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Abstract

In this paper, we present an optimization framework for automating the shape customization of human-centric products, which

can be mounted on or embedded in human body (such as exoskeletal devices and implants). This kind of products needs to be

customized to fit the body shapes of users. At present, the design customization for freeform objects is often taken in an interactive

manner that is inefficient. We investigate a method to automate the procedure of customization. Major difficulty in solving this

problem is caused by the not freely changed shape of components. They should be selected from a series of standardized shapes.

Different from the existing approaches that allow fabricating all components by customized production, we develop a new method

to generate customized products by using as-many-as-possible standardized components. Our work is based on a mixed-integer

shape optimization framework.
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1. Introduction

Human-centric products start to be widely used in many med-

ical and sport applications, and the shape of these products must

be adaptive to the shape of human bodies. Three-dimensional

(3D) shape of human bodies can be obtained by 3D scanners.

After establishing the correspondences among different human

bodies [1, 2], the product originally designed for a specific body

can be warped to a shape to fit another body [3]. In this way,

the product can be reused and customized for another person.

It is good enough for transferring the design of some products

such as clothes, shoes, and furniture as all components in these

products can be fabricated in a low cost. However, it doesn’t

apply to electronic or mechanical products. Some of their com-

ponents, e.g., nuts, chipsets, or joints, cannot be freely varied.

Instead, these components are usually fabricated in a standard

way – i.e., each of them has a series of variations that are man-

ufactured by mass production. These components are called

standardized components, and the series of variations is called

element library in the rest of this paper. Note that, as fabricated

by mass production, shape variations of these components are

in a stepwise manner. For example, the wheels of bicycles as

standardized components can only be either 24 or 26 inch but

can never be 24.3 inch. The classification of components into

standardized series is mainly based on the procedure of manu-

facturing, which is beyond the scope of this paper. At present,

the customization of products with standardized components is

often conducted by designers in an interactive manner. The

shape optimization step becomes the bottleneck of designing

human-centric products. The major challenge comes from the

lack of an effective shape optimization method that allows a

component to be varied in a stepwise manner. The problem be-

comes more challenging when the shape variation is driven by

human bodies and the product’s shape is required to well fit the

human body’s shape. In this paper, we investigate techniques to

automate the step of customization.

A Mixed-Integer As-Rigid-As-Possible (MI-ARAP) shape

optimization framework is developed in this paper. The shape

optimization is formulated as an as-rigid-as-possible deforma-

tion problem that is computed on volumetric meshes. During

the optimization, some components are restricted to be one of

the pre-defined shapes in the element library, which is actually

a variational formulation with integer variables. It means that

the component is not allowed to deform continuously from one

shape to another shape. To keep the spatial relationship between

a product and human bodies, we may use continuous deforma-

tion methods [4, 3] to warp the shape of a product designed

for one human body into a shape fit another human body. This

shape obtained by continuous deformation is called the initial

shape, which is the input of our optimization. After obtaining

the initial shape by warping a product from one human body

to another one, the standardized components are warped into a

non-standard shape (e.g., see the middle of Fig.1). These dis-

torted components will be replaced by the most suitable shapes

in the element libraries. Unfortunately, if all the standardized

components are simply replaced at the same time, the nearby

components could become incompatible. An iterative rounding

algorithm is investigated in this paper to solve this problem. An

example to illustrate the function of our approach is shown in

Fig.1. As-many-as-possible standardized components are used

during the shape optimization, so that an economical solution

is developed to realize the customization. This is because the

cost of fabricating standardized components by mass produc-
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Figure 1: An illustration of the proposed human-centric design automation with standardized components on an example of exoskeleton customization, where the

red joints (highlighted by dashed lines) and the pink blocks are standardized components. (Left) A given design is defined on the template human body model H.

(Middle) The design is warped from the template H to fit a target human body model H′ – it is easy to find that the standardized components are also warped to fit

the body shape. (Right) The proposed MI-ARAP shape optimization framework enforces the shape of standardized components – see the red joints and the pink

blocks.

tion is much lower than the cost of customized production for

non-standard shapes.

1.1. Related Works

The related techniques of deformation, structure preserved

shape processing and mixed-integer optimization are reviewed

as follows.

Deformation techniques

Tremendous efforts have been made in the CAD and graphics

communities to develop user-friendly deformation tools for the

computation of 3D natural deformation. Generally, the existing

methods can be classified into surface-based or volume-based

approaches (details can be found in the book of Botsch et al.

[5]). Surface-based methods [6, 7, 8, 9, 10, 11, 12, 13] usu-

ally compute the displacement functions attached on the origi-

nal surface S to transfer the original surface into a new shape

S ′. A high degree of control can be provided by these meth-

ods. On the other hand, the robustness and efficiency of these

methods are strongly affected by the mesh complexity and the

quality of triangles on S . In a large literature of surface-based

deformation methods, the recent methods based on the as-rigid-

as-possible (ARAP) strategy (ref. [13, 14]) try to reduce the to-

tal elasticity of all triangular elements, which can generate very

natural deformation results when bending and twisting elastic

objects. The main problem of these methods is that the ARAP

energy is only evaluated on the surface, which does not intrinsi-

cally preserve the volume of the original model. Volume-based

methods [15, 16, 17] can solve these problems quite well. In

our shape optimization framework, the volume-based ARAP

energy is employed to evaluate the elasticity of components.

