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Abstract

Designing cooling channels for the thermoplastic injection

process is a very important step in mold design. A conformal

cooling channel can significantly improve the efficiency and

the quality of production in plastic injection molding. This

paper introduces an approach to generate spiral channels for

conformal cooling. The cooling channels designed by our al-

gorithms has very simple connectivity and can achieve effec-

tive conformal cooling for the models with complex shapes.

The axial curves of cooling channels are constructed on a

free-form surface conformal to the mold surface. With the

help of boundary-distance maps, algorithms are investigated

to generate evenly distributed spiral curves on the surface.

The cooling channels derived from these spiral curves are

conformal to the plastic part and introduce nearly no reduc-

tion at the rate of coolant flow. Therefore, the channels are

able to achieve uniform mold cooling. Moreover, by having

simple connectivity, these spiral channels can be fabricated

by copper duct bending instead of expensive selective laser

sintering.

Keywords: conformal cooling, spiral channels, free-form

shape, boundary-distance map, injection molding.

1 Introduction

As a common manufacturing process, plastic injection mold-

ing has been widely used to fabricate a variety of products.

During a plastic injection molding cycle, the plastic part and

the mold must be cooled to room temperature so that the

molded part can be solidified and with its shape maintained.

A substantial portion of the total molding cycle (e.g., as much

as 80%) could be required for cooling. To improve the effi-

ciency, cooling channels are usually integrated into the mold.

In general, conventional cooling channels in simple shapes

are fabricated by drilling straight-line holes. These usually

lead to non-uniform mold cooling (ref. [1]). Without attain-

ing the uniformity of surface temperature in a mold, the qual-

ity of plastic parts must be impaired by undesired defects,

such as part warpage, sink mark, and differential shrinkage,

etc. In addition, non-uniform cooling also increases the cool-

ing time. In earlier studies [2, 3], effective cooling by using
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the conformal cooling system has been proved on parts with

relative simple shapes. However, these approaches cannot be

used for the products with free-form shapes, even after ap-

plying a feature-decomposition technique as proposed in [4].

1.1 Motivation

The work presented in this paper is motivated by automating

the design process of conformal cooling channels for prod-

ucts with free-form shapes. Recently, we presented an ap-

proach in [5] to automatically generate circuit-like confor-

mal cooling channels. The approach starts from offsetting

the mold surface into a working surface, upon which a cen-

troidal Voronoi diagram is used to help generate the cooling

circuits. However, as the connectivity of a cooling circuit

generated by [5] is complicated, the flow rate of coolant and

also the temperature in the channels are highly non-uniform.

Pumping expenses will thus have to be drastically increased

to improve the efficiency of heat transfer and assure uni-

form coolant temperature. Furthermore, the fabrication of

such cooling system with complex connectivity must be con-

ducted by the additive manufacturing technique such as se-

lective laser sintering (SLS), which is very expensive. Our

new approach proposed in this paper aims at solving these

problems by designing spiral cooling channels.

A number of factors must be considered while designing

cooling systems for plastic injection molding, such as layout

and connections of channels, composition of coolant, pres-

sure drop of coolant and runner system, etc. In this work,

we focus on the 3D shapes of conformal cooling channels.

Specifically, we investigate algorithms to generate spiral con-

formal cooling channels so that heat transfer in the cooling

system is optimized and fabrication costs are reduced. Simi-

lar to our prior work in [5], the axes of cooling channels are

given on the working surface that is an offset of mold sur-

face. Therefore, the shape of cooling channels is assured to

be conformal to the mold surface. Uniform conformal cool-

ing can be achieved as long as the temperature difference of

the coolant between the inlet and the exit is small enough to

be neglected. The efficiency of heat transfer is much higher

in convention than conduction, and increases dramatically in

turbulent flow. In particular, we focus on how to develop

smooth spiral channels on the working surface conformal to

the mold surface so that the turbulent flow is guaranteed.
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Figure 1: Overview of the pipeline for generating spiral and conformal cooling channels in the upper mold (right column) and

the lower mold (left column).

1.2 Designing spiral and conformal channels

Our design methodology of spiral and conformal cooling

channels can be illustrated by Fig.1. Given a cell-phone

model to be fabricated by plastic injection moulding (see

Fig.1(a)), offset surfaces are firstly constructed around it.

The conformal cooling is accomplished by generating cool-

ing channels on the offset surfaces. Part of the model’s off-

set surface falling in the upper mold is used as the work-

ing surface for generating cooling channels for the upper

mold (see Fig.1(b)). Taking this upper mold as an exam-

ple, an enhanced Dijkstra algorithm is applied on the work-

ing surface to construct a piecewise linear approximation of

the boundary-distance map (BDM) and its consequent iso-

contours. Fig.1(c) shows the color map of its BDM and the

iso-contours in black curves. The iso-contours are all in a

simple topology (i.e., forming only one loop at a fixed iso-

value). Our idea is to transform this set of iso-contours into

a spiral curve with approximately even spacing (as shown

in Fig.1(d)), in order to achieve uniform cooling. Finally,

the spiral curves are served as axes to generate channels by

sweeping a sphere along the curves (see Fig.1(e)).

