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Abstract

Limited by the regular grids in computing, many modelling approaches (e.g., field-based methods)
sample 3D shape insensitive to sharp features therefore exhibit aliasing errors, by which a lot of
sharp edges and corners are lost on the reconstructed surface. An incremental approach for recover-
ing sharp edges on an insensitive sampled triangular mesh is presented in this paper, so that shape
approximation errors are greatly reduced. Either chamfered or blended sharp edges on an input trian-
gular mesh could be successfully reconstructed by the signals inherent in the mesh. As a non-iterative
method, our approach could be finished in a very short time comparing to those diffusion-based sharp-
feature reproducers. The region embedding sharp features is first identified through normal variations.
The positions of vertices in the sharp-feature embedded region are then predicted progressively from
outer to the inner of sharp regions so that sharp edges could be recovered in the sense of region
shrinking.

Keywords: sharp edges, reconstruction, insensitive sampled, triangular mesh, geometry processing

1. Introduction

At present, a lot of geometric modelling approaches sample signals on uniform grids (also called
volumetric representation) to reconstruct and modify the shape of three-dimensional objects, where
the transformation between boundary and volumetric representations occurs in the successive way
of: surface-volume conversion, shape processing on grid data, and volume-surface conversion. For
example, the mesh simplification algorithm represented in [16] converts a given mesh into the voxel
representation, then adopts less triangular elements to approximate the isosurface defined by voxels.
The volumetric representation is also conducted to help fix topological errors on a reconstructed
surface in acquisition applications ([20] and [26]). Also, in computer-aided engineering, there are
many approaches [3, 4, 12, 38] using this implicit representation on grids to evolve the shape and
topology of a structure so that provide optimal mechanical properties.

In above applications, sharp edges and corners are degraded on the resultant surface of evolution.
Over-sampling could reduce the aliasing error by taking the cost of increasing storage memory;
however as be observed in [21], even if an over-sampling is applied, the associated aliasing error
will not be absolutely eliminated as the surface normals on the reconstructed model usually do not
converge to the normal field of the original model. To solve this problem, the authors in [21] encoded
the normals on each grid node (i.e., recording a Hermite data set) and recovered sharp features based
on the encoded normals. However, in many applications (e.g., the field-based shape modelling and
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Figure 1: Using the Shrinkwrap algorithm [30] to contouring the isosurface of a uniformly sampled
distance field produces blended aliasing regions on the original sharp edges: (a) original flower mesh,
(b) the distance-field generated by the closest point transform (CPT) [25] - where black denotes a
point inside the given surface, and (c) the isosurface generated by [30].

evolution [3, 4, 12, 38]), normals cannot be accurately provided - i.e., can only be approximated
from the shape signals. Therefore, the reconstruction technique of sharp edges on feature-insensitive
sampled models is needed. An ideal recovering technique for sharp edges is expected to be fast, and
takes mesh surfaces as the only input. An approach for the similar purpose was presented in [2].
However, in [2] the method assumes that chamfered edges do not contain sample points, as in the
case of the Marching cubes algorithm [23], surface reconstruction approaches, and some remeshing
algorithms. Our approach does not rely on such an assumption. This is motivated by the need to
filter meshes produced by dynamic remeshing strategies (e.g., [30, 35]). Fig.1 gives an illustration
about how the smooth degeneration is produced.

This paper proposes an incremental approach to recover sharp edges on a triangulated mesh M
through geometry prediction. Limited by the nature of an incremental approach, here we assume
that: the noises or errors are not exhibited on the non-sharp-feature region. The region Ω embedding
sharp features is firstly recognized by a Uniformly Supported Second-Order Difference (USSOD),
which measures the maximal normal variation around a vertex on M. Then the sharp region is
shrunk into its skeleton Ψ. During region shrinking, the positions of newly removed vertices from Ω
are predicted by the triangles existed in the non-sharp region Ω = M \Ω. After that, vertices on the
skeleton Ψ are repositioned to generate the geometry of single-line-wide sharp edges.

Comparing to other techniques to reconstruct sharp edges, our method yields several advantages
as follows:

• A robust algorithm is developed which does not rely on the identification of chamfered edges
- i.e., randomly destroyed and smoothly blended sharp edges can also be recovered. The
reconstruction approach can be applied on a non-manifold object being represented as an
assembly of open mesh patches.

• The sharp edges are reconstructed from the signals inherent in the given mesh surface so that
our method requests no normal been recorded on volumetric data.

