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Abstract

This paper presents a novel approach – WireWarping for computing a flattened planar piece with
length-preserved feature curves from a 3D piecewise linear surface patch. The property of length-
preservation on feature curves is very important to industrial applications for controlling the shape
and dimension of products fabricated from planar pieces. WireWarping simulates warping a given
3D surface patch onto plane with the feature curves as tendon wires to preserve the length of their
edges. During warping, the surface-angle variations between edges on wires are minimized so that
the shape of a planar piece is similar to its corresponding 3D patch. Two schemes – the progressive
warping and the global warping schemes are developed, where the progressive scheme is flexible
for local shape control and the global scheme gives good performance on highly distorted patches.
Experimental results show that WireWarping can successfully flatten surface patches into planar
pieces while preserving the length of edges on feature curves.

Keywords: surface flattening, freeform mesh surfaces, feature curves, length preserved, sheet man-
ufacturing industry.

1. Introduction

The work presented in this paper is motivated by the development of 3D design automation systems
for freeform products in those industries where the products are fabricated from planar pieces of sheet
material (e.g., metal in ship industry, fabric in apparel industry and toy industry, and leather in shoe
industry and furniture industry). How to determine the shape of 2D pieces from designed 3D surface
patches now becomes the bottleneck in the design and manufacturing cycle. The cycle is completed
only after obtaining the 2D pieces since the final products are fabricated by warping and stitching the
2D pieces. Ideally, a flattened 2D piece is expected to have an isometric mapping to its corresponding
3D patch in the representation of a piecewise linear surface. However, from differential geometry
[14], we know that only those developable surfaces satisfy this property. Therefore, the existing
approaches in the computer-aided design area for surface flattening (e.g., [1, 2, 3, 4, 25, 43, 39, 41, 45])
and the computer graphics literature for mesh parameterization (e.g., [13, 16, 18, 20, 35, 36]) adopt
various criteria (including the length variation criterion) to minimize the difference between the 3D
surface patch and its corresponding 2D region. Moveover, a fast flattening approach is needed in
interactive design systems where any 3D shape editing should result in its corresponding 2D pieces
instantaneously.
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Figure 1: Example of surface flattening on 3D shirt (front and back views), where the black curves
are the boundaries of 3D surface patches, the blue curves are the darts that will be cut out (so that
become black curves), the red ones are the key feature curves, and the green ones are the accessory
feature curves – the definitions about key feature curves and accessory feature curves will be given
in section 2.

The problem of surface flattening (or parameterization) is usually formulated under a constrained
optimization framework, the resultant 3D patch generally is not a developable surface, length varia-
tion is always found in the flattening results. For an engineering application such as the 3D garment
design and manufacturing shown in Fig.1, the length variations will lead to many problems. If the
length variation occurs on the boundaries of two pieces that are going to be sew together, unexpected
wrinkles will form on the fabricated product. If the length variation happens in the interior region
of a patch, it will destroy the designed fit (e.g., if the length of chest girth varies on the flattened
patterns of the shirt shown in Fig.1, the products made by these patterns may be too tight or too
loose). A good garment shape and fit (i.e., without the unexpected wrinkles) are two necessary cri-
teria to evaluate whether a suit is a high-end garment product. This is also true for other industrial
applications (e.g., the shoe industry and the furniture industry). Therefore, the designers in these
industries desire a surface flattening tool, which can preserve the length of boundaries and feature
curves (e.g., the black and green curves in Fig.1) on a 2D piece according to its 3D surface patch. In
this paper, a method (named as WireWarping) is exploited to simulate warping a given 3D surface
into 2D with the boundaries and feature curves as tendon wires so that the length of their edges are
preserved. The boundaries and feature curves are refered to as wires for the rest of this paper. The
surface-angle variation between edges on a feature curve during the warping needs to be minimized
to make the shape of a pattern in 2D similar to its corresponding 3D patch.

Problem Definition Given a piecewise linear surface patch in <3, its counterpart pattern in
<2 will be computed to make the length of edges on the boundaries and feature curves (named as
wires) optimally invariant; meanwhile, the angles between neighboring edges on the wires in <2 are
optimized to preserve their values on the given 3D surface patch.