However, the contours of BDM on the working surface of

the lower mold are in more complex topology – see Fig.1(f),

where some iso-contours have multiple loops. This brings in

difficulty to generate a single spiral curve covering the whole

working surface. To solve the problem, we develop an al-

gorithm in this paper to first decompose the working surface

into regions, such that each region is governed by a single

spiral curve with nearly uniform space – see Fig.1(g) for an

example. As a result, three spiral channels are generated on

the working surface in the lower mold (see Fig.1(h)). In our

approach, all the algorithms and computation are taken on

the free-form surfaces represented by triangular meshes as

shown in the middle of Fig.1.

1.3 Related Work

Designing and analyzing the conformal cooling channels for

injection moulding have been studied for many years (e.g.,

[1–9]). The systems developed in [1, 2] involve a mathemat-

ical statement of the conformal cooling condition. Based on

the criterion defined in [2], we developed a method to ap-

proximate the typical dimensions of cooling channels in our

prior work [5]. This method will also be used to determine

the dimensions of cooling channels in this paper. Many de-

signers adopt the strategy introduced in [4] to design the final

cooling system by synthesizing the sub-systems defined on

each of the recognized features of plastic parts. However, as

the feature decomposition in general is a hard problem, this

strategy is difficult to be realized on molds with freeform sur-

faces. Alternatively, Park and Pham [3] proposes to decom-

pose the regions according to the temperature distribution af-

ter the filling stage in molding simulation. Nevertheless, the

computation of this approach may converge slowly on mod-

els with freeform shapes. Our region decomposition method

presented in this paper is purely based on the geometric in-

formation – BDM, which can be computed efficiently. A re-

cent effort to automate the design of cooling system is made

in [9]. However, the channels in their work are designed in
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the zigzag shape, which can significantly reduce the flow rate

of coolants.

In our work, all the channel axes are created on the offset

surface surrounding the given model. This offset surface is

assigned as the working surface. The grown offset surface

of a solid model can be computed according to the mathe-

matical definition given in [10]. Although the mathematical

definition is compact, offsetting a freeform surface is not an

easy job. We adopt the narrow-band signed distance-field

(ref. [11, 12]) to generate the intersection-free offset surface

for our cooling channels. Note that, the working surface

must be intersection-free to prevent ill-topology on the ax-

ial curves of channels.

In the thread of research in CNC machining, spiral tool-

path has been paid a lot of attention in the past (ref. [13–16]).

Bieterman and Sandstrom [13] presented a method to use the

solution of an elliptic partial differential equation (PDE) to

morph a point (called center point) to the boundary of the

shape. The spiral curves can only be generated on star-

shaped polygons. In the work of Yao and Joneja [14], de-

formed Archimedean spirals are placed on the medial axis,

and a few contour parallel offset curves are added near the

boundary to connect all elements to a single tool path. To

solve the problem of self-intersection and the generaliza-

tion of shape to be processed, Held and Spielberger [15]

investigated a method to generate spiral tool-path with the

help of medial axis of a 2D polygon. None of these ap-

proaches consider the problem of generating spiral curves

on free-form surfaces. Recently, a method is presented in

[16] to generate iso-parametric tool-paths on surfaces rep-

resented by point clouds. However, only direction parallel

tool-paths and contour parallel tool-paths are considered. In

summary, an approach involving region decomposition for

generating nearly-equidistant spiral curves on free-form sur-

faces remains an open problem.

1.4 Contributions

Our work has the following technical contributions.

• An efficient algorithm is developed to generate smooth

spiral curves on free-form surfaces, where the spiral

curves are governed by an approximated boundary-

distance map (BDM) and have approximately uniform

spacing.

• By analyzing BDM, a decomposition algorithm is in-

vestigated to segment free-form surfaces into regions

that can be covered by contours of BDM with simple

topology.

By incorporating the above two algorithms, a new design

pipeline is investigated to generate spiral cooling channels

for products with free-form shapes. Functionality of this ap-

proach will be demonstrated by experimental results and case

studies.

Our paper is organized as follows. After introducing some

preliminary terms in section 2, section 3 presents how to

transform iso-contours of BDM into spiral cooling axes with

Table 1: Notation

Items Description

lA The shortest distance from cooling channel wall to

mold surface

lB The distance from cooling channel wall to the mid-

dle of two adjacent channels

lm Distance between the central lines of cooling chan-

nels to the mold surface

lp Half the plastic part thickness

W Pitch distance between central lines of channels

D Cooling channel diameter

ρm, ρp Density of the mold and the plastic part

cm, cp Specific heat of the mold and the plastic part

Km Thermal conductivity of the mold

h Heat transfer coefficient

Tmelt Plastic melt temperature

T A
e ,T

B
e Plastic ejection temperature at points A and B

tcycle Injection cycle time

Figure 2: Typical dimensions of cooling channels in the heat

transfer model, where D is the diameter of cooling channels

and lp is half thickness of a plastic part. Details of notation

can be found in Table 1.

even space. Section 4 describes BDM-based surface decom-

position algorithm. Experimental results and case studies are

shown in section 5. Finally, the paper ends with the conclu-

sion section.