• The approach is a non-iterative method (i.e., no diffusion process), which gives the result
that thousands of triangles can be processed in an interactive speed on a PC with standard
configuration.

• A new sharp-fold detector is developed based on the uniformly supported second-order difference
- since it is uniformly supported, it has less influence by the irregularity of given meshes.
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Figure 2: Recovering sharp edges on a non-manifold structure: (a) the given insensitive-sampled
meshes; (b) the result after 30 runs of Bilateral filtering [18] - vertices are significantly drifted; (c)
the result after 5 runs of Bilateral denoising [11] - sharp edges can hardly recovered; (d) the result
of our method - sharp edges are well reconstructed.

• The connectivity on given meshes are retained during sharpening, which is important to some
applications (e.g., metamorphosis).

• The sharp curves on resulting surfaces can be easily detected through the dihedral angles on
edges.

The rest of the paper is organized as follows. After reviewing the related work in literature, the
methodology of our incremental reconstruction approach is presented in section 3. Section 4 details
the implementation techniques. The experimental results shown in section 5 prove that our method
can successfully recover sharp edges on insensitive sampled triangular meshes in a very short time.
Finally, our paper ends by the conclusion section.

2. Related Work

There are many attempts to encode the original surface normals during sampling (e.g., [19, 21,
27, 28]), where a Hermite data set is generated to reconstruct sharp features. But if the volumetric
data is not sampled from an explicit mesh representation or the Hermite data cannot be maintained
during the evolution of implicit data, e.g., in the heterogeneous object modelling of [3, 4, 38] no
normal could be supplied, we therefore need to reconstruct sharp features only from the given mesh
surfaces.

In recent years, a wide variety of mesh smoothing algorithms have been proposed, which are
classified into isotropic and anisotropic. The isotropic approaches [10, 22, 34] indiscriminately smooth
noise and small features, so the sharp edges on a noisy model will become extremely rounded before
the model becoming smooth. To solve the problem of feature preservation, techniques for anisotropic
mesh smoothing have been developed (ref. [5, 7, 9, 17, 24]). The idea behind these approaches is to
modify the diffusion equation to make it non-linear so that become sensitive to curvature tensors.
The results are with much high quality. However, as mentioned in [18], the non-linear modification
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affects the numerical conditions of the diffusion equations, which leads to significant computational
time. Therefore, a faster approach is requested. The authors in [11, 18] applied the Bilateral filter to
smooth and denoise 3D meshes while preserving sharp features. However, we find that sharp edges
cannot be well reconstructed by only one run of Bilateral filtering. Several runs of the Bilateral
filtering introduced in [18] (which has already become an iterative approach) will drift the vertices
so that a lot of vertices are accumulated near sharp edges. This makes the sharpness greatly reduced
(i.e., the sharp edges cannot be easily detected through dihedral angles - see Fig.2b). To prevent
vertex drifting, the Bilateral denoising approach in [11] limits the movement of vertices only along a
specified direction (i.e., vertex normal), which makes the recovery of sharp edges more difficult (e.g.,
the vertex whose current normal pointing to the wrong direction cannot be correctly repositioned -
the result based on our implementation of [11] is shown in Fig.2c).

Edges are the most important element on polygonal mesh to represent sharp features. Sharp edges
are usually recognized and enhanced from its neighboring connectivity graph. In [14], a method was
presented for extracting sharp edges on a multi-resolution mesh. Their method is based on the
measurement of dihedral angles. When the sharp features are rounded by small radius, a lot of
”sharp” edges are detected - so that a thinning process is applied to form patches of the surface.
Watanabe and Belyaev in [37] used the identification of perceptually salient curvature extremes to
detect curvature features. Similar ideas have also been presented in [15, 24, 29, 32, 40] to detect
sharp features, where curvature features are defined as a portion of the model which has an extreme
value of curvature in some direction. However, the sharpness geometry is not really reproduced on
edges in all these approaches. In contrast, the proposed algorithm here modifies the geometry around
sharp edges so that they can be easily recognized by dihedral angles.

The purpose of the technique presented in this paper is akin to [2], to recover sharp edges with
triangular meshes as the only input. For the sharp edges that are smoothly blended, the algorithm
of [2] fails - but our method works well. Besides, the reconstruction of sharp edge on non-manifold
structures, that is not referred in [2], will be also addressed in our paper.

