate a planar domain with a free boundary so that it can be employed to compute the shape
of 2D patterns. However, they never addressed the problem of how to satisfy certain given strain
and compression in the 3D shape fabricated from the computed 2D patterns. Different from those
approaches concerned visual results in texture mapping (e.g., [51]) or surface shape in reconstruction
(e.g., [50]) where different metrics are derived to optimize a mesh parameterization, the physical laws
(e.g., the stress equilibrium) are the major factors to be considered here. In the realm of computer-
aided design, the surface flattening for pattern design has been studied from various perspectives (cf.
[29, 31, 32, 30, 33, 34]). Nevertheless, neither mesh parameterization nor mesh flattening approaches
provides a solution to the physical/geometric problem posed in this paper.

One research area that is perhaps more pertinent to our problem is the study of developable
surfaces. From the perspective of differential geometry, developable surfaces inherit many desirable
characteristics. There are approaches that either exactly define [36, 37, 35] or approximately model
[38, 39, 40] a 3D shape with developable ruled surfaces. In the latter category, the authors in [41]
proposed an approximation scheme that models a given mesh surface with many conical surfaces.
Wang and Tang in [42] adopted the discrete Gaussian curvature to process the given mesh surface
through constrained optimization, so to make it as close to being developable as possible. Their
work is furthered in [43] with the introduction of the Flattenable Laplacian (FL) mesh modeling
idea, which helps improve the numerical stability. Another related work is the PQ meshes presented
in [44], which can also be used to model discrete developable surfaces. All these developable surface
modeling methods, exact or approximate, unfortunately are not applicable to our problem, as no
distortion is considered in the mapping from a 3D developable surface to its 2D pattern.

Recently, in [45], we proposed a woven-model based geometric approach for the design of elastic
medical braces, where the elastic brace worn by a human body is simulated by a woven model with
orthogonal warp and weft threads. In that work, the elastic behavior is simulated by three types of
springs: warp, weft and diagonal. An elastic energy is formulated with these springs, and a diffusion
process is adopted to minimize the elastic energy that determines the distribution of woven nodes
on the given 3D surface, so to obtain the desired 3D-to-2D mapping. There are however serious
deficiencies in the approach of [45]; specifically as follows:

• Only the elasticity in two directions - warp and weft - is considered; therefore, when in equilib-
rium, the strain (and stress) on a single weft or warp thread is a constant. The result is that
only very simple patterns of strain distribution can be simulated by the woven model.

• The computation of re-distributing the woven nodes on the surface is based on the knowledge
of a strain distribution. However, computing such strain distribution in general is not straight-
forward. And thus again, the woven-model based approach in [45] can only mimic very simple
and limited patterns of strain distribution.

• The strains on the springs around a point with a user specified normal pressure is calculated
by fitting a quadratic polynomial. Such an approximation is not accurate enough.

• The boundary of the woven model takes a zigzag-like shape, which brings great difficulty in
modelling the physical interactions between the 2D pieces that will have to be sewed together.

• There is no guarantee that all the threads will be in the tensile state, which though is strongly
required by a compression garment.

1.2 Contribution

To overcome the above deficiencies, we develop a new physical/geometric approach in this paper
that is able to model more complicated elastic behaviors of fabrics, and determine the 2D patterns
of a given 3D mesh surface satisfying the given strain and/or normal pressure distribution. In this
new model, every triangle edge is simulated by a tensile truss bar, and the equilibrium equation is
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established at every vertex on the given mesh surface. The relationship between the normal pressure
and the stress on the truss bars is also carefully analyzed. Moreover, critical geometric constraints
are introduced to ensure that the network of truss in the relaxed state can be flattened without
significant stretch. The sewing behavior between assembled patches is also modelled. After all these
modules being assembled together, the strain distribution on the truss bars is finally determined
with a least-square based iterative minimization.