2 Preliminary

2.1 Physical model

This section briefly describes a method to use the thermal dy-

namic model to determine the geometric parameters of con-

formal cooling channels. More details about this physical

model can be found in our prior work [5].

Considering a local cooling region in a cross-section of

two adjacent cooling channels (as illustrated in Fig.2), a sim-

plified formula for evaluating the temperature difference of

mold surface at points A and B can be derived as

T B
m − T A

m =
ρpcplp

tcycleKm

[(Tmelt − T B
e )lB − (Tmelt − T A

e )lA]. (1)

3



The notation details are listed in Table 1. Uniform cooling

can be obtained by controlling the mold temperature differ-

ence (i.e., T B
m − T A

m). According to the practical knowledge

in cooling system design, the temperature difference should

be within 10◦C for producing parts with high accuracy – that

is, T B
m − T A

m ≤ 10◦C. The two parameters, lA and lB, can be

formulated by the typical dimensions for the cooling channel

configuration as

lA = lm −
D

2
, lB =

−D +
√

4l2m +W2

2
, (2)

where D is the diameter of cooling channel, W is the pitch

distance between the axes of cooling channels, and lm is the

depth of cooling axes. To maintain a relative uniform tem-

perature within the mold during an individual injection cycle,

the value of lm must be selected less than
√

tcycleKm/ρmcm.

However, the mechanical stiffness of a mold may be too weak

to withstand a high pressure from putting cooling channels

too close to the mold surface. As a result, the value of lm
is assigned as a value slightly smaller than

√

tcycleKm/ρmcm

(e.g., with 10% reduction). Substituting Eq.(2) into Eq.(1)

can lead to a value of W after choosing a diameter D of the

channels according to the pump used in the cooling system.

The rest of this paper will focus on how to generate the spi-

ral curves with uniform spacing distance W on the working

surface, which is a grown offset from the mold surface with

distance lm.

2.2 Boundary-distance map

Without loss of generality, we assume that the working sur-

face used to generate spiral cooling channels is two-manifold

and in the form of a triangular mesh. A triangular mesh M is

usually represented as a complex C = (V,E,F ), whereV, E

and F are sets of vertices, edges and triangular faces respec-

tively. Information about the local connectivity, such as the

left/right faces of an edge, the ordered edges inside a face,

the edges linking to a vertex, is also stored together with the

complex.

Definition 1 ∀p ∈ S , dB
g (p) gives the geodesic distance

from p to the boundary, ∂S , of the surface S as: dB
g (p) =

inf∀q∈∂S {dg(p,q)}, where dg(p,q) denotes the geodesic dis-

tance from the point p to the point q on S .

Definition 2 A boundary-distance field is defined on every

surface point, p ∈ S , as dB
g (p).

The geodesic distance between two points on a differentiable

surface can be evaluated by the first fundamental form [17].

However, it is impractical to compute a boundary-distance

field in this way. Our algorithms presented in this paper are

based on a discrete version of the boundary-distance field.

Definition 3 A boundary-distance map (BDM) is a set of

scalars defined on the vertices of a triangular mesh M such

that the scalar, d̄B
g (v), at a vertex v specifies the approximate

geodesic distance to the boundary of M.

The prior research in the computer graphics community

Figure 3: An illustration about adding virtual pathes (in gray)

into triangles: (left) a given triangle, (middle) a 1-refined tri-

angle with six virtual paths inserted, and (right) an example

of 3-refined triangle.

has investigated efficient techniques for computing the ex-

act/approximate geodesic distances on piecewise linear sur-

faces (ref. [18–21]). Here, we adopt a simple approxima-

tion akin to [22] to evaluate BDM on the triangular mesh M,

which works well on triangular meshes with relative regular

triangles.

First, virtual paths are constructed on each triangles by re-

fining each existing edge – a graph consists of vertices and

edges of M and the virtual paths is called k-refined graph

of M if each edge on M has k virtual nodes inserted. Ex-

amples of different k-refined graph on a triangle is shown in

Fig.3. Then, using graph nodes on the boundary edges of

M as sources, Dijkstra’s algorithm can be applied on the k-

refined graph of M to compute a more accurate approximate

of BDM. Obviously, when k → ∞, the approximation con-

verges to the exact geodesics but with the cost of computing

time. We use 3-refined graphs in all the examples presented

in this paper.