However, none of prior volume-based deformation approaches

consider the problem of deformation with stepwise shapes.

All above approaches focus on the shape manipulation of sur-

face S itself. To reuse the designs on new models, we need a

deformation method that is able to transform the objects located

around a human body H to the space around another human

body H′. By using the freeform deformation technique [4, 18],

triangles on the surface of H can be used as handles to deform

models around H to a new shape around H′ if the mapping from

H to H′ is available [19, 20, 2, 1, 21]. Similar shape transfor-

mations can also be realized by building cages around the sur-

faces of H and H′ [22, 23] or by formulating a spatial warping

function [3, 24]. The recent development focuses on how to

preserve the shape preference of the original design around H

when transforming it to the product around H′ (ref. [25, 26]).

The shape transformation approach developed by Brouet et al.

[26] is based on the idea of ARAP surface modeling [13, 14]

and the deformation transfer approaches [27, 28, 29, 30]. How-

ever, the ARAP formulation is nonlinear, Sorkine et al. [31]

and Igarashi et al. [13] designed a two-step editing process for

this optimization. Similarly, Schaefer et al. [32] implemented a

moving least squares framework for 2D space warping. Later,

this so-called local/global approaches [14, 33] have been ex-

tended to work on volumetric meshes [34, 35]. Specifically, in

a local phase, the transformation matrix of each element is first

evaluated and manipulated to indicate the deformation prefer-

ences. This is followed by a global phase to ensure that the

transformations applied to the elements around each vertex are

compatible, i.e., corresponding vertices in different elements

are in consistent positions. A recent study [36] shows that such

a local/global computation converges very fast. Our shape op-

timization framework will adopt this strategy of local/global

computation.

Structure-aware shape processing

The recent development of shape processing techniques in the
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community of geometric modeling extends the concept of para-

metric modeling in CAD/CAM systems to objects with com-

plex geometry. As the input models of these approaches are

piecewise linear surfaces without any structural information,

two phases are conducted: 1) shape analysis to find out struc-

tural constraints and 2) shape manipulation that preserves the

constraints.

Following the idea of feature-preserving in image warping,

Kraevoy et al. [37] proposed a method to resize geometric

models, meanwhile preserve the structures by computing a non-

homogeneous volumetric mapping on grids. A more flexible

method is presented in the work of Gal et al. [38] to pre-

serve structures on man-made models by using a few special 1D

wires. This work is extended by Zheng et al. [39] to manipulate

the shape of models by their constituent components. As a re-

sult, users have easier control over the shape of models by using

component-wise controllers. Another recent work presented by

Bokeloh et al. [40] can detect continuous and discrete regular

patterns. These patterns are preserved in a variational deforma-

tion framework by integrating a discrete algorithm that adap-

tively inserts or removes repeated elements in regular patterns.

Our method for computing customized products will integrate

discrete algorithms into variational optimization framework to

progressively preserve the shape of standardized components.

Structure preservation is also formulated as a constrained mod-

ification in image-based modeling of architectures [41]. The

recent work in image-based modeling [42] tries to solve such

constrained editing problems by first determining a minimal set

of vertices to be updated and then computing actual position

updates to satisfy all constraints. However, the above structure-

aware shape processing approaches consider neither the shape

adaptation on human bodies nor the constraints of standardized

components.

Mixed-integer optimization

Solving a mixed-integer optimization problem that has both

continuous and discrete unknowns is NP-hard [43]. Different

from optimization problems only have continuous unknowns,

the computational domain of mixed-integer optimization is

formed by many isolated sub-regions, and the discrete un-

knowns can only be changed in a jump from one sub-region

to another one. As a result, solving such problems may need

to test all discrete possibilities. However, this is not practical

when the number of discrete unknowns is large. A more prac-

tical scheme was introduced by Bommes et al. [44]. Their ap-

proach adopts a greedy strategy to first solve the relaxed prob-

lems by treating the discrete unknowns as continuous variables,

and then projects the solution by rounding the discrete unknown

with smallest rounding error into integer incrementally. The na-

ture of using standardized components in the customization of

products is similar to the mixed-integer optimization - the vari-

ation of standardized components can only jump from one pre-

defined shape to another shape. In other words, the optimiza-

tion domain is also discretized. An iterative greedy rounding

scheme is investigated in our shape optimization framework.

1.2. Main Results

The contributions of research work presented in this paper

are twofold.