3. Methodology

This section presents the methodology of our sharpening algorithm. A preliminary description of
this part was first presented in a conference version [36].

3.1. Signals indicating sharpness

The normal vector at a surface point can considered as the First-Order Difference of shape.
The surface smoothness is usually measured by the variation of surface normals. Therefore, normal
vectors on a given surface can be treated as signals indicating the smoothness, where signals in the
lower frequency range relate to smooth surface parts while higher frequency signals correspond to
the region embedding sharp features. The simplest method to detect the frequency of smoothness
signal is through the dihedral angle on a triangular edge e - the dihedral angle actually measures the
difference of normal vectors on the two adjacent faces of e. This so called Second-Order Difference
(SOD) detector is used in [14] for the identification of sharp features, and adopted in [2] to measure
smoothness. However, SOD is not robust to the local normal variation as its support size is non-
uniform and depends on the size of triangles adjacent to an edge. For example, after blending a sharp
edge into a smooth surface as shown in Fig.3a, the SOD can hardly classify edges on the blended
surface part (the red ones) into the region embedding sharp features.

To robustly recognize the region degenerated from sharp edges on a given surface M , a new
detector measuring the frequency of smoothness signal is studied. A window function W (v, f) is first

4



Figure 3: Region degenerated from sharp edges can be detected by USSOD on the blended region (a)
where the dihedral angle based detector fails, and on the chamfered region (b) where the curvature
tensor based detector fails.

defined on a surface point v for any face f ∈ M :

W (v, f) = { 1 (d(v, f) ≤ λ)
0 (d(v, f) > λ)

(1)

where d(v, f) returns the Euclidean distance from v to the point-set of f (i.e., not the plane holding
f). By this window function, the uniformly supported second-order difference (USSOD) is given as

τ(v) =
1
λ

sup(W (v, fi)W (v, fj)(1− P (fi, fj))) (2)

with P (fi, fj) representing the inner product of unit normal vectors on two faces ∀fi, fj ∈ M . The
function τ(v) measures the maximum variation of smoothness signal on the surface around v with
a uniform support size λ. The smaller value τ(v) returns, the smoother surface is exhibited on v -
in the extreme case τ(v) = 0, the surface around v is flat. In our approach, the USSOD function
τ(v) is conducted to detect the sharp feature region Ω in the way that: ∀v ∈ M , we define v ∈ Ω if
τ(v) ≥ κ with κ as a threshold for the classification.

As been reviewed in above section, a lot of approaches employ curvature tensor to identify sharp
features. The reason why we do not use the curvature tensor in [24] is for its local support. Let’s
consider the case as shown in Fig.3b - zero curvatures are shown on the middle point of the chamfered
edge since it is flat. However, the region around this point is degraded from a sharp edge. Even if 2-
ring neighbors are employed to computer curvature tensor on this point, it is still not easy to classify
this point into the sharp region. Of course, we can increase the support of computing from 1-ring to
k-rings neighbors, but how to determine the number k of rings is by no means a simple job. Looking
back to our USSOD, the usage of a window function W makes our sharp-feature detector more robust
since 3D neighbors of each input vertex are considered instead of k-ring neighbors which are very
sensitive to the local mesh connectivity. Another reason of adopting W instead of local connected
neighbors is to make our USSOD workable on non-manifold structures. For this reason, the robust
3D curvature tensor estimator in [1] is not adopted either. The reason why we conduct the distance
from vertices to the point-sets of triangles instead of the distance between a vertex and the center of
a triangle is that, the later strategy will skip over the triangles who have points fall in the support
range λ but centers not. Here, the meaning and choice of the threshold parameter λ is more or less
the same as the threshold for identifying sharp features in the curvature-based approaches [9, 24, 32].

5



3.2. Geometry predictor

The positions of vertices in the region Ω embedding sharp feature need to be transferred to
produce the geometry of sharpness. A geometry predictor is defined here for this purpose in the
sense of least-square fitting, which is in spirit to quadric errors in the mesh simplification approach
of Garland and Heckbert [13]. The predictor repositions a vertex v ∈ M by the smoothness signals
neighboring v. Before describing the geometry predictor, the following terminology is given:

• All vertices in the non-sharp region Ω are static vertices, and a vertex in Ω is named as a sharp
vertex - after being positioned by the geometry predictor, a sharp vertex will become a static
vertex.

• If all vertices in a triangle are static vertices, this triangle will not be deformed during later
geometry predictions, so it is called a static triangle; the triangles with sharp vertices are
dynamic triangles.