Definition 4 For a triangle T with three vertices vi, v j

and vk, the value of BDM at p ∈ T is defined as d̄B
g (p) =

αd̄B
g (vi) + βd̄

B
g (v j) + (1 − α − β)d̄B

g (vk) with (α, β) being the

barycentric coordinate of p in T .

By this, BDM is defined throughout the working surface M,

which is employed to govern the decomposition and the spi-

raling in the following sections. Note that, all the computa-

tions in the rest of this paper are taken on this piecewise-

linear representation of BDM, d̄B
g (p). The error analysis

between exact and approximate geodesic distance has been

taken in prior research (ref. [19, 20]), which is beyond the

scope of this paper. In short, when the number of triangles

on M goes to infinity, d̄B
g (p)→ dB

g (p).

3 BDM-Based Spiral Channel Gener-

ation

In this section, we present how to generate spiral curves from

the iso-contours of BDM with equal distance – i.e., W for the

generation of conformal cooling channels. The topology of

surface region we are working on is assumed to be ω-simple.

Definition 5 For the BDM of a surface M, if all iso-

contours generated by the stepwise threshold iω (∀i ∈ Z)

have only one loop, the topology of surface M is named as
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Figure 4: BDM guided spiraling – an illustration about how

to spiral two iso-contours: Ci and Ci+1. The starting point

for spiraling, s0, and its reference point, sr
0
, are displayed in

green. The red curve is the result of spiraling.

Figure 5: BDM guided blending for spiraling: (left) zigzag

distortion can be caused by the error of geodesic approxima-

tion, and (right) smooth spiraling is generated by our drag-

ging algorithm.

ω-simple in terms of BDM.

3.1 Spiraling between contours

Without loss of generality, we focus on spiraling between

two iso-curves Ci = {p | d̄
B
g (p) ≡ iω} and Ci+1 = {p | d̄

B
g (p) ≡

(i + 1)ω} below. Spiraling between other two neighboring

iso-curves can be realized in the same way.

• First, given a point s0 on Ci to serve as the starting point

for spiraling, its closest point on Ci+1, sr
0
, is found. This

pair of points will be used as the starting points for spi-

raling from Ci+1 to Ci+2.

• Second, Ci and Ci+1 are sampled into n points uniformly

as s j ∈ Ci and sr
j
∈ Ci+1 ( j = 0, · · · , n − 1) – see the

illustration shown in Fig.4. The value of n is determined

by max{72, ‖Ci‖/lavg}, where ‖ · ‖ denotes the length of a

curve and lavg is the average length of edges on M. Note

that the number of samples used for spiraling between

different iso-curves could be different.

• Third, the set of points, ŝ j = ξ(s j, s
r
j
, j/n), are generated

by blending s j and sr
j
, where the function ξ(· · ·) defines

the way of blending with the parameter j/n. Linking the

blended points, ŝ j, consecutively forms the spiral curve

between Ci and Ci+1.

Repeating these steps can generate all the spiral curves be-

tween iso-curves of a BDM on the surface with ω-simple

topology.

Now we discuss how to define the blending function,

ξ(· · ·). The simplest one is linear interpolation between s j

Table 2: Location Detection by Barycentric Coordinate

(α, β) Location in the triangle v
f

1
v

f

2
v

f

3

α + β = 1 and β , 1 On edge v
f

1
v

f

2

α = 0 and β , 0 On edge v
f

2
v

f

3

β = 0 and α , 1 On edge v
f

3
v

f

1

and sr
j
as: ξ(s j, s

r
j
, t) = (1− t)s j + tsr

j
. However, a point gener-

ated in this way could run away from the input surface when

the region between s j and sr
j

is highly curved. As a result,

the spiral curves generated in this way are not located on the

surface. A more sophisticated method needs to be developed

for blending two points on the surface, and the blending is

governed by BDM.

3.2 Blending on surface

As the purpose of blending is to progressively move the

points, s j ∈ Ci, towards the points, sr
j
∈ Ci+1, an ideal blend-

ing can be obtained by 1) computing a geodesic curve be-

tween s j and sr
j

on the working surface M and 2) searching

a point ŝ j on the geodesic curve such that geodesic distance

from ŝ j to s j is t of the geodesic curve’s length (where t = j/n

is used in our spiraling algorithm). However, computing an

exact geodesic curve on a piecewise linear surface is time-

consuming (ref. [20]) and the approximate solution can lead

to non-smooth result (see Fig.5(a)). We develop an algorithm

below to achieve a good tradeoff between the speed and the

accuracy.

The basic idea of our method is to drag the point s j along

the working surface M to a place which has the BDM value

(i+
j

n
)ω. The point sr

j
serves as the dragger during this move-

ment. Specifically, the dragging algorithm is developed us-

ing barycentric coordinates. For a current position, sc
j
, of the

point s j, a triangle face f holding the point sc
j

is always kept

during the dragging. Our algorithm focuses on how to move

the point inside f to a new position.