1. Mixed-integer shape optimization:

The shape optimization of products is formulated as an as-

rigid-as-possible deformation problem that is computed on

volumetric meshes. Specifically, some sub-domains of a

deformed object are restricted to a series of pre-defined

shapes, which is a variational formulation with integer

variables. An iterative rounding algorithm is developed

to solve this mixed-integer optimization problem.

2. Design transfer with standardized components:

After obtaining the initial shape of a product with assem-

bled components based on the mapping between spaces

around human bodies, the components are replaced by

standardized components progressively. As-many-as-

possible standardized components are used meanwhile the

elastic energy is minimized for other components. Shapes

of the standardized components are selected from their

corresponding element libraries, and the best-fit shapes are

found automatically.

To the best of our knowledge, this is the first approach in litera-

ture to allow using standardized components in the customiza-

tion of freeform objects for fitting human bodies.

The rest of the paper is organized as follows. The basic MI-

ARAP framework is first introduced in section 2, and it is fur-

ther extended for standardized components in section 3. After

that, the formulation of adding hard constraints into the opti-

mization is presented in section 4. In section 5, a flexible en-

coding is described to formulate the relationship between as-

sembled components. Finally, different examples are shown in

section 6, and our paper ends with the conclusion section.

2. Mixed-Integer As-Rigid-As-Possible Shape Optimiza-

tion Framework

Shape optimization is formulated under an ARAP framework

with mixed-integer variables. Specifically, the standardized

components can only jump from a pre-defined shape to another

one rather than a continuous deformation in E
3. Without loss

of generality, we assume that the components to be deformed

have been tessellated into tetrahedral meshes. Four vertices of

a tetrahedron t have their rest positions {p1,p2,p3,p4} before

deformation and the current positions {p̃1, p̃2, p̃3, p̃4} in the de-

formation. The current positions at the beginning of optimiza-

tion can be obtained by spatial warping functions [3], and the

current positions in the later steps of iteration will be updated

during the optimization. Given the current positions and the

rest positions of t, a linear transformation between the rest and

the current shapes can be defined by a transformation matrix T

and a displacement vector d as

Tpi + d = p̃i, i = 1, 2, · · · , 4. (1)
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d can be eliminated by subtracting the last equation from the

others, such that the formulation is invariant to translation.

Then, we can have TP = P̃ with

P = [p1 − p4 p2 − p4 p3 − p4]

P̃ = [p̃1 − p̃4 p̃2 − p̃4 p̃3 − p̃4]
.

As a result, the transformation matrix T can be obtained by

T = P̃P−1, which includes both the scaling and the rotation.

In the ARAP formulation, it will be enforced to a rigid-body

transformation only has rotation. According to the discussion in

the paper of Liu et al. [33], the scaling matrix and the rotational

matrix can be decoupled by the “signed version” of singular

value decomposition (SVD) into T = UΣVT . Due to the reason

that T is a square matrix with positive determinant, U and V

are the rotational matrices, and Σ is a scaling matrix written as

Σ = diag{σ1, σ2, σ3}. σ1, σ2 and σ3 are the scaling factors of

T in three orthogonal directions. Then, a pure rotational matrix

can be derived from T as

L = UVT . (2)

The optimization targets on minimizing the difference be-

tween T and L. Therefore, the optimization energy that is going

to be minimized can be written as

min
p̃1...p̃n

∑

t

∆t‖Tt − Lt‖
2
F , (3)

where ‖· ‖F is the Frobenius norm, and ∆ts are the volumes of

tetrahedra serving as weights of the systems. As T is in a linear

form of t’s vertices, Eq.(3) can be reformulated into the form of

min
x

∑

‖Ax − b‖2 (4)

with x being the vertex positions. Details of the reformulation

can be found in Appendix A. The positions under ARAP defor-

mation can be determined by computing the least-square solu-

tion of Ax = b. After that, this procedure is iterated to compute

new transformation matrices Lt by using the new vertex posi-

tions, and then update the positions of vertices by these newly

determined matrices. The iteration is stopped when the ARAP

energy in Eq.(3) converges.

2.1. Iterative Rounding Algorithm

Different from the above continuous ARAP deformation, for

the mixed-integer shape optimization problem, some tetrahe-

dra (e.g., r) must be deformed to one of k pre-defined shapes:

S
j
r = {q

j

1
,q

j

2
,q

j

3
,q

j

4
}, ( j = 1, . . . , k) - i.e., the pre-defined shapes

are served as the discrete variables here. These tetrahedra are

called integer tetrahedra, and r must be projected to one of

these k shapes in optimization. An iterative rounding algorithm

is developed as follows (see the flow chart in Fig.2 as well).

1. All the integer tetrahedra that have not been rounded are

stored in a list, IntList. For each tetrahedron r ∈ IntList,

the shape similarities between it and its corresponding pre-

defined shapes are computed.

2. In the set of pre-defined shapes for r, the shape, S
j
r , that

is the most similar to r is selected to generate a score of

similarity as S IMr;

Figure 2: Flow chart of the iterative rounding algorithm.