An ideal position for a vertex v minimizes the difference between its position and the smoothness
signals - tangent planes. In order words, the position should minimize its distances to the tangent
planes near v. Thus, the objective function for minimization is defined as

Es =
∑

f∈Γ(v)

[Af (v − qf ) · nf ]2 (3)

where the collection Γ(v) contains the static triangles near the vertex v, qf is a point on the static
triangle f , nf is the unit normal vector of f , and Af is the area of triangle f serving as a weight to
account for the variations on irregular meshes. The definition of near will be addressed in detail in
the later section.

The position of v is requested to make Es minimal, so we need to determine the position of v by
the linear equation system

∂Es

∂v
= 0 (4)

However, the coefficient matrix of Eq.(4) is not always full-rank (e.g., when there are only one or
two triangles in Γ(v)), so the following reformulation is conducted. As a relaxed mesh is usually
expected (ref. [28]), where every vertex v on a mesh is close to the center pc of its 1-ring neighbors,
we would like to determine a solution of Eq.(4) where the distance from v to pc is shortest. Note
that pc is determined by all the neighbors of v including both static and sharp vertices. We replace
v in Es by (pc + p) with p as the position translation vector to be determined. Then, using the
singular value decomposition (SVD - which can determine a solution vector with minimal norm on
an ill-conditioned linear equation system) [31] to solve

∂Es

∂p
= 0 (5)

we obtain a solution with minimal ‖p‖ - i.e., the closest solution to pc.

3.3. Progressive surface prediction

The success of sharp edge recovering relies on the order of geometry predictors been applied to
the vertices in the sharp region Ω. Here, we expect that the order can reflect an effect of propagating
smoothness signals from outer to the inner of Ω. A thinning scheme is adopted to shrink Ω into a
skeleton Ψ which preserves the topology of sharp edges. The thinning algorithm for skeletonisation
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Figure 4: Illustration of the progressive surface prediction steps, where red circles represent sharp
vertices and white circles denote static vertices.

is similar to the thinning algorithm in digital image processing [6], but our implementation is based
on the connectivity of a mesh surface.

The conventional thinning algorithm [6] reduces a curvilinear objective to a single-pixel-wide line.
Here, we exploit the thinning algorithm to shrink the sharp region Ω into a skeleton that is single-
edge-wide. The thinning algorithm on Ω is in fact a process of conditional erosion, where the vertices
on the boundary ∂Ω of Ω are progressively removed in two steps without destroying connectivity.
Firstly, the vertices in Ω linked to a vertex v̂ ∈ Ω are marked as candidates for removal. Then
the candidates whose removal will not destroy the connectivity of Ω are removed, while others are
retained.

During the thinning of Ω, the geometry predictor repositions every removed vertex, which becomes
a static vertex after the geometry prediction. In this way, the surface normals which serve as the
smoothness signals will be propagated from the static triangles in Ω to the triangles adjacent to the
skeleton Ψ. After that, the positions of vertices on the skeleton are repositioned so we can reconstruct
sharp edges. As being illustrated in Fig.4, the positions of sharp vertices are progressively predicted
to produce sharp features.

4. Implementation Details

4.1. Surface representation

The data structure conducted in this paper follows [39]: a non-manifold object M is stored as a
collection of two-manifold mesh patches

M =
n⋃

i=0

Mi (6)

where each mesh surface patch Mi is defined as a pair (K, V ), with K as a simplicial complex
specifying the connectivity of vertices, edges, and faces (i.e., the topological graph of Mi), and
V = {v1, ..., vm} as the set of vertices defining the shape of a polyhedral patch in R3. From K, it is
straightforward for our algorithm to fetch the adjacent nodes, edges, and faces of a triangular node
in constant time. The continuities between patches are preserved by storing linkers on boundary
vertices. The vertices belonging to different patches sharing the same position are called common
vertices, whose positions should be kept consistent during the processing of meshes (see Fig.5 - the
small yellow cubes denote common vertices). Two-manifold mesh surface (either closed or open) can
also be represented in this data structure as a single patch.
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Figure 5: The reconstruction of sharp edges on a non-manifold structure which is a collection of
mesh patches previously given in Figure 1.