The rest of the paper is organized as follows. Section 2 describes the physical models for the
compression garment. The geometric constraints for the distortion-free flattening are given in section
3. In section 4, the physical model and the geometric constraints are integrated and a linearization
is proposed for the resulting system (which is highly nonlinear) – so that it can be iteratively solved
with the least-square solutions. Some test results are provided in section 5, followed by the conclusion
and discussion section.

2 Physical Model

Without loss of generality, the input 3D surface M is assumed to be represented by a triangular
mesh. To simulate the physical behavior of elastic fabrics on M, every triangle edge is considered
to be a linear truss bar. The human body that supports the elastic fabrics is defined by a given
3D shape H. The following definitions and assumptions are imposed on the physical model of our
compression garment.

Definition 1 The given triangular mesh surface M is a piece of elastic fabric in its final shape
when it is worn on H.

Definition 2 The elastic fabric is represented as a network of linear truss bars in connectivity on
M.

Assumption 1 All the linear truss bars are of a same material, and of the same cross section.

From the study of elastic materials [46], the strain of a linear truss bar e is

εe = (le − l0e)/l
0
e (1)

where le is the current length of e and l0e is length in the relaxed state. The relation between the
strain εe and the stress σe of e is

σe = kεe (2)

The force according to this stress is its integral over the entire cross section of the truss bar. By
Assumption 1, the stiffness coefficient k in Eq.(2) is constant over the entire fabric, and the relation-
ship between the strain and the force is linear. This simplifies the later formulation in the paper, for
otherwise the equilibrium equation introduced below would become nonlinear and make the problem
much more difficult to solve.

Definition 3 For a compression garment, the strain εe on every truss bar e should satisfy εe ≥ 0.

Definition 4 For a linear truss bar e, its generated force fe is proportional to its strain εe with a
constant ratio.

Assumption 2 The nodes linking the truss bars are coincident with the vertices of M when the
whole truss structure is in equilibrium.

Assumption 3 The friction between the elastic fabric and the surface of human body is negligible.

4



Figure 2: Illustration for the physical model at an interior vertex.

Assumption 4 The human body H under compression agrees with the shape of M, and the
deformation of H is neglected.

The forces at every joint node of the truss structure should be in equilibrium so that the whole
system is in a stable state. Based on this assumption, we can derive the following lemma.

Lemma 1 The projection of forces in the tangent plane, P v, to a node v ∈M as generated by the
truss bars around v, is in equilibrium.

Proof. Let fe be the force on truss bar e ∈ E(v) with E(v) denoting the collection of edges
linking to v. fe can be decomposed into the component perpendicular to P v and that in P v. By
Assumption 2 and 3, the perpendicular component is balanced by the support from the human body
and the friction is ignored. Therefore, we have the following equilibrium equation in the plane P v:

∑

e∈E(v)

P v(fe) ≡ 0 (3)

where P v(· · ·) stands for the projection of a vector onto the plane P v. Figure 2(a) gives an illustration
for this.

Q.E.D.

Motivated by the strain-stress theories in solid mechanics [47], we stipulate that the relationship
between the tensile strain and the normal pressure can be modeled as

pv = s

∫ 2π

0
κn(θ)σ(θ)dθ (4)

where κn(θ) is the normal curvature in direction θ on the tangent plane at the surface point, σ(θ)
denotes the normal stress in θ, and s is a parameter to reflect the effect on different materials. Here,
we reasonably further simplify the formula into a finite sum on the truss structure model as

pv =
s

2πκH

∑

e∈E(v)

(−te · nv)θeεe (5)

where te is the unit vector of truss bar e pointing outwards from v, nv is the unit normal vector
to surface M at v, κH is the mean curvature at v, and θe reflects the weights of the truss bar e
contributing to the normal pressure. Here, the value of θe is the average angle of e’s left and right
triangles at the vertex v on P v. As illustrated in Fig.2(b), θe = 0.5(α1 + α2).