3. Among all the pairs for different integer tetrahedra, the

one having the highest similarity (i.e., maxr({S IMr})) is

selected: (rmax,S
j
rmax

).

4. The selected integer tetrahedron, rmax, is rounded by set-

ting its rest position to be S
j
rmax

,

i.e., P← Q j = [q
j

1
− q

j

4
q

j

2
− q

j

4
q

j

3
− q

j

4
].

5. Computing L′rmax
= UV from T′rmax

= P̃(Q j)−1 = UΣV.

6. Adding rmax to the set of rounded tetrahedra, R, and con-

verting rmax to hard constraints with Lrmax
= L′rmax

in the

rest steps of shape optimization as

min
p̃1...p̃n

∑

t

∆t‖Tt − Lt‖
2
F s.t.,∀r ∈ R,Tr = L′r. (5)

7. Optimization with hard constraints (in Eq.(5)) is employed

to update the positions of vertices. Details will be dis-

cussed in section 4.

8. Go back to step 2 until all integer tetrahedra have been

rounded (i.e., IntList is empty).

This is a bare form of the MI-ARAP shape optimization

framework. A more sophisticated approach will be discussed

in section 3 to round all tetrahedra belonging to the same com-

ponent together. Before that, we discuss the method to compute

shape similarities on tetrahedra.

2.2. Shape Similarity

Assume having an element library of pre-defined shapes

{S1
r ,S

2
r , . . . ,S

k
r } for an integer tetrahedron r, we need to find

out the best-fit to define the target shape of r. To evaluate the

shape similarity, ARAP energy defined in Eq.(3) can be used.

Specifically, ARAP energy is computed for each of these shapes

in element library by setting the rest position of r to be S
j
r ,
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Figure 3: An illustration of the MI-ARAP optimization by a bolt embedded in a rectangular domain: This figure demonstrates how the mapping performs when the

bolt is rigidly transferred to different target domains. The green points are fixed to serve as pins during the deformation.

i.e., P ← Q j = [q
j

1
− q

j

4
q

j

2
− q

j

4
q

j

3
− q

j

4
]. For a pre-

defined shape, a transformation matrix can be obtained from

T j = P̃(Q j)−1. T j is then decomposed to T j = U jΣ jV j where

Σ j = diag{σ
j

1
, σ

j

2
, σ

j

3
}. As a result, the ARAP energy for the

shape S
j
r is defined as

E(S
j
r) =

3
∑

i=1

(σ
j

i
− 1)2. (6)

The smaller ARAP energy is, the higher shape similarity is

given (i.e., S IM ∝ 1/E). The optimal case gives E(S
j
r) = 0

under which condition the pre-defined shape S
j
r has the same

shape of r.

In our iterative rounding algorithm, Eq.(6) is employed to

measure the shape similarity. It can be easily extended to mea-

sure the shape similarity for a group of tetrahedra.

3. Design Transfer with Standardized Components

Different from the bare form of MI-ARAP presented in the

above section, we need to process components in design trans-

fer. A component usually consists of a group of tetrahedra. As a

result, we have to process the tetrahedra in a group all together.

3.1. Group-based Iterative Rounding

Given a product Υ that has a set of components, the compo-

nents can be classified into non-standardized and standardized.

Each standardized component (ωl ∈ Υ : l = 1, . . . , L) is as-

sociated with an element library having k pre-defined shapes –

denoted by {ω
j

l
} : j = 1, . . . , k. A standardized component is

composed of a set of integer tetrahedra, and its shape is defined

as

ω
j

l
=
⋃

r

S
j

r,l
,

where S
j

r,l
∈ ω

j

l
is the shape of an integer tetrahedron r. Round-

ing a standardized componentωl into a shapeω
j

l
can be realized

by rounding each tetrahedron r of ωl to a pre-defined shape S
j

r,l
.

Furthermore, measuring the shape similarity between a compo-

nent and the pre-defined shapes stored in the element library is

based on measuring the shape similarity of all tetrahedra con-

stituting the component, i.e.,

E(ω
j

l
) =

1

|ωl|

∑

r∈ωl

E(S
j

r,l
), (7)

where |ωl| is the number of tetrahedra in ωl.

Assuming the shape of a product Υ is originally designed

for a human body H, it is transferred to another body H′ by a

warping function such as t-FFD [4, 18] to give an initial shape

Υ′. As t-FFD tends to preserve the spatial relationship between

points, the shape of Υ′ will fit the body shape H′ (as shown

in the middle of Fig.1). However, the warping result deforms

all components in Υ including those standardized components,

and this should be corrected through the MI-ARAP shape op-

timization. To prepare for the shape optimization with stan-

dardized components, volumetric cross-parameterization [45]

is computed for the standardized components, {ω
j

l
}, in the same

series (e.g., among the bolts from M4 to M7 in Fig.5).