1.1. Literature review

Before reviewing the techniques of surface flattening, we cannot avoid reviewing the theoretical
background of developable surface from differential geometry. In differential geometry [14], the
definition of a developable surface is derived from ruled surfaces: for a ruled surface X(t, v) =
α(t)+vβ(t), it is developable if β, β̇ and α̇ are coplanar for all points on X. In general, a differential
surface is developable if and only if it belongs to one of the following surface types: planes, generalized
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cylinder, conical surfaces (away from the apex), or tangent developable surfaces. Based on this, some
researches in literature focused on modelling [19, 33, 10] or approximating [9, 30, 32] a model with
developable ruled surfaces (or ruled surfaces in other representations — e.g., B-spline or Bézier
patches). However, it is difficult to use these approaches to model freeform surfaces. Another
limitation of these approaches is that they can only model surface patches with 4-sided boundaries
as the surfaces are usually defined on a square parametric domain. Although trimmed surfaces were
considered in [42], the modelling ability for freeform objects by this category of approaches is still
very limited.

In the area of computer-aided design, the surface flattening for pattern design has been studied
in various industries (cf. [1, 2, 3, 4, 25, 43, 39, 41, 45]). An ideal surface flattening of a given 3D
surface patch P to its corresponding 2D piece D preserves the distances between any two points
– mathematically an isometric mapping is needed. However, this property is only held on those
developable surfaces. Based on this reason, the surface flattening approaches always evaluate the
error of distance variations between surface points on P and D, and tries to minimize this error
under a non-linear optimization framework. The computation of non-linear optimization in terms of
vertex position is very time-consuming and can hardly preserve the invariant length of feature curves.
Similarly, the mesh parameterization approaches in literature (cf. [13, 16, 18, 20, 35, 36]) give strength
on how to minimize the distortions between P and D in angles, areas or lengths. The detail review is
given in [15] by Floater and Hormann. Another interesting category of surface flattening approaches
solves the problem by computing mappings for dimensionality reduction [6, 34, 22] or through a
multidimensional scaling (MDS) technique [44]. These approaches are all based on computing an
optimal mapping that projects the geodesic distances on surfaces into Euclidean distances in <2 (i.e.,
a lower dimension space). Nevertheless, it is difficult to embed the hard constraints on the length of
feature curves in the mapping computation.

The idea of preserving the length of feature-curves on a network relates to the isometric tree
described in [23] by Manning, where he introduced an isometric tree consisting of a network of
curves that are mapped onto the plane isometrically. However, the network considered in [23] is
with the tree topology and the isometric curves are the branches of the tree, which are flattened
one by one without considering the relationship between these curves. The relationship between
feature curves will be fully addressed under a constrained optimization framework in this paper.
Another flattening algorithm driven by curves is [8], where Bennis et al. mapped isoparametric
curves onto plane followed by a relaxation process to position the surface between them. They also
employed a progressive algorithm to process complex surfaces; however, the relationship between
these isoparametric curves was not well addressed. Azariadis and Aspragathos [2] proposed a method
for optimal geodesic curvature preservation in surface flattening with feature curves. Nevertheless,
the drawback of their method is that: their method was based on an optimization in terms of vertex
positions, which is highly nonlinear and cannot be efficiently solved as the proposed one here in
quadratic form. Besides, the length preserved curve mapping does also relate to the intrinsic form
of curves discussed in [28].

In literature, some approaches directly model developable (or flattenable) surfaces in <3 instead
of computing a surface flattening mapping. The authors in [12] processed a given mesh surface by
fitting a conical surface locally at every vertex so that the expected normal vectors can be determined.
After that, a deformation process is applied to adjust the position of surface vertices to follow the
given normal vectors. The resulting local surface is of a conical form. More generally, Wang and
Tang in [40] adopted the discrete definition of Gaussian curvature to define the measurement for the
developability on given polygonal mesh surfaces. A constrained optimization approach was conducted
to deform mesh surfaces to increase their discrete developability. Liu et al. in [21] presented a novel
PQ mesh, which can be used to model developable surface in strips. Recently, Wang presented a FL
mesh modelling scheme in [37], which models developable mesh surfaces with a more complicated
shape. Of course, if a given mesh surface P is developable, the length of feature curves will not be
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changed during the flattening. However, it is never easy to modify any of these approaches so that
they can process a surface from non-developable to developable while preserving the length of feature
curves. Besides, the computation in [40, 12, 21, 37] is much slower than the WireWarping approach
introduced in this paper.

1.2. Contributions and overview

The work presented in this paper has the following technical contributions:

• A novel method WireWarping is introduced as a fast surface flattening algorithm which pre-
serves the length of feature curves.

• Two schemes – the Progressive Warping and the Global Warping are developed, where the
former scheme is more flexible for local shape control on feature curves and the latter one gives
better performance on those highly curved surface patches.