4.2. Sharp region classification

For a given mesh M , the uniformly supported second-order difference τ(v) is computed on every
vertex v ∈ M . For an inner vertex v ∈ Mi ⊂ M , the USSOD is only evaluated on the mesh patch Mi;
but for a boundary vertex vb, USSOD is evaluated on all the meshes containing vb and its common
vertices. To accelerate the evaluation of τ(v), we quickly filter out those faces with W (v, f) = 0 by
the following solution. The bounding box of M, [xmin, xmax]×[ymin, ymax]×[zmin, zmax], is subdivided
into I × J ×K sub-regions R(i, j, k) ⊂ R3 with an uniform width which is equivalent to the window
size λ of τ(v). The pointer of a triangle face f is stored in a sub-region R(i, j, k) if its bounding box
B(f) satisfies

R(i, j, k)
⋂

B(f) 6= φ. (7)

By this space subdivision, for the vertex v ∈ R(l,m, n), τ(v) is only computed on the triangles whose
pointers are held in R(i, j, k) with i ∈ [l − 1, l + 1], j ∈ [m− 1,m + 1], and k ∈ [n− 1, n + 1].

The choice of window size λ is not free. In order to obtain an anti-aliasing of degenerated sharp
edges, we usually choose λ between 0.5 to 1.5 times of the sampling size used in the surface-volume
conversion. Too small λ will let the window function W (v, f) fail on locally smooth regions, while
too large λ will classify a smooth vertex v into sharp-region in mistake if the sharp-region is close
to v in Euclidean distance but far from v in the Geodesic distance. From our experience, when
adopting the above range of λ on the models reconstructed from the uniform volumetric sampling,
the misclassification seldom occurs. If the sampling size in the surface-volume conversion is unknown,
λ can only be determined in a trial-and-error manner, which usually starts from λ = L for regular
meshes or λ = 1.5L for irregular meshes. The value of threshold κ indicates the user’s definition
of sharpness, we leave it as a parameter to be interactively assigned in the manner similar to [11]:
the user selects several points pi of the mesh where the surface is expected to be sharp, then the
values of USSOD, τ(pi), at these points are computed - among which min{τ(pi)} is assigned to κ. In
fact, the value of window size λ can also be suggested by the user selected sharp points pi - we can
incrementally increase λ (starting from 0.5L) until all pi have been classified into the sharp region.

Figure 6 shows a comparison of sharp region detection results on a MechPart model from the
dihedral angle based method [14] (with the dihedral angle threshold cos−1 0.75), the curvature tensor
based method [24] (with the curvature threshold 1/L and 0.25/L), and our USSOD-based method
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Figure 6: For a given MechPart model with irregular mesh (a), (b) shows the color map of its
mean curvature. The classification results from (c) the dihedral angle based method [14], (d, e)
the curvature tensor based method [24], and (f) our USSOD-based methods are compared, where
vertices denoted by red spheres are classified to be sharp.
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(with λ/L = 1.5 and (1 − κ/λ) = 0.75). L is the average edge length on M . Note that we only
compare the vertex classification but not the sharpness recovering result here. The mesh on the given
MeshPart model is generated from a distance-field by the method of [35] in the dynamic remeshing
sense. To demonstrate the advantages of USSOD, we adopt different edge-length criteria on the
left and the right parts of the model and also add some noises on the aliasing region - so that the
irregularity is introduced (see Fig.6a). Fig.6b gives the color map of mean curvatures on the surface
- red represents the maximal value while blue denotes the minimum. On the result shown in Fig.6c,
the edges with its dihedral angle greater than cos−1 0.75 are found and presented by bold lines -
the scheme fails on the smoothly blended regions (i.e., the left part of given model). Fig.6d gives
the sharp region classification result with threshold 1/L. The vertex classification scheme conducted
here follows [24]: with a threshold T , a vertex v is considered to be smooth only if 1) |κmin| ≤ T
and |κmax| ≤ T , or 2) |κH | = min(|κmin|, |κmax|, |κH |) (with κH the mean curvature at v); otherwise,
v is a sharp-region vertex. A lot of sharp regions are incorrectly classified to be smooth in Fig.6d.
After relaxing the lower bound of curvature for sharp features from 1/L to 0.25/L, more vertices are
recognized to be sharp (see Fig.6e). However, the ones locally flat (e.g., the vertex been pointed out
in Fig.6e) are unavoidable missed. Although the anisotropic diffusion introduced in [24] may fix an
initial misclassification during the mesh evolution, we cannot adopt this technique in our approach
as we need to have a correct classification to serve for our non-iterative sharpening approach. The
result from our USSOD-based scheme in Fig.6f can elegantly find all regions degenerated from sharp
edges.