We start the design automation by warping all tetrahedra of

Υ to a shape Υ′ around H′ by t-FFD. Therefore, the current po-

sitions of tetrahedra used in the MI-ARAP framework can be

obtained. Without loss of generality, we assume Υ′ is the op-

timal shape for H′, so that the shapes of tetrahedra in Υ′ are

used as rest shapes while applying the MI-ARAP shape op-

timization. The tetrahedra do not belong to any standardized

components are called flexible - the target transformation ma-

trix for them will be obtained from their shape in Υ′ as the rest

positions. Moreover, some vertices can be specified by users to

serve as pins in the process. Their positions are fixed during the

optimization.

3.2. Behavior of MI-ARAP Optimization

To verify the performance of our MI-ARAP optimization

framework, the following experiments are taken. Three tests
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Figure 5: An illustration of shape matching in MI-ARAP: There are four elements in the element libraries of cubes, bolts, nuts and I-beam. Different types

of deformations will make the components converge to different standardized components under the MI-ARAP shape optimization framework. When applying

shearing and scaling deformations on the domain with standardized components (in yellow) shown on the left, the embedded cube is rounded to C4 and C3, the bolt

is rounded to M5 and M4, and the nut is rounded to N5 and N4 respectively. Note that the region in gray is filled by flexible tetrahedra.

Figure 4: An illustration of the behavior when multiple components are embed-

ded in the domain of MI-ARAP shape optimization.

are conducted to study the optimization behavior by scaling,

blending or shearing a template domain. First, a standardized

component is embedded in the domain (see Fig.3), and the com-

ponent is enforced to deform back to its original shape by the

MI-ARAP shape optimization when letting the element library

have only one element. This test is used to check if the opti-

mization can converge. Second, we take a similar test but hav-

ing multiple standardized components (as shown in Fig.4), and

the components are put close to each other. We aim at showing

the behavior of MI-ARAP optimization when dealing with in-

teraction between components. Third, we embed different stan-

dardized components in a domain, and each of the components

has its own element library (see Fig.5). This is to test whether

the shape matching algorithm can successfully select a shape

from the element library to well-fit the target domain.

The first experiment is shown in Fig.3. The standardized

component is a bolt embedded in a rectangular domain. Integer

tetrahedra, which form the standardized component, are shown

in yellow color. When the domain is deformed, the compo-

nent is warped together with the domain. The shape optimiza-

tion algorithm is expected to deform the component back to its

original shape (but may result in different position and orienta-

tion). The deformed shape is input as the current position, and

the original shape serves as the rest position. Our MI-ARAP

framework can successfully deform the component to its origi-

nal shape. The cross-section of computational domain in volu-

metric mesh is also shown to illustrate the distortion.

The second experiment is shown in Fig.4. Multiple bolts

are embedded in a domain, and they need to be deformed back

to their original shapes. Although they are very close to each

other, the computation of our optimization approach can still

converge to the original shape and generate no intersection. In

short, the framework has no difficulty to handle multiple com-

ponents.

In the third experiment shown in Fig.5, four components are

embedded into the template domain, including a cube (ω1), a

bolt (ω2), a nut (ω3), and an I-beam (ω4). The cube, the bolt and
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the nut have four different standardized shapes in their element

libraries, and the I-beam has only one shape, i.e.,

• Cube (ω1): ω1
1
=C1, ω2

1
=C2, ω3

1
=C3, ω4

1
=C4;

• Bolt (ω2): ω1
2
=M4, ω2

2
=M5, ω3

2
=M6, ω4

2
=M7;

• Nut (ω3): ω1
3
=N4, ω2

3
=N5, ω3

3
=N6, ω4

3
=N7;

• I-beam (ω4) is rigid.

In this test, shearing and scaling are applied. Our approach can

automatically select the best shapes from the element libraries

of components, and optimize their positions and orientations.

{C4, M5, N5} are selected for the shearing example, and {C3,

M4, N4} are selected for the scaling example. Referring to

the cubic component, the sheared cube (C4) is selected for the

shearing example, and the scaled cube (C3) is selected for the

scaling example. This experiment demonstrates the ability of

selecting components’ shapes.

4. Enforcement of Hard Constraints

For the rounding procedure, we need to optimize the objec-

tive function meanwhile enforcing hard constraints in step 7.

Simply giving a higher weight for the integer tetrahedra is not

able to deform a component to a pre-defined shape exactly. In

our implementation, once the ARAP energy is minimized, a

further step is applied to project and lock the positions of cor-

responding vertices to enforce the pre-defined shapes. Lock-

ing the positions of vertices can be realized by moving all the

known values (locked positions) to the right hand side of the

linear system, which avoids adding equations into the system

for hard constraints. The equation system processed in this way

is stable during the optimization, and the pre-defined shape can

be exactly preserved.

4.1. Reformulation

The ARAP shape optimization in Eq.(3) is reformulated to

min
p̃1...p̃n

∑

t

wt∆̃t‖Tt − Lt‖
2 (8)

by using different weights as

∆̃t = min(
∆max

∆t

, δ)

with ∆max being the maximal value of {∆t}. In our implemen-

tation, δ = 5 works well for all examples. The weight wt is

assigned as 500 for an integer tetrahedron, and wt = 1 is em-

ployed for the rest tetrahedra.