First of all, the barycentric coordinate (α, β) of sc
j

in f is

computed so that

sc
j
= f(α, β) = αv

f

1
+ βv

f

2
+ (1 − α − β)v

f

3

with v
f

1
, v

f

2
and v

f

3
being the three vertices of f and f(· · ·)

returning the position of a point in f determined by barycen-

tric coordinate. Whether the point sc
j

is located at the bound-

ary of f can be determined by the conditions listed in Table

2. Note that, in our discrete BDM computation (Definition

4), the field value at an arbitrary point on the surface is also

computed by using barycentric coordinate and the field val-

ues stored at the vertices, that is

d̄B
g (sc

j
) = αd̄B

g (v
f

1
) + βd̄B

g (v
f

2
) + (1 − α − β)d̄B

g (v
f

3
).

By this, it is easy to prove the following proposition.

Proposition 1 For three points, q, pa and pb, on the same

triangle f , if q = (1 − t)pa + tpb, their BDM values satisfy

d̄B
g (q) = (1 − t)d̄B

g (pa) + td̄B
g (pb). (3)
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Proof. For

pa = αav
f

1
+ βav

f

2
+ (1 − αa − βa)v

f

3
,

pb = αbv
f

1
+ βbv

f

2
+ (1 − αb − βb)v

f

3
,

we also have

d̄B
g (pa) = αad̄B

g (v
f

1
) + βad̄B

g (v
f

2
) + (1 − αa − βa)d̄B

g (v
f

3
),

d̄B
g (pb) = αbd̄B

g (v
f

1
) + βbd̄B

g (v
f

2
) + (1 − αb − βb)d̄B

g (v
f

3
).

When q = (1 − t)pa + tpb, by the definition of barycentric

coordinate, we can obtain

q = αv
f

1
+ βv

f

2
+ (1 − α − β)v

f

3

with
(

α

β

)

= (1 − t)

(

αa

βa

)

+ t

(

αb

βb

)

. (4)

By Definition 4,

d̄B
g (q) = αd̄B

g (v
f

1
) + βd̄B

g (v
f

2
) + (1 − α − β)d̄B

g (v
f

3
). (5)

Substituting Eq.(4) into Eq.(5),

d̄B
g (q) = ((1 − t)αa + tαb)d̄B

g (v
f

1
)

+((1 − t)βa + tβb)d̄B
g (v

f

2
)

+((1 − t) + t − ((1 − t)αa + tαb)

−((1 − t)βa + tβb))d̄B
g (v

f

3
)

= (1 − t)d̄B
g (pa) + td̄B

g (pb). �

This proposition will be used to derive the terminal condition

of dragging below.

Secondly, a plane P is formed by the vector sc
j
sr

j
and f ’s

normal vector n f , where P passes through the point sc
j

and

has the normal vector as sc
j
sr

j
×n f . The intersections between

P and the edges of f are computed. Two configurations of

intersections can be found.

• When the point sc
j

is located on an edge e, the intersec-

tion not on e is used as the ghost for dragging.

• When sc
j

is not on the boundary of f , the intersections

are located at different sides of sc
j
. Among them, the one

located at the same side of sr
j

is selected (see Fig.6 for

an illustration).

The barycentric coordinate of the ghost, (αg, βg), is also com-

puted.

Now we can search for an optimal point that gives the

BDM value as (i +
j

n
)ω along the line between sc

j
and its

ghost on the face f . The search is conducted in barycentric

coordinates. Specifically, we are looking for a point with the

barycentric coordinate

(αopt, βopt) = ((1 − t)α + tαg, (1 − t)β + tβg), (6)

which has

d̄B
g

(

f(αopt, βopt)
)

= (i +
j

n
)ω. (7)

Figure 6: An illustration of the dragging taken inside a trian-

gle.

According to the property introduced in Proposition 1 and

Eq.(7), the value of t can be determined by

(1 − t)d̄B
g (sc

j) + td̄B
g (f(αg, βg))) = (i +

j

n
)ω. (8)

When t < 1, the optimal position of moving sc
j
onto the spiral

curve has been found as f(αopt, βopt) with (αopt, βopt) deter-

mined by Eq.(6). When t > 1, it means that the optimal point

cannot be found in the triangle f . The edge, eg, that provides

the ghost point for dragging in the triangle f will be used to

determine the next triangle to be examined in the next step

of dragging. Specifically, the other face adjacent to eg will

be used to search for the point which gives the target BDM

value (i +
j

n
)ω. The traversal on the connected triangles is

repeated until the optimal point is found. An example result

can be found in the right of Fig.5.

4 BDM-Based Decomposition

Iso-contours of the BDM are generated on the working

surface, M, to analyze whether M can be covered an

intersection-free spiral curve with nearly even distances – the

distance between neighboring spirals is expected to be a con-

stant. If this cannot be satisfied, M must be decomposed into

smaller regions to be covered by spiral curves. This section

presents the methods for 1) analyzing iso-contours and 2) de-

composing M by the topology information of iso-contours.