4.3. Geometry predictor

In the geometry predictor (Eq.(3)), Γ(v) contains the static triangles fi near the vertex v. In
detail, the definition of near is

d(v, fi) ≤ αλ (8)

where d(v, f) returns the Euclidean distance from v to the point-set of fi and α is an coefficient for
the support size of near. In our implementation, the value of α is iteratively increased starting from
0.5 with step 0.1 until the number of static triangles satisfying the above condition is non-zero. All
static triangles falling in this range are inserted into Γ(v). With the static triangles in Γ(v), the
equation (5) can then be derived into

CX = B (9)

with

C =




∑
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∑
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z
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 ,

where ni represents the unit normal of a static triangle fi in Γ(v), qi is the center of fi, Ai is the area
of fi, and pc is the center of 1-ring neighbors of the vertex v. When the vertex v is on the boundary
of a surface patch in a non-manifold model, since the position of vb is commonly determined by all
surface patches meeting at this vertex, pc is determined by the average of the vertices neighboring
to both v and its common vertices.

The SVD solution of X is the translation vector p of v from pc (i.e., the new position of v given
by the geometry predictor is (pc + p)). As the geometry predictor is defined by tangent planes,
nearly parallel tangent planes will lead to a degeneration case with the norm of translation vector p
extremely long. This is usually generated by the normal vectors with noises embedded, which should
be prevented. Thus, if the translation vector p have its magnitude greater than 4L (L is the average
edge length on M), we just truncate p by 4L.
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4.4. Skeletonisation

The thinning algorithm progressively moves vertices from the boundary of Ω into Ω. Our im-
plementation is based on the pseudo-code listed in Appendix. To efficiently detect vertices on the
boundary of Ω, a list ∂Ωnext is introduced to maintain the new boundary vertices formed by removing
vertices from Ω. It is easy to find that in general cases the numbers of 1-ring neighbors to any vertex
is less than a small constant number, so the computational time of Algorithm Thinning(Ω) is in
linear complexity.

We need a method to efficiently detect whether removing a vertex from Ω will break its connec-
tivity. The local connectivity of Ω after removing v is detected by computing the local transitive
closure. The sharp vertices in 1-ring neighbors of v are denoted by Θ(v). An adjacency matrix A
is first constructed: for two vertices vi and vj in Θ(v) (where i and j are local indexes of vertices
in Θ(v)), if there is a triangle edge in M linking them, the corresponding coefficients aij and aji in
A are set to one; otherwise, zeros are given. After that, the transitive closure T of the local graph
defined by A is computed by the Warshall’s algorithm [33]. Then, the following proposition can be
derived on T for detecting the local connectivity of Ω after removing v.

Proposition For the transitive closure T defined on Θ(v), if tij = 0 (∀tij ∈ T ), the local
connectivity of Ω is destroyed by removing v from Ω.

Proof: For the definition of a transitive closure, we have known that if tij = 0 (∀tij ∈ T ), it means
that there is no path between vi and vj on the original graph defined by A. However, if the vertex v
is kept as a sharp vertex, all pairs of vertices in Θ(v) could have a path reaching each other through
v (i.e., they are locally connected). Thus, if there is any zero element found in T , the removal of v
from Ω will break the local connectivity of Ω.

Q.E.D.

In order to remaining the linkage between Ω and the boundary of a surface patch, the removal of
sharp vertices on the boundaries of any Mi ⊂ M disallowed; also to prevent the shrinkage of skeleton
Ψ on its tail vertices, the vertex v with only one sharp vertex in its 1-ring neighbors Θ(v) must be
retained in Ω.

Algorithm Thinning(Ω) returns a shrunken Ω containing only the vertices on its skeleton Ψ.
However, as shown in Fig.7a, local closures may be exhibited, we then conduct the following filter
to open local closures:

• Any edge e ∈ M has both its vertices on Ψ is defined as a sharp-edge candidate;

• If all candidate are defined as sharp edges, some local closures will be formed near joints of Ψ
(e.g., see Fig.7a); thus, for any triangle has three sharp-edge candidates, only the two adjacent
to the vertex with greatest inner angle are set to sharp edge - the local closures are opened
(see Fig.7b).

After applying this filter on the returned Ω from Algorithm Thinning(Ω), we obtain the skeleton
Ψ that is single-edge-wide.