The weights are set in this way because of the following rea-

sons. First, the integer tetrahedra should have a higher prior-

ity to ensure that the shape is as-close-as-possible to the pre-

defined shape. Second, distortion is introduced when the inte-

ger tetrahedra are changed. This distortion is disturbed to the

whole mesh, and a larger tetrahedron should have larger room

to absorb the distortion. This formulation is different from the

general ARAP deformation, in which a larger tetrahedron is set

Figure 6: An illustration of incorporating the assembly constraints among mul-

tiple components: (Left) Given two components, ωi and ω j, which will be in

contact. (Middle) The configuration of these two fixed components can be real-

ized by generating compatible mesh models. (Right) A more general assembly

constraints can be formulated by encoding the vertices (red) on the contact sur-

faces to another component’s tetrahedra. The encoding is realized by barycen-

tric coordinate.

to be more rigid in order to sustain the overall rigidity. In-

versely, a tetrahedron with larger volume is expected absorb

more distortion here. The maximal volume, ∆max, is used to

prevent extremely large weights that may lead to instable nu-

merical systems.

4.2. Project to Position Constraints

The optimization will be iterated until the ARAP energy con-

verges, which can be detected by the change of ARAP energy in

successive iterations. After that, a further projection step is ap-

plied to finalize the shapes of the integer tetrahedra and fix their

vertices’ positions as the hard constraints. This iterative round-

ing process has two phases. The first phase is to round the com-

ponents to their pre-defined shapes and assign them with higher

weights in Eq.(8). The second phase projects the components’

vertices. Again, the greedy rounding approach is based on the

measurement of shape similarity.

Assume a component have m vertices, the rest positions of

a pre-defined shape are qi (i ∈ 1 . . .m). Their corresponding

current positions are q̃i (i ∈ 1 . . .m). As m > 4, we can deter-

mine T and d in Tqi + d = q̃i by a least square solution. After

that, the exact positions for all the vertices in a component can

be computed by Lqi + d, where L is the rigid transformation

derived from T (e.g., by Eq.(2)). These positions are the pro-

jected positions, which are fixed as hard constraints in the later

iterations of optimization.

5. Products with Assembled Components

The basic assumption of our method discussed in above sec-

tions is that the components are meshed together with the do-

main consists of flexible tetrahedra. In other words, we assume

that a compatible mesh can be generated for all the components

as well as the domain of computation (see the middle of Fig.6).

However, it relies too much on the quality of meshing results.

In many cases, it is hard to generate a compatible mesh to em-

bed all the components. A more flexible method is to encode

the relationship between components in the numerical system.
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Figure 7: In many electronic products (e.g., mouse), circuit board is an essential part. With the help of our framework, the design of printed circuit board can be

reused for human-centric electronic products. Note that, the mapping is free of self-intersection, so that the conductive traces will not intersect among each others.

Given two components ωi and ω j as what is shown in Fig.6

(left), the contact surfaces must be deformed together when ωi

and ω j are contacted in the original design. This relationship

can be formulated as hard constraints. Instead of generating a

compatible mesh for the components, we encode the ω j’s ver-

tices near the contact surfaces onto ωi (see the right of Fig.6).

Specifically, the vertices in red which belong to ω j are repre-

sented by the barycentric coordinate of the tetrahedra that they

are encoded to. In other words, they are not variables any-

more. For instance, if a vertex pi is encoded to a tetrahedron

having vertices {pa,pb,pc,pd} with the barycentric coordinates

{u0, u1, u2, u3} (u0 + u1 + u2 + u3 = 1), pi can be expressed by

pi = u0pa + u1pb + u2pc + u3pd in the formulation. As a result,

each component of a product can be tessellated independently.

This encoding method can also be applied to constrain the re-

lationship between fully overlapped meshes, e.g., domain →

component.

6. Experimental Examples

In this paper, we present a MI-ARAP shape optimization

framework. This framework supports design transfer of prod-

ucts with standardized components. This feature is important

because many mechanical and electronic components have a

high cost in customization. Making use of standardized compo-

nents, which are manufactured by mass production, can reduce

the cost of building customized products. Examples are shown

in this section.

Our implementation is written in C++ code and the results

are generated on an Intelr CoreT M i7-3770S CPU at 3.10GHz

with 8GB RAM. The shape optimization can be computed ef-

ficiently on our program. For example, the bicycle model that

has eight components result in 182,509 tetrahedra with 45,379

vertices in total. This leads to a least-square system having the

matrix A (see Eq.(4)) with dimension: 547, 627× 45, 379 at the

beginning of optimization. The size of linear system is reduced

after converting rounded components into hard constraints in

term of positions. In our experimental tests, the result of a bi-

cycle example can be obtained in 78 seconds on the above plat-

form.