In practice, the 2D patterns of a compression garment are sewed together by suture (see Fig.3(a)).
We need to model the physical effect of this sewing operation. Generally speaking, during sewing,
the boundaries of fabrics are in the relaxed state. If some distortion is introduced after the pieces
are sewed together, unwanted wrinkles might occur and thus violate the original design intent – this
is one critical criterion to evaluate whether a garment is well designed and fabricated. Since the
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Figure 3: Illustration for the sewing model – the blue arrows are forces generated by the tensile truss
bars to the nodes, and the red ones are the reaction forces between sewing nodes.

suture in general is not elastic, the boundaries of fabrics locked by suture have almost no freedom of
deformation. Therefore, we introduce the following definition and assumption in our physical model.

Definition 5 The boundary of a given mesh surface M is defined as a sewn-boundary if it is linked
to other pieces by suture; otherwise, it is defined as a free-boundary.

Assumption 5 For the truss bars overlapping the boundary of a fabric piece, their strain should
be zero when the system of truss structure is in equilibrium.

Note that the above assumption is only for sewn-boundary; the strain may not be zero for those
free-boundaries (e.g., the free-boundary of elastic braces shown in Fig.6(c)). Moreover, for the input
mesh surfaces to be assembled together, we assume that they are stitched together by making the
boundary vertices coincident (e.g., as shown in Fig.3(b), three pieces - in different color - are stitched
together by linking the three orange vertices). The reaction forces among them would resist this
stitching. Therefore, the equilibrium at the sewing nodes relies on the forces from truss bars linked
to all these nodes. More specifically, Eq.(3) given above need to be modified as

∑

e∈E(v)

P v(fe) +
∑

vs∈S(v)

∑

e∈E(vs)

P v(fe) ≡ 0 (6)

where S(v) denotes the collection of all nodes that should be sewed together with node v during the
fabrication.

The physical model developed in this section will work together with the geometric constraint
derived next to satisfy the physical properties of compression garment on the 3D shape warped from
the computed 2D patterns.

3 Geometric Constraint

The behavior of elastic fabric pieces on a compression garment should not only be governed by the
equilibrium equation (i.e., Eq.(3) and (6)) described in the previous section, but also have correct
geometric constraints to ensure that the 3D shape can really be fabricated from 2D patterns. This
leads to the following developability constraints imposed on every interior mesh vertex.

From differential geometry, it is well-known that a surface can be developed into 2D without local
stretch only if the Gaussian curvature is zero everywhere on it. When dealing with a piecewise linear
mesh surface, the Gaussian curvature is converted to the form in terms of the angles of triangles at the
involved vertex, which has been successfully used in several existing systems (e.g., [26, 27, 42, 43]).
Therefore, we use a similar formula to constrain the local geometry of a fabric piece for compression
garment.

For a vertex v on M, using αf (v) to symbolize the vertex angle of triangular face f at v, the
condition

∑

f∈F (v) αf (v) ≡ 2π
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Figure 4: Invalid edges that fail the triangle construction.

should be satisfied if all the faces f around v are to be flattened without any cracks and/or overlap-
ping, where F (v) is the set of triangles incident at v. Note that, in our problem setting, the triangles
in 3D have already been purposely distorted in order to generate compression. Therefore, we must
use the angle of face f in its original relaxed state to replace αf (v).

Constraint 1 Let α0
f (v) represent the angle of the relaxed triangle f at v, the geometric constrain

at an interior vertex v is defined as
∑

f∈F (v)

α0
f (v) ≡ 2π (7)

Note that this constraint is only set for interior vertices. For boundary vertices, the constrain in
terms of angles should be

∑

f∈F (v)

α0
f (v) < 2π (8)

During the computation of planar patterns, we seek to determine the optimal original length of
each truss bar so that the above geometric constraint and the equilibrium equations can be satisfied
(in the minimum energy sense). The triangle constraint defined below is also important and necessary,
as it ensures the validity of the lengths of a truss bar.

Constraint 2 Let l01, l02 and l03 represent the relaxed lengths of three bars e1, e2 and e3 in a triangle
in M; they must satisfy

l0i + l0j − l0k > 0 (9)

if l0k ≥ l0i and l0k ≥ l0j with ijk ∈ permutation of{1, 2, 3}.

The inequality constraint in Eq.(9) prevents from happening the scenario shown in Fig.4.