• The flattening process is Benefited from reformulating the constrained optimization problem
in the angle space. WireWarping is a fast surface flattening approach – in all our tests, the
computation can be finished in an interactive speed.

The paper is organized as below. After giving necessary preliminaries in section 2, the progressive
warping scheme of WireWarping is presented in section 3. Section 4 formulates the warping of wires
globally under a framework of constrained optimization. Experimental results as well as limitations
are discussed in section 5. Lastly, the paper ends with the conclusion section.

2. Preliminary

We first give necessary definitions and preliminaries.

Definition 1 Feature curves are the piecewise linear curves formed by polygonal edges on the
given piecewise linear surface P to be flattened, where every segment on a feature curve is required
to have the same length on P and the flattened piece D.

Definition 2 For a feature curve, if its planar shape on the flattened piece D has been predefined,
it is named as a key feature curve; other feature curves are called accessory feature curves, whose
planar shapes are determined by minimizing the variation between the surface angle and the planar
angle at each endpoint of segments.

Definition 3 Darts are the curves defined on the piecewise linear surface P , which specify the
place to be cut out.

For different products, different sets of feature curves are defined by industrial designers. Feature
curves are adopted in the 3D design to control the shape of final product, and the role of these feature
curves is like control curves for lofting in geometric modelling systems. However, for products that
are fabricated from 2D sheet materials, an important requirement of the feature curves is that they
should be length invariant during flattening (i.e., work like tendon wires). The red and green curves
shown in Fig.1 are feature curves. In all examples of this paper, the key feature curves are colored
in red, the accessory feature curves are displayed in green, and the boundary curves are shown in
black. The boundary curves are classified into accessory feature curves if no special explanation is
given. Darts are illustrated in blue in all examples, which will be converted into boundary curves
at the beginning of flattening by iteratively introducing duplicated edges on those belonging to the
dart curve. All feature curves are in general called wires in the rest of the paper.

Definition 4 Each region circled by feature curves on the given surface P is defined as a wire-patch.

For a given surface patch P , it can be segmented into several wire-patches. Fig.2(a) illustrates
the wire-patches on the shirt with different colors. The boundary of a wire-patch is recorded by a
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Figure 2: The preliminary construction of wire-patches. (a) left – the wires (note that the darts have
been converted into boundary curves), middle – the given piecewise linear surface, and right – the
wire-patches that are visualized in different colors. (b) illustration for the wire-nodes (the wire-nodes
belonging to different wire-patches are shown in different colors).

list of wire-nodes, where each wire-node is coincident with a vertex on wires of surface patch P . For
the vertex v on a feature curve, it may have more than one wire-nodes attached (e.g., the vertex
circled by blue curves in Fig.2(b)). The number of wire-nodes associated with a surface vertex v is
determined by the number of wire-patches adjacent to v.

Definition 5 A wire-node is denoted by qi
j with the superscript for the index of the wire-patch Pi

holding it, and the subscript represents its index in Pi (ordered anti-clockwise); v(qi
j) represents the

vertex holding qi
j that is named as the host vertex of qi

j .

For three neighboring wire-nodes qi
j−1, qi

j and qi
j+1 on the same wire-patch, αi

j is employed to
represent the surface angle on Pi formed by them. The value of αi

j can be evaluated by summing
the angles of polygons fk with fk ∈ Pi at the host vertex v(qi

j). The 2D angle formed by these three
wire-nodes after flattening is denoted by θi

j – details about how to compute θi
j will be addressed

later. A data-structure entity is developed for wire-nodes so that we can easily find the host vertex
v(qi

j) of a wire-node qi
j in a constant time complexity. The wire-nodes in other adjacent wire-patches

at v(qi
j) is also stored in this entity. Also, in order to travel among neighboring wire-patches, the

following wire-curve is defined.

Definition 6 A wire-curve is defined by an ordered list of directional edges on P which separates
two neighboring wire-patches.

It is obvious that the wire-curves are coincident to feature curves, and the boundary of a wire-patch
consists of several wire-curves in general. A wire-patch stores a collection of its wire-curves and a
wire-curve entity records its left/right wire-patches in the data structure.