Exoskeleton

An exoskeleton is designed to help paralyzed people to walk

again. As the exoskeleton is mounted on a human body (see

Fig.1), it should be customized so that the person wearing it

will not feel uncomfortable. Most of the components in the ex-

oskeleton are non-standardized. However, the controllers (see

the pink blocks in Fig.1) need to be rigid as they are electronic

components. The joints (in red) that are mechanical compo-

nents need to be rigid too. After specifying these constraints

in our MI-ARAP framework, the optimization will preserve the

shape of the mechanical and electronic components while deter-

mining how the shapes of other non-standardized components

should be.

Circuit Board

For human-centric electronic products, i.e., hair dryer or mouse,

there are many electrical parts inside. Circuit board is an essen-

tial part. A circuit board is usually integrated with a lot of elec-

tronic components (e.g., DSP chips and sockets). The shapes of

these components are standardized, and our method can help to

realize customization by using such components. See the exam-

ple shown in Fig.7, there are a DSP, a DIP16, and a ram socket

on a printed circuit board (PCB). The PCB can be customized

based on different applications, and the examples of scaling and

blending the template domain are shown in Fig.7. Freeform de-

formations can also be taken in other applications. As shown

in Fig.7, the MI-ARAP framework can produce customized re-

sults while keeping the components in standard shapes. More

importantly, our method can ensure an intersection-free map-

ping. It means that the conductive traces will not have interfer-

ence with each other. As a result, the customized PCB can be

directly manufactured, and the components can be installed on

8



Figure 8: An illustration of using our MI-ARAP shape optimization framework for customizing bicycles: (a) A bicycle is constructed by flexible, rigid and

standardized components and the volumetric meshes of different components are shown in the right, (b) a result of shape optimization for customization driven by

simply scaling y-coordinates, (c) different result can be obtained by scaling both x- and y-coordinates, (d) results of customization driving by skeletons of users

captured by Kinect sensors, and (e) another view for the results of skeleton-driven bicycle customization.
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the circuit board without any difficulty.

Bicycle

A bicycle is composed of many components (see Fig.8). Some

of them are not allowed to change (e.g., belt and adjusters).

Some of them are unchangeable (e.g., pedals, seat saddle and

gears), which are required to be rigid. Some of them are

standardized components (e.g., wheels, handlebar and frame),

where each of them are accompanied with an element library.

The components are embedded in a design domain in terms of

volumetric mesh that covers all the components of a bicycle.

For simplicity, the complicated components (e.g., pedals, gears

and wheels) are replaced by their convex hull in the optimiza-

tion.

Given this configuration, the lists of components {ωk
l
} in ele-

ment libraries are summarized are follows:

• Wheels (ω1): ω1
1
= 20′′, ω2

1
= 22′′, ω3

1
= 24′′, ω4

1
= 26′′;

• Handlebar (ω2): ω1
2
=B1, ω2

2
=B2, ω3

2
=B3;

• Frame (ω3): ω1
3
=F1, ω2

3
=F2, ω3

3
=F3, ω4

3
=F4, ω5

3
=F5;

• Pedal (ω4), seat saddle (ω5), and gear (ω6) are rigid.

First, the selection of combinations is driven by applying

global scaling. The domain is scaled in Y and XY direction, and

the scaling results are used as the target domain. After that, our

shape optimization algorithm is applied to find out the best-fit

components and the overall mapping. Our method can suggest

the best combination and successfully find out the relationship

between them. For example, for scaling 1.5 times in Y direc-

tion, the combination {20′′, 24′′, B1, F1} is selected; and {26′′,

26′′, B1, F4} is selected for scaling in both X and Y directions

by a factor of 1.5. The results can be found at the middle row

of Fig.8.

Second, the customization is driven by human skeletons,

which can be generated by Kinect [46]. First of all, the joints

of a template skeleton is captured for a new customer. The new

positions of points are used as handles to deform the template

domain and the components to get the initial shapes. In our im-

plementation, ARAP deformation driven by position-handles is

employed. Once the initial shapes are ready, they are passed

to our framework to work out the optimized solution that is the

best combination for the new design. Note that, for example in

the bottom row on the left of Fig.8, the handlebar cannot ex-

actly fit to the hand of the skeletons. It is due to the reason that

handlebar is a standardized component, so that the system can

only output an as-close-as-possible result. This is the tradeoff in

using standardized components when the shapes defined in ele-

ment library are not sufficient. Otherwise, the handlebar needs

to be fabricated in a customized manner.

With the help of Kinect, we can quickly capture the skeleton

of a new customer. By our approach, the best combination and

configuration for different customers can be formed automati-

cally. Customized bicycles with standardized components can

be produced thereafter.

Figure 9: A series of conventional combination of bicycles with standard wheel

sizes as 20′′, 24′′ and 26′′.

Figure 10: Distances between the positions of joints and the target correspond-

ing points on the bicycles, where the customized bicycles generated by our ap-

proach is compared with three standard bicycles shown in Figure 9. The results

are compared on two users – the ones shown in Figures 8(d) and 8(e).