4 Numerical Solution

This section presents the numerical scheme that computes the optimal tensile strain on every linear
truss bar so that the given normal pressure distribution on M can be realized (in the minimum energy
sense). Nodes are not moved during the computation in our approach. The user is allowed to specify
the desired normal pressure at some designated vertices on M (referred to as anchor points). Note
that, this does not mean the normal pressures are only on isolated vertices. We choose to define
pressure in this way is only because it is an easy method for users to specify their requirements. As a
direct result of the tensile strains on M, the corresponding 2D patterns of M are also obtained. The
optimal strains should ensure the force equilibrium at all the vertices (i.e., joint nodes of the truss
structure), realize the given normal pressures, and also satisfy the geometric constraints (Eq.(7)-(9)).

The intuitive variables in the numerical system are the strain εe on truss bars. Instead, to
safeguard the εe ≥ 0 requirement (as in Definition 3), we introduce a new variable xe as

εe = x2
e. (10)
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Per Lemma 1, the projection of forces of truss bars around a vertex v onto its tangent plane
should be in equilibrium. According to Assumption 1, the forces are proportional to the strains on
truss bars. Therefore, the equilibrium equation (i.e., Eq.(3)) can be derived to become

∑

e∈E(v) (txv · te)fe =
∑

e∈E(v) (txv · te)σe =
∑

e∈E(v) (txv · te)kεe = 0

∑

e∈E(v) (tyv · te)fe =
∑

e∈E(v) (tyv · te)σe =
∑

e∈E(v) (tyv · te)kεe = 0

with fe and σe the tensile force and stress on the truss bar e, and then

∑

e∈E(v)

(txv · te)x
2
e = 0,

∑

e∈E(v)

(tyv · te)x
2
e = 0. (11)

where txv and tyv are the unit vectors of the local frame established at v such that nv = txv × txv

(i.e., nv, txv and tyv are orthogonal to each other as illustrated in Fig.2(a)). Similar formulas can be
derived from Eq.(6) for nodes that are sewed together on the boundaries. These equations should
be satisfied on all vertices of M. Also, by Assumption 5, we should let xe = 0 for those truss bars on
the sewn-boundary.

Γ represents the collection of all the anchor vertices with some prescribed normal pressure. The
strain-pressure conversion equation derived from Eq.(5) is defined on every vertex v ∈ Γ by replacing
εe in Eq.(5) with x2

e.
The equations for geometric constraints are also reformulated in terms of xe, and the relaxed

length l0e is converted into l0e = le/(1 + x2
e) with the length of truss bar e, le, on the given mesh

surface M. The inequality constraints are introduced into the numerical system by the active set
method. In short, the inequality constraints are partitioned into an active set and an inactive set -
only the constraints in the active set are added into the system during computation (cf. [48]).

4.1 Linearization and least-square solution

Almost all the above listed equations are nonlinear in nature. To device a numerical solution for
them, we first linearize the equations and then utilize the least-square method to iteratively update
the value of xe, till a satisfactory solution is obtained.

The linearization is obtained by the first order Taylor expansion. Explicitly, Eq.(11) is linearized
to

∑

e∈E(v)

(txv · te)x
2
e +

∑

e∈E(v)

2(txv · te)xeδe ≈ 0 (12)

∑

e∈E(v)

(tyv · te)x
2
e +

∑

e∈E(v)

2(tyv · te)xeδe ≈ 0. (13)

where δe = xnew
e − xe and xe is the current value for the truss bar e. The formulas have an

approximation error O(δ2
e ). For the normal pressures assigned on the anchor points, Eq.(5) can be

converted into a linear form in terms of δe as

pv ≈ s
∑

e∈E(v)

aex
2
e + 2s

∑

e∈E(v)

aexeδe (14)

where ae = (−te · nv)θe/2πκH and the approximation error is O(δ2
e).