4.1 Topological analysis by iso-contours

Starting from the boundary, the iso-curves with constant val-

ues of BDM can be generated on the working surface M one

by one. Specifically, for generating the i-th iso-contour with

the value of BDM as d̄B
g (p) ≡ iω with i ∈ Z, the BDM values

on every vertices are compared with the iso-value (i.e., iω).

For a triangle f with its vertices’ BDM-values both smaller

and equal/greater than iω, the iso-curve in this triangle can

be approximated by a straight-line. The intersection between

the iso-curve and a triangle edge e is first determined by lin-

ear interpolation when the BDM-values of a vertex on e is

< iω and the other vertex’s BDM-value is ≥ iω. Two such

intersections can be found in f and be connected by a line

segment. Linking such line segments forms a piecewise lin-
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Figure 7: Increasing the values of ω from d to 4d, different

conclusion can be made by the topology analysis on the same

surface path. Here d is the average edge length of the input

mesh M.

Figure 8: BDM guided surface decomposition: (a) iso-

contours with complex topology, (b) the seeds (displayed in

blue dots) for segmentations, (c) discrete voronoi diagram of

the seeds as an initial decomposition of the given surface,

and (d) decomposed regions with smoothed boundaries. Re-

gions as the result of decomposition are displayed in different

colors.

ear approximation of the i-th iso-contour. See Fig.7 for an

example.

Now we will analyze the topology of iso-contours on the

BDM of a surface to see if it needs to be decomposed. As

shown in section 3, our spiral curve generation algorithm re-

quires the input surface having an ω-simple topology with

ω = W, where W is the distance between neighboring chan-

nels determined by the physical model. Here, we have to

analyze the topology of a working surface, M. When its

topology is not ω-simple, decomposition must be applied.

Note that, this topological analysis is resolution-dependent –

i.e., using different values for ω may lead to different con-

clusions. An illustration is given in Fig.7. Considering d as

the average edge length of the input mesh M, the surface is

not ω-simple when ω = d, 2d, 3d. But it is ω-simple when

ω = 4d.

By linking the straight-lines inside triangles of M accord-

ing to the iso-value ≡ iω, loops for the i-th iso-curve can be

formed. In practice, since we only need to detect if the topol-

ogy of an iso-curve is ω-simple, the implementation of anal-

ysis can be simplified as follows. Each line segment of an

iso-curve has two endpoints with each located on an edge of

M. Starting from one endpoint, we can travel along the line

segments one by one with the help of the connectivity infor-

mation of M. The travel ends by coming back to the starting

point. If there is any segment belonging to the iso-curve but

not be visited during the travel, the iso-curve should have

multiple loops. In other words, the surface patch is not ω-

simple and must be decomposed.

4.2 Decomposition algorithm

The decomposition of an input mesh surface M is governed

by the BDM analysis as BDM already provides cues for de-

composition. For example, when looking at the contours dis-

played in Fig.8(a), most people will subjectively explain that

the surface is composed of four regions. The problem is how

to extract this information and employ it in the decomposi-

tion.

We develop an automatic decomposition algorithm con-

sisting of the following steps:

• First, starting from i = 1, the topology of iso-contour

with d̄B
g (p) ≡ iω is checked one by one. When the i-

th iso-contour has multiple loops, all the vertices with

their BDM value greater than iω will be specified as

candidate seeds for region classification (see the blue

dots in Fig.8(b)).

• Second, the seeds are grouped in clusters by a flooding

algorithm. Basically, two seeds should be grouped into

the same cluster if they belong to one edge and their

BDM values are greater than iω. Take Fig.8(b) as an

example, the seeds are classified into four clusters. The

number of clusters determines the number of regions

should be decomposed from input surface M.

• Third, the dual graph G of M is constructed, where each

face of M is converted into a node of G and every two

adjacent faces are linked by an edge. The weight on an

edge in G is assigned as the distance between centers

of faces that correspond to the two graph nodes linked

by the edge. For each triangle adjacent to a seed deter-

mined in above steps, the triangle’s corresponding node

in G will be served as a source node. Triangles adjacent

to the seeds in the same cluster will be assigned with

the same ID and serve as the same source. Applying

Dijkstra’s algorithm with multiple sources on this graph

G assigns each graph node an ID, which indicates its

closest source on the weighted graph. As a result, ev-

ery triangle in M is assigned an ID – i.e., M has been

decomposed into regions consisting of triangles having

the same ID. Triangles with the same ID are displayed

in the same color in Fig.8(c).

• At last, the boundary between two regions, Ωi and Ω j,

is smoothed by assigning a triangle ofΩi into the region

Ω j if such an assignment can reduce the length of region

boundary; similar processing is also applied to the tri-

angles in Ω j near the boundary. An example result can

be found in Fig.8(d).