6.1. Verification and comparison

We verify the functionality of our approach on the example of

customized bicycles by experimental tests. On the template de-

signed for a well-fitting bicycle, the closest points to five joints

– hip, right hand, left hand, right ankle, left ankle – are mea-

sured and used as benchmarks for verifying the quality of a new

design. For a better design, the distances between the joints and

these benchmarks should be shorter. Therefore, these distances

are used as fitness-metrics for quality measurement in our ex-

perimental tests.

We first try to fit three conventional combinations of bicycles

with standard wheel sizes as 20′′, 24′′ and 26′′ (see Fig.9) onto

two users that have been shown in Fig.8(d). Rigid body registra-

tion by using the joints and their corresponding points on the bi-

cycles is employed to determine the best position/orientation of

the standard bicycles. Specifically, a rigid transformation cen-

tered at the average position of all joints is determined to trans-

fer the standard bicycles onto an ‘optimal’ position/orientation

according to the users. Details about this anchor points-based

rigid body transformation can be found in [3]. Note that, when

computing the rigid transformation, all joints (not only the five

joints mentioned above) of user’s skeleton are used to deter-

mine an optimal solution. These results are compared with the

results obtained by our optimization framework. The distances

between the five joints and the benchmarks on the bicycles are

measured and shown in Fig.10. It is easy to find that our re-

sults present much less errors on the fitness-metrics. These

tests verify that our shape optimization approach can improve

the fitness of customized design while still using standardized

components. A more practical verification can only be taken by

collaborating with the industrial manufacturing companies.
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7. Conclusion and Discussion

In this paper, a shape optimization framework is presented

for the design automation of human-centric products. This

framework solves a mixed-integer shape optimization problem,

and provides a function to generate customized product by us-

ing standardized components. As-Rigid-As-Possible (ARAP)

energy is reformulated for this purpose, and hard constraints

on transformation matrices are included by a projection-based

approach. A shape matching algorithm is proposed to find out

the best-fit combination for the standardized components.

7.1. Limitations

The experimental tests are encouraging. However, there are

also some limitations. First, the weights in ARAP energy are

based on the volume of tetrahedron. If the mesh quality is poor,

the weight must be carefully handled; otherwise, it may make

the linear equation system unstable. Second, this approach in-

cludes the meshes of all components in the same system of nu-

merical optimization. When the size of mesh is very large, it

may cause memory consumption problems.

Although self-intersection rarely occurs when testing the ex-

amples shown in this paper, it is hard to guarantee intersection-

free when extreme cases are processed. Self-intersection hap-

pens when any tetrahedron becomes a void. However, it can

be easily checked during the deformation of tetrahedra. Actu-

ally, in our current implementation, we have already checked

this singularity. If there is any tetrahedron becoming singu-

lar, the positions of its vertices will be locked to prevent self-

intersection.

On the other aspect, the convergence of our shape optimiza-

tion depends on the number of standardized components stored

in the element library. When there are too few components, the

shape optimization may be stuck and introduces large error on

the results of computation. Moreover, we expect that the vol-

umetric meshes of all components stored in the same element

library have the same connectivity. Although they can be ob-

tained by the surface cross-parameterization [1, 2] plus spatial

warping [3], a self-intersection free volumetric mesh may still

hard to obtain when the components in an element library have

tremendous shape-variation.

7.2. Future work

In the near future, we plan to work on a few extensions of

this approach. First, we will consider how to handle the models

with large size of tetrahedra. Second, the framework is planned

to use in real products design to further verify its robustness

in practical usage. Lastly, the series of standardized compo-

nents are currently determined according to the manufacturing

process. A possible future work is to analyze the demanded

best-fit components and develop an algorithm to generate the

classification automatically from the statistical data.
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Appendix A: Formulation of ARAP as Least-Square Mini-

mization

We reformulate the global optimization problem of ARAP in

Eq.(3) into a form of least-square minimization. First of all, let

T and L in Eq.(3) be

T =
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,

and the minimization problem of Eq.(3) can be rewritten as

min
∑

t

∆t

∑

i, j

‖ti j − li j‖
2.

Recall that the transformation matrix T = P̃P−1. As P−1 is com-

puted by the original position of a tetrahedron that is known, we

can assume that

P−1 =
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Therefore,
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with p̃i = [ p̃1
i

p̃2
i

p̃3
i
]T . As a result, the elements in T can be

expanded as

ti j = a0 j p̃
i
1 + a1 j p̃

i
2 + a2 j p̃

i
3 − (a0 j + a1 j + a2 j) p̃i

4.

The minimization problem can then be rewritten in matrix form

that yields

min
p̃1...p̃n

‖Ax − b‖22,

where x is a vector containing p̃1 . . . p̃n, b is a vector contain-

ing entries from L, and A is a sparse matrix with coefficients

obtained from P−1.
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