Before discussing details of the WireWarping approach, we still need to figure out one more
problem – how to specify the shape of key feature curves in <2. As will be described later, the shape
of wires in <2 are determined by the computed planar angles associated with wire-nodes (i.e., the
value of θi

j at qi
j). Therefore, users can specify the shape of a key feature curve in <2 by assigning

θi
j of wire-nodes on the key feature curve. Users sometime do not explicitly give the shape of a key

feature curve, but just wish that it remains the shape on the given surface P . To reflect the intention
of this, we assign the 2D angle of a wire-node q on key feature curves as θ(q) ≡ α(q) if v(q) is a
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boundary vertex. If v(q) is an interior vertex on P , the value of θ(q) is given as

θ(q) ≡ 2π · α(q)∑
qk∈v(q) α(qk)

, (1)

where qks are the wire-nodes associated with v(q). By Eq.(1), the 2D angles of wire-nodes associated
with an interior vertex are proportional to their values in 3D, and the sum of these 2D angles is
restricted to 2π – to be locally flattenable (cf. [37]). Based on the above definitions and preliminaries,
two schemes of WireWarping will be presented in the following sections.

3. Progressive Warping Scheme

The progressive warping scheme of WireWarping will be presented in this section, which simulates
the warping of wire-patches from <3 into <2 one by one. After addressing the warping problem of a
single wire-patch, we consecutively present the progressive warping algorithm, the method for placing
feature curves in <2, and the method to compute interior meshes of wire-patches.

3.1. Computing length-preserved optimal boundary of a wire-patch

A single wire-patch Pi is in fact a piecewise linear surface patch with the disk-like topology. The
method of flattening it into a planar patch retains the length of edges on its boundary (i.e., on the
feature curves of P ) will be given below. More specifically, we introduce an algorithm that simulates
the edges on boundary of wire-patches as tendon wires and flattens the wires onto plane by warping
them. During the flattening, we retain the lengths of edges on wires and also minimize the surface-
angle variation between edges on wires. Therefore, the shape of a warped wire-patch in 2D is similar
to its shape on the given surface patch P .

Based on the above requirements, we can compute the optimal planar boundary of a wire-patch
under a constrained optimization framework. The angle variation term is set as the soft constraint
in the objective function, and the length invariant term is assigned as the hard constraint. Study
in [38] shows that formulating this problem in the angle space as follows can greatly simplify the
computation.

min
θi

n∑

i=1

1
2
(θi − αi)2 s.t. nπ −

n∑

i=1

θi ≡ 2π,
n∑

i=1

li cosφi ≡ 0,
n∑

i=1

li sinφi ≡ 0 (2)

where θi is the 2D angle associated with the wire-node qi, αi represents its 3D surface angle, li
denotes the length of an edge on the boundary, and n is the number of wire-nodes on the boundary.
Since all variables are for the same wire-patch, to be simple the superscript index is neglected. From
the closed-path theorem (ref.[26]), we know that: for a simple non-self-intersection planar closed
path, if its path is anti-clockwise, the total turning must be 2π. As shown in Fig.3, the total turning
by accumulating vertex turning angles can be computed by

∑n
i=1(π − θi), which leads to the first

constrain in Eq.(2) that nπ −∑
i θi ≡ 2π. The later two constraints in Eq.(2) are derived from the

position coincidence requirement. By giving the inner turning angles θis and placing the wire-node
q1 at the origin, the planar coordinate (xi, yi) of a wire-node qi becomes xi =

∑i−1
k=1 lk cosφk and

yi =
∑i−1

k=1 lk sinφk. As illustrated in Fig.3, we have θi = 2π − (φi − β) at the wire-node qi and
β = φi−1 − π at the wire-node qi−1, which yields

φi = π − θi + φi−1. (3)

Together with φ1 = π− θ1, the general formula for φi can be derived as φi = iπ−∑i
b=1 θb. In order

to ensure the boundary of a wire-patch being closed, we must let (xn+1, yn+1) be coincident with the
origin, which leads to the last two constraints in Eq.(2).
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Figure 3: The computation of length-preserved optimal boundary (from [38]).

Algorithm 1 Newton’s Method
1: while ‖δθ‖2/n > 10−8 do
2: Solve ∇2J(X)δ = −∇J(X);
3: X ← X + δ;
4: end while

With the Lagrange multiplier λ = (λθ, λx, λy), the constrained optimization problem defined in
Eq.(2) can be converted into an augmented objective function

J(X) =
n∑

i=1

1
2
(θi − αi)2 + λθ((n− 2)π −

n∑

i=1

θi) + λx

n∑

i=1

li cosφi + λy

n∑

i=1

li sinφi, (4)

which can be minimized using the Newton’s method [29] as shown in Algorithm 1 with δ = [δθ δλ]T .
The size of Hessian matrix∇2J(X) is n+3. To speed up step 2 in the Newton’s routine, the sequential
linearly constrained programming is used to minimize J(X) by neglecting the terms coming from
the second derivatives of the constraints in the Hessian matrix ∇2J(X). The equation