7



(a) VD-based cooling channel (b) Spiral channels generated by this approach

Figure 10: Color maps for displaying the time of plastic part freezing to the ejection temperature by using (a) the VD-based

cooling channel [5] vs. (b) the spiral channel generated by this approach.

Figure 9: Spiral curves can be generated on models with

dense mesh: (top) a head model with 31k triangles and (bot-

tom) a helmet model with 53k triangles.

The result of decomposition should be verified by taking an-

other round of BDM-based topological analysis in each re-

gion. If a region is not ω-simple, the algorithm above needs

to be taken again to further decompose this region. This cycle

of decomposition and verification must be repeatedly applied

until all regions are ω-simple.

5 Results and Discussion

The algorithms presented in this paper are implemented as

a program in C++. The spiral curves can be generated ef-

ficiently on models represented by two-manifold triangular

meshes. For example, spiral curves can be generated for the

models shown in Fig.9 with 31k triangles (the head model)

and 53k triangles (the helmet model) in 344ms and 314ms

respectively on a PC with Intel Core 2 Quad CPU Q6600

2.4GHz. Moreover, the BDM-based decomposition can also

be computed efficiently. The spiral curves can be generated

on all models shown in this paper in less than 2 seconds.

To verify the physical performance of cooling channels

Table 3: Material Properties of Part and Mold

P20 PP ABS

Density [kg/m3] 7800 900 1045

Specific heat [J/(kg · K)] 460 1900 1950

Thermal conductivity [W/(m · K)] 29 – –

Tmelt [◦C] – 220 230

Te ject [◦C] – 70 60

Table 4: Geometry Properties of Parts

Helmet Cell Phone

Dimension [mm] [229.8, 316.6, 157.0] [219.4, 45.76, 69.68]

Thickness [mm] 2.500 2.000

Volume [mm3] 2.540 × 105 4.946 × 104

Area [mm2] 2.008 × 105 5.723 × 104

generated by our approach, simulations are taken on the

injection molding simulation software – MoldFlow Insight

[23]. Our program provides a function to write the piecewise

spiral curves into a macro file, which can be imported into

MoldFlow as the axial curves to generate the cooling chan-

nels automatically. Polypropylene (PP) is employed as the

part material and steel P20 is used for the part-forming com-

ponents of molds. Detailed parameters applied in our tests

are listed in Table 3 and 4. Water is selected as the coolant

and its temperature is assigned as 25◦C. Two models are se-

lected for the case study below. To demonstrate the benefit

of conformal cooling channels generated on the offset sur-

faces, two thin-shell models – helmet and cell-phone cover

– are selected. According to our experiences, the conformal

cooling is most effective on such thin-shell models.

5.1 Case study I: helmet

The first case study is about the molding of a toy helmet

made by ABS. According to industrial experience, the cy-
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(a) VD-based cooling channel [5] (b) Spiral channels generated by this approach

Figure 11: Color maps for displaying the average temperature on the mold surfaces during the cooling cycle.

(a) Comparison on Reynolds number

(b) Comparison on flow rate

Figure 12: Color maps for displaying the Reynolds number and flow rate in the VD-based and the spiral cooling channels. No

variation can be found in the simulation result on the spiral channel generated by our method.
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Figure 13: Color maps for displaying the temperature of coolant in the VD-based circuit vs. the spiral cooling channels.

Figure 14: Color maps for displaying the temperature and the flow rate of coolant in a cooling system with multiple spiral

channels. No variation can be found in the simulation results on the channels generated by our method.

cle time tcycle = 20s and the channel diameter D = 10mm is

selected. By the physical formulation of conformal cooling,

the distance between cooling line to mold surface (lm) and

the cooling channel line pitch distance (W) is determined as

lm = 12.7mm and W = 20mm. The cooling efficiency of

the spiral cooling channels determined by this algorithm is

compared with the Voronoi Diagram (VD) based conformal

cooling circuits generated by our prior work [5], in which

the cooling efficiency of VD-based channel has proved to

be much higher than conventional straight channels. Both

simulations use the same coolant – water at 25◦C and with

Reynolds number Re = 105.

The simulation results are shown in Figs.10 and 11. It is

easy to find that the cooling time (time to freeze) has been

shortened from 42.73 sec. to 37.91 sec. The cooling also

occurs more uniformly. The temperature variation between

28.69◦C and 60.47◦C has been reduced to the range between

26.90◦C and 53.10◦C. The obvious improvement in cooling

efficiency is shown in Figs.10 and Fig.11. Fig.12 gives an

explanation for this enhancement. It is clear that VD-based

cooling circuit leads to poor flow rates and Reynolds num-

bers resulting in non-uniform cooling in the tool. The con-

formal spiral channel, by contrast, keeps a stable turbulent

flow rate through the entire length and enables the heat to be

transferred more effectively. As shown in Fig.13, the coolant

temperature has a range of 2.2◦C in the VD-based channel

but the temperature rise of the coolant in our spiral channel is

cut to 0.82◦C. This demonstrates the increase of the cooling

efficiency in spiral channels, and thus more uniform cooling.