As for the geometric constraint (Eq.(7)), the value of α0
f (v) depends not only on the strain of bars

incident at v but also on the bars opposite to v (see Fig.5). Therefore, applying the Taylor expansion
to Eq.(7) leads to

αv +
∑ ∂αv

∂l0e

∂l0e
∂xe

δe +
∑ ∂αv

∂l0opp

∂l0opp

∂xopp

δopp ≈ 0 (15)
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Figure 5: The derivative of vertex angle in terms of the strain. Left, the variable δe is for the bar
adjacent to the vertex v; right, the variable δopp is for the bar opposite to the vertex.

where αv =
∑

f∈F (v) α0
f (v) is the current vertex angle at v, l0e is the relaxed length of the truss bars

adjacent to v, and l0opp is the relaxed length of bars opposite to v. Regarding the derivatives (see
Fig.5), we have ∂αv/∂l0e = ∂(α1 + α2 + const)/∂l0e , where α1 and α2 are in terms of (l0e , l

0
next, l

0
opp1)

and (l0e , l
0
last, l

0
opp2) respectively, and ∂αv/∂l0opp = ∂α/∂l0opp, with α depending on (l01, l

0
2, l

0
opp) by the

arccos(· · ·) function. Note that all the angles here are evaluated by the relaxed lengths of truss bars
(i.e., l0e) instead of their current lengths. A similar linearization can be applied to Eq.(8) for the
boundary vertices, which leads to the same formula as Eq.(14) – note that, this linear equation about
boundary vertices is added into the numerical system only when Eq.(8) is not satisfied.

For the triangle constraint, when Eq.(9) is disobeyed, the following linearization of it is inserted
into the numerical system.

l0i + l0j − l0k +
∂l0i
∂xi

δi +
∂l0j
∂xj

δj −
∂l0k
∂xk

δk ≈ 0 (16)

To cater to the sewing constraint (Eq.(6)), we first linearize Eq.(6) in a way exactly similar to
that of Eq.(12) and (13). Then, owing to Assumption 5, we let

δe + xe = 0 (17)

for any truss bar e on sewn-boundary.
Furthermore, in order to add damping factors to make the numerical system more stable, we wish

that the update of xe for all non-sewn-boundary bars is small in each iteration step. Therefore, we
introduce the following damping equation into the numerical system for all truss bars except the
ones on sewn-boundary

δe = 0 (18)

Note that as the least-square solution will be used to determine the value of δe, the value of δe at
interior bars will be a balanced value from all constraints in Eq.(12)-(18) but not zero.

Integrating all the above linear equations (Eq.(12)-(18)) together, we have

[

A
I

]

[δe] =

[

ba

bi

]

(19)

where A and ba are derived from Eq.(12)-(16), and bi is from Eq.(17) and (18). This is an over-
determined linear equation system, which can be solved by the least-square solution as

[

AT I
]

[

A
I

]

[δe] =
[

AT I
]

[

ba

bi

]

(20)

In our implementation, after giving initial values for x = [xe], iteratively, we solve Eq.(20) and
then update the values of x by x← x+δ. The iteration continues until either the zero-norm condition
‖δ‖2 < 10−5 is met or the maximum number iterations (e.g., 500) is reached. To different rows in
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the linear system of Eq.(19), different weights may be adopted. In all our tests, we multiple both
sides of the equations from Eq.(15) with a weight of 5.0 (as compared to a weight of 1.0 for all the
other rows), so to highlight the developability constraint. About the weights on anchor points, we
assign a weight Nv(M)/Nv(Γ) with Nv(M) the number of vertices on M and Nv(Γ) the number of
anchor points.

4.2 Computing 2D shape

After the optimal values of xe are determined, the relaxed lengths of all the truss bars can be
calculated. The only task left is to determine the 2D shape of each pattern. For that, we first
compute the angles in all triangles by the relaxed lengths of triangle edges. Then, the angle-based
least-square formulation [27] is used to determine the 2D coordinates of each vertex. By the method
proposed in [27], we fix the position of two vertices on the longest edge and solve a set of linear
equations relating angles to the planar coordinates. The reason why we did not adopt the intuitive
greedy reconstruction is that, while the flattening of each triangle alone generates a very small
numerical error, these errors accumulate at the front. Thus, when the involved mesh surface has
many triangles, the accumulated error at the end could be very large. The least-square reconstruction
somewhat balances out the cumulative error. The obtained 2D mesh can be further optimized by
the method in [33].