4.5. Final contouring

The vertices on the skeleton Ψ are classified into branch vertices and joint vertices. For a vertex
v ∈ Ψ, if the number of its adjacent sharp edges is greater than two, v is a joint vertex ; otherwise,
it is a branch vertex. The sharpening of surface on the skeleton vertices is finished in two steps:

• All branch vertices are first repositioned by the geometry predictor, after which all branch
vertices are converted into static vertices;
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Figure 7: Local closures are formed in (a) after thinning Ω, and need to be opened into a final
skeleton (b). The red small cubes represent the sharp-vertices on skeleton, the blue cubes denote the
sharp-vertices been removed during thinning, and the bolded black edges present the sharp edges.

Figure 8: Example I - a heterogeneous model in implicit representation (a), where different colors
denote different materials are filled at the point - the method presented in [35] is conducted to convert
the field representation into a non-manifold mesh surface (the left part of (c)); after detecting sharp
regions, the sharp edges are reconstructed, where the red cubes in (b) are the vertices on the skeleton
of thinning and the blue cubes are the ones removed from Ω during thinning. Sharp corners on the
boundaries are well recovered (c).

• All joint vertices are finally positioned by the geometry predictor.

By isolating the sharpening of branch vertices and joint vertices, when computing the position of a
joint vertex, the triangles adjacent to earlier branch vertices also contribute to the position of the
joint vertex - this makes the sharpness at joint vertices better.

During the final contouring, the geometry predictor given in Eq.(5) and Eq.(9) is still exploited
to reposition vertices on the skeleton consecutively but with little modification. First of all, the
relaxation requirement for a vertex v on the final skeleton Ψ is different from the one used in
thinning: here, v is expected to be located at the average position of its 1-ring neighboring skeleton-
vertices instead of all its 1-ring neighbors, so pc conducted in Eq.(9) is different. Secondly, the set of
static triangle, Γ(v), is adjusted. For a branch vertex vb, since its final position needs to consider the
surfaces from both sides of the skeleton, we set the longest distance, dmax, between v and its 1-ring
neighbors as the support size of Γ(vb), so Γ(vb) holds all the static triangles with its distance to v
not greater than dmax. Also, by the similar reason, the support size of Γ(vc) for a joint vertex vc is
changed in the same manner.

5. Results and Discussion

Our incremental restoration algorithm has been tested on several models, which are constructed
either directly from a volume model or through a surface-volume-remeshing conversation routine.
To demonstrate the functionality of our algorithm, we measure the Hausdorff distance (Emax) and
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Figure 9: Example II - MechPart: the sharp edges are randomly destoried on the given model with
irregular meshes, which are successfully recovered.

the mean distortion (Emean) between the original model and the remeshed model before and after
the restoration of sharp edges. All errors are computed by the publicly available tool [8]. We have
observed that our algorithm can significantly reduces the errors (both Emax and Emean) in several
seconds when running on a low-end PC. The computational statistics are listed in Table 1, where all
errors are reported as percents of the bounding-box diagonal. For the first and the last examples,
errors are missing because we did not have an original surface to compare with.

Our first model is a non-manifold object, which has previously been shown in Fig.2. The surface
patches are directly constructed from an implicitly represented heterogeneous model (i.e., field-based
modelling - see Fig.8a), where different colors represent that different material stuffs are filled. The
surface of a heterogeneous model is usually non-manifold. On the resultant model from our sharp
edge restoration, the sharpness is well reconstructed (see Fig.2c, 5, and 8c). The second example
(previously given in Fig.6) is a mechanical part which is usually adopted as a benchmark for testing
the surface reconstruction results. In order to demonstrate the functionality of processing irregular
meshes, the left and right parts of the mesh model exhibit different resolutions. Our recovering result
is given in Fig.9. The third and fourth examples are conducted to demonstrate the ability of our
approach for recovering curved sharp edges - the results are shown in Fig.10. All above examples
are CSG-like. Therefore, in Example V and VI, the restoration of sharp edges on free-from surfaces
are tested. As shown in our results (Fig.11 and 12), the sharp features are successfully recovered on
the free-form surface. More testing examples on freeform objects are given in Fig.15 at the end of
this paper.