5.2 Case study II: cell-phone cover

A cell-phone cover to be fabricated by polypropylene (PP) is

tested in the simulation. Two spiral channels with different

parameters are studied.

Firstly, a circuit with D = 6mm, W = 10mm and lm =

11.0mm is generated. As shown in Fig.14, two spiral chan-

nels are constructed to cover the working surface in the up-

per mold and three channels are generated in the lower mold.

Set inlet coolant flow rate to 6lit/min, as an example. The

coolant can maintain a nearly constant flow rate and the tem-

perature rise is minimized to be within 0.06◦C.

In the second study, the spiral channels are generated and

compared with D = 8mm, W = 21.4mm and lm = 11.0mm,

which is sparser than the above case. For comparison pur-

pose, VD-based cooling circuits are generated with the same

set of parameters. To achieve the same Reynolds number at
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(a) Comparison on Reynolds number

(b) Comparison on flow rate

Figure 15: Color maps for displaying the Reynolds number and flow rate in the VD-based and the spiral cooling channels. No

variation can be found in the simulation result on the spiral channel generated by our method.

the inlet as Re = 5, 000, the pumping expenses drastically in-

crease for the VD-based circuit. As shown in Fig.15, a flow

rate with 3.388lit/min is required at the inlet of VD-based

circuit but the spiral channel needs only about 1.694lit/min

at its inlet. Moreover, for the VD-based circuit, the Reynolds

number drops significantly (the flow is no longer turbulent) in

the branches of channels even after supplying a high pump-

ing pressure at the inlet. This leads to an inefficient heat

transfer. Again, comparisons on the temperature of coolant

are shown in Fig.16, where the temperature differences of the

coolant are 2.32◦C for the VD-based circuit and only 0.39◦C

for the spiral channels.

5.3 Limitations

Though the proposed method works well on the two models

shown in the case study, it may have problems on parts with

more complex topology or larger variations on the thickness.

For example, when the working surface of a part generated

by offsetting has multiple holes, some manual defeaturing

operations are needed to simplify the topology of the part

and also the working surface. In terms of heat transfer in the

injection mold, a constant offset conformal cooling channel

does not always ensure an even cooling due to corner effects

and thickness variations. Our current approach may not give

very good performance under these scenarios.

Constraints in mold design are not considered when gen-

erating the spiral cooling channels. For example, injection

molds have ejector pins used to separate the finished parts

from the mold itself. At the places where the ejector pins are

planned to install, the working surface must be trimmed off

to ensure no intersection between the pins and the cooling

channels. Considering such constraints will lead to a more

difficult task of designing cooling channels. Furthermore,

the current model is developed for the mold with two parts

– upper/lower molds. When applying it to complex molds

made of several moving parts, more constraints need to be

considered.

6 Conclusion

We present an approach in this paper to generate spiral and

conformal cooling channels for plastic injection molding of

parts with high-curved surfaces. This approach shows ad-

vantages in two aspects:

• First, the cooling channels are generated on a working

surface that is offset from the cavity surface of a mold.
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Figure 16: Comparison on the temperature distribution in the VD-based cooling circuits (left) and the spiral cooling channels

(right).

As a result, conformal cooling can be obtained. This is a

characteristic that holds for our prior work on conformal

cooling circuits [5] but not for the conventional cooling

channels [1].

• Second, the spiral cooling channels are generated in this

approach so that the flow of coolant can be kept in a high

speed in the channels. This is a characteristic that holds

for conventional cooling channels but not for conformal

cooling circuits.

In summary, this new approach can generate conformal cool-

ing channels with higher flow rate so that heat transfer effi-

ciency is improved in plastic injection molding. Moreover,

comparing to our prior work on conformal cooling circuits,

the channels generated by this new approach are easier to

fabricate by using copper duct bending instead of expensive

selective laser sintering.

In order to realize the approach for generating spiral and

conformal cooling channels, the technical contributions in-

troduced by this work include an efficient algorithm for

smooth spiraling and a BDM analysis based decomposition

algorithm. With the help of these two algorithms, smooth

spiral curves can be efficiently generated on the working sur-

face to serve as the axial curves of cooling channels.

A possible future work is to incorporate the offset sur-

face generation algorithm into the BDM computation and the

curve spiraling. We plan to generate directional offset sur-

face patches in the form of point-sampled surface by using

the distance function defined in [12]. Then, the BDM can be

computed on a graph generated on the point set, which de-

fines a moving least-square (MLS) surface for generating the

spiral curves. Another practical future work is to test mold

performance with spiral and conformal cooling channels in

the industrial production. This will further verify the advan-

tages of spiral and conformal cooling channels.
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