5 Experimental Results

We have implemented the proposed method in a prototype program written in C++. Several exper-
imental results are given in this section. Before that, we first define some error measurement terms
for the evaluation of the test results.

The first error item is the deviation between the pre-specified desired normal pressure and the
computed normal pressure M, as

Ep =
1

ma

∑

v

|pv − p0
v| (21)

where ma is the number of anchor points, p0
v is the desired normal pressure, and pv as the one defined

by Eq.(5). In our tests, the s in Eq.(5) is simply assigned with 1.0, although some more realistic
values could be calibrated, depending on the physical knowledge of the model, such as the material
of the garment, etc.

The second error item measures the level of equilibrium at the vertices in the final M, as

EF =
∑

e

‖(te · tx)εe‖
2 +

∑

e

‖(te · ty)εe‖
2. (22)

While these two error items relate to the physical property of the system, the following two

Eθmean
=

1

mint

∑

v

|2π −
∑

f∈F (v)

α0
f (v)| (23)

Eθmax
= max{|2π −

∑

f∈F (v)

α0
f (v)|}. (24)

quantify the developability of the final M, i.e., how well it can be flattened. mint is the number of
non-boundary vertices on M. Note that α0

f (v) is computed with the relaxed lengths of the truss bars
in the triangle f . The final error item, EL, is used to measure the length change on the flattened
patterns from the original relaxed value l0e , as

EL =
1

me

∑

e

|l0e − l∗e |/l
0
e . (25)
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Figure 6: The medical brace example with different normal pressures specified at the anchor points
(the black colored): (a) the brace is free - no specific normal pressure is assigned, (b) brace A -
with one anchor point, (c) brace B - with three anchor point, and (d) brace C - with four anchor
point. The color maps show different strain distributions corresponding to the four different normal
pressure configurations. The final 2D patterns are also given (in red) that are superimposed with the
one from the free brace in (a), for comparison. (e) and (f) give the planar meshes generated by the
least squares conformal map (LSCM) and the length-preserved free boundary (LPFB) respectively,
which are very different from the patterns generated by this approach.

11



Figure 7: Convergence of the numerical iterations for the example of Fig.6, in terms of ‖δ‖2 (top)
and ‖ba‖

2 + ‖bi‖
2 (bottom).

where l∗e is the length of edge e after flattened and me is the number of truss bars (i.e., edges) on M.

We tested the developed model on a medical elastic brace example with four different configurations
of normal pressure assignment. In Fig.6, (a)-(d) display the results of strain distribution and planar
patterns under different normal pressure assignments. It is worth mentioning that the configuration
in Fig.6(d) can never be simulated by the method in [45]. For comparison, the 2D patterns generated
by the least squares conformal map (LSCM) [25] and the length-preserved free boundary (LPFB)
[53] are given in Fig.6(e) and (f). Table 1 lists the error measurements on the results of the four
configurations, all of which are small, indicating that the numerical iterations converged for all the
four configurations in the test. To investigate the speed of convergence, we recorded the value of ‖δ‖2

and ‖ba‖
2 + ‖bi‖

2 after each iteration step for these four configurations, which are shown in Fig.7. It
is seen clearly from the figure that both norms drop quickly after few iterations. On the other hand,
the convergence speed became noticeably slower after certain threshold values of the norms - in our

Table 1: Statistics of Errors

Example EP EF Eθmean
Eθmax

EL

Brace (free) N/A 2.7× 10−4 3.4× 10−4 0.036 5.7× 10−3

Brace A 6.0× 10−6 1.6× 10−3 7.4× 10−4 0.038 1.7× 10−2

Brace B 1.6× 10−4 3.2× 10−3 2.8× 10−3 0.037 1.5× 10−2

Brace C 7.0× 10−5 4.2× 10−4 7.8× 10−4 0.038 2.4× 10−2
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tests, the value of ‖δ‖2 never became smaller than 10−5, even after some large number of iterations
(e.g., 500). This is similar to other iterative numerical schemes.