∇2J(X)δ = −∇J(X)

solved at each iteration is simplified into
[

I ΛT

Λ 0

] [
δθ

δλ

]
=

[
Bθ

Bλ

]
(5)

with X = (θ1, ..., θn, λθ, λx, λy). In this equation, Λ, Bθ and Bλ can all be efficiently evaluated in
recursive forms (see [38]). Eq.(5) can then be solved by

ΛΛT δλ = ΛBθ −Bλ (6)

δθ = Bθ − ΛT δλ (7)

where ΛΛT is 3 × 3 (as Λ is 3 × n). After computing the optimal values of θi, the values of φi can
be determined by Eq.(3). Therefore, the optimal position of every wire-node is given by

qi+1 = qi + (li cosφi, li sinφi)T . (8)

In all our tests, Newton’s routine reaches the terminal condition in less than 10 iteration steps.

Computation with Locked 2D Angles Different from the surface warping in [38], here the
computation of the optimal planar boundary for a wire-patch may need to lock the values of 2D
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angles at some wire-nodes. For example, if the wire-node qi is located on a key feature curve with its
2D shape specified by designers – an optimal value θ̂i at qi is given. We embed this constraint into the
above numerical computation by modifying the linear equation system in Eq.(5). For a wire-node qi

with the specified optimal 2D angle θ̂i, we firstly let θi = θ̂i before starting the Newton’s algorithm.
The ith column in Λ and the ith row in ΛT are then replaced by zeros. Lastly, the ith element in Bθ

are assigned to zero. When modifying the linear equation system by this way, ΛΛT in Eq.(6) may
become singular if too many 2D angles are locked. Therefore, to be numerically stable, we conduct
the Singular Value Decomposition (SVD) [31] to solve Eq.(6).

Besides the wire-nodes on key feature curves, there is also another reason that the 2D angle on
wire-node q needs to be locked. Let Q̂(q) = {qk ∈ v(q)} \ {q} represents the set of other wire-nodes
associated with the host vertex v(q) except q, and Γ is defined as the set of all wire-patches holding
the wire-nodes in Q̂(q). If the host vertex v(q) of q is an interior vertex on the given surface patch,
when all wire-patches in Γ have been warped into plane (i.e., all nodes in Q̂(q) have their 2D angles
determined), we need to lock the 2D angle of q as

θ(q) = 2π −
∑

qk∈Q̂(q)

θ(qk). (9)

Otherwise, the flattened wire-patches around v(q) will not be compatible to each other.

3.2. Progressive warping algorithm

The basic idea of the progressive warping algorithm is to warp the wire-patches into plane progres-
sively by using the angle-based method presented above. The strategy of our progressive warping is
somewhat similar to [8]. After computing the optimal 2D angles of wire-nodes on all wire-patches,
we can iteratively determine the position of feature curves (i.e., the host vertices of wire-nodes) in
<2 followed by placing the interior mesh of each wire-patch. To flatten wire-patches progressively,
we need to determine the warping order. Starting from positioning the wire-patches adjacent to
key feature curves, we wish the first warp is always the wire-patch having more 2D angles locked
wire-nodes. Therefore, we defined the shape-evidence factor on each wire-patch Pi as

%(Pi) = n′/n (10)

where n′ is the number of wire-nodes with their 2D angles known and n is the number of all wire-nodes
on Pi. We employ a maximum heap keyed by the shape-evidence factor to determine the warping
order of wire-patches. Pseudo-code of the progressive warping algorithm is shown in Algorithm 2.
Fig.4 shows an illustration for the warping order of wire-patches determined by this algorithm.

Figure 4: Illustration for the warping order of wire-patches determined by Algorithm 2. Note that
wire-nodes on the key feature curves have been fixed at the beginning of the algorithm.
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Algorithm 2 Progressive Warping
1: Construct wire-patches by the feature curves on a given surface patch P ;
2: Initialize the shape-evidence factors of all wire-patches;
3: Insert all wire-patches into a maximum heap Υ keyed by the shape-evidence factors;
4: while Υ is not empty do
5: Remove the top wire-patch Pt from Υ;
6: Warp the boundary wires of Pt into <2 (by the method in section 3.1);
7: for the host vertex v(qb) of every wire-node qb ∈ Pt do
8: if v(qb) is an interior vertex AND all wire-nodes in v(qb) but q (q 6= qb) have their 2D angle

determined then
9: Assign the value of θ(q) by the method of Eq.(9);

10: end if
11: end for
12: Update %(...) of all wire-patches neighboring to Pt (by