Another interesting investigation concerns the error reduction on a given model with different
sampling rates. Theoretically, our sharp feature restoration algorithm should in some degree increase
the accuracy of an feature-insensitive sampled model no matter in which frequency it is sampled;
also, with the increase of sampling density, the model produced by our approach is expected to
give less error. The testing results from our approach follow these presumptions. Four different
sampling densities are chosen to convert the original model into a volume representation, which is
then converted into a mesh model by the method in [35]. After that, the mesh models are processed
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Figure 10: Example III & IV - Anchor Plate (left) and Knob (right): the given model (top row),
and the resultant model (bottom row) with curved sharp edges restored.

Figure 11: Example V - Flower (a freeform model): the given model (top row) and the model with
sharp edges recovered (bottom row).
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Figure 12: Example VI - Foot (a freeform model): the given model (top row) and the model with
sharp edges recovered (bottom row).

by our algorithm to reconstruct sharp edges. Figure 13 shows the results of our tests on the MechPart
example (a relative regular model) and the Flower example (a free-form object).

We can easily detect the sharp curves on the resultant meshes through the dihedral angles since
the sharpness geometry has been recovered. For a triangular edge, if the inner product of the unit
normal vectors on its adjacent two faces is less than (1− κ/λ), the edge is identified as a sharp line
segment. The resultant sharp curves on the example I-V are shown in Fig.14.

5.1. Limitations

Similar to other sharpening algorithms, the feature that blends smoothly into a flat area may be
miss-sharpened by our approach if the sampling rate is not able to generate enough great normal
variations around aliasing regions. Also, some unwanted sharpening will be given on small radius
blends (e.g., in Fig.15b and 15c). These small features will effect the sharp region classification -
so that unsatisfactory results may be generated. In fact, during our tests, determining a best value
for λ/L and κ/λ is by no means a trivial work. We are planning to develop some more robust
and adaptive sharpness identification techniques that are based on higher order differences on given
surfaces (e.g., the gradient of normal variation). The robust 3D curvature tensor estimation method
presented in [1] will also be considered.

Our approach will have difficulty to distinguish the sharp-regions when they are close to each other.
More specifically, if two sharp regions are directly linked by some triangle edge, undesired sharp
corners will be generated on the sharp curves by our approach. A better sharp-region recognition
method needs to be investigated to solve this problem.

At last, for the edges that are correctly placed at sharp features showing no aliasing error, we
cannot distinguish them from the aliased features. Thus, they will be relocated even if there is no
aliasing error on them. The development of a procedure to avoid processing the areas with no aliasing
errors is also considered as one of our future research.
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Figure 13: The analysis of accuracy effected by different sampling rates on the ”MechPart” and
”Flower” examples - both are tested in four different sampling densities: low - sampled at 64 x 64 x
64; medium - the model is sampled by a 128 x 128 x 128 grid; high - 192 x 192 x 192; and in super
resolution - 256 x 256 x 256 samples are conducted.

Figure 14: Sharp curves extracted on the result models by using dihedral angle, where the red curves
in example I are boundaries of assembled patches.
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Figure 15: More testing results on freeform models: a) the ball-joint reconstructed from a signed
distance-field, (b) the Venus model, and (c) the Isis model.

6. Conclusion

In this paper, we present an incremental approach for recovering sharp edges on a triangular mesh
from feature-insensitive sampling, which embeds noises and shape approximation errors around the
sharp features. With our method, either chamfered or blended sharp edges on an input triangular
mesh could be successfully reconstructed. As a non-iterative method, our approach could be finished
in a very short time comparing to those diffusion-based sharp-feature reproducers. The region
embedding sharp features is first identified through normal variations. The positions of vertices
in the sharp-feature embedded region are then progressively predicted from outer to the inner of
sharp regions so that sharp edges could be recovered in the sense of region shrinking. Examples
have been tested by our implementation to demonstrate the functionality of the approach, and the
limitations of this method have been discussed.
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Appendix

The pseudo-code of thinning algorithm is given as below.

Algorithm Thinning(Ω) {
Construct the boundary ∂Ω of Ω;
do {

∂Ωnext ⇐ φ;
for (each vertex v in ∂Ω) {

if (the removal of v will not locally open Ω) {
Position v by geometry predictor ;
Remove v from ∂Ω and Ω;

for (each vertex vL linked to v)
if ((vL in Ω) AND (vL NOT in ∂Ω))

Insert vL into ∂Ωnext;
}

}
∂Ω ⇐ ∂Ω + ∂Ωnext;

}while(∂Ωnext 6= φ);
return Ω;

}
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