We have successfully applied the proposed method to a wetsuit design project currently underway
in our laboratory (see Fig.1), in which the objective is to determine the 2D patterns of neoprene
pieces that are used to fabricate the wetsuit. Figure 8 shows the results of both free (without normal
pressure assignment) and constrained (with normal pressure assignment) cases.

Figure 8: The lower body of a wetsuit example - (a) without normal pressure assignment, and (b)
with normal pressures specified at anchor points (the yellow colored).

5.1 Verification by FEA

In order to verify the proposed physical/geometric approach, we compare the results computed by
our scheme with the simulation results from Finite Element Analysis (FEA). Two cylinder models
under different compressions are tested by the commercial FEA software – Algor [54]. As shown
in Fig.9, the uniform normal pressures are added onto the cylinder, and the strain distribution can
be generated by the system. We measure the strain at the red point shown in the right figure and
obtain the results listed in Table 2. It is not difficult to find that the value of strain is approximately
proportional to the normal pressure loadings and the radius of the cylinder (i.e., inverted to the
curvature).

Table 2: FEA Tests on Neoprene Cylinders

Radius R (mm) Pressure (N/m2) Strain

64.75 150 0.9675
64.75 100 0.6450
64.75 50 0.3225
54.75 150 0.8176
54.75 100 0.5450
54.75 50 0.2725

The neoprene is with Young’s Modulus: 1.85GPa and Density: 1210Kg/m3.

We test the two models by our approach with the specified normal pressure 50N/m3. By Eq.(5),
we know that if the value of normal pressure pv and the strain εe on all truss bars are known, the
value of s can be determined. In this test, we use the results from FEA to give a virtual calibration
to obtain the value s = 242.56. The computed 2D patterns are with the average length of 269.32mm

13



Figure 9: Testing the pressure-strain relationship by FEA software.

Figure 10: The results by our approach on cylinders with different radius – with normal pressure
50N/m3 at an anchor point: (a) the average length of resultant pattern is 269.32mm (R = 54.75mm),
and (b) the average length of resultant pattern is 305.33mm (R = 64.75mm).

(for the cylinder with R = 54.75mm) and 305.33mm (for the cylinder with R = 64.75mm), thus will
give the strain (i.e., stretch) of

ε = (2π × 54.75 − 269.32)/269.32 ≃ 0.277

and

ε = (2π × 64.75 − 305.33)/305.33 ≃ 0.332

on the warped 3D patches as shown in Fig.10. These values of strain are very close to the results
from FEA.

6 Summary and Discussion

The main goal of this paper is to propose a numerical algorithm that, given a 3D mesh surface M and
certain prescribed tensile strain values at some designated points on M, computes a suitable flattened
2D pattern of M that, when folded back to M, will best realize the prescribed strain. By means of
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elementary strain-stress relationship from solid mechanics, the proposed method can be directly used
for the design of compression garment (e.g., the wetsuit and the elastic medical assistant braces),
where the prescription of normal pressure, instead of strain, is usually desired. The proposed method
comprises a carefully established system of equilibrium and geometric constrains – that maintains
the integrity of the underlying physical/geometric properties – and a numerical solution, based on
linearization and least-squares solution, for the solving the system.

Similar to other computational engineering applications using triangular meshes (e.g., finite ele-
ment analysis), the accuracy of computation here will be greatly affected by the quality of meshes.
Ideal mesh should have every facet near a regular triangle. A remeshing step [52] is usually employed
to pre-process the mesh surface before applying our approach in this paper.

Our initial computer simulation tests of the proposed algorithm have shown some promising
results. However, in order for it to be an effective tool for real industrial applications, such as
design of medical braces, more work – especial physical calibration and experiments to determine
the material-oriented coefficient, s, in our approach – is needed, and this will be our following up
work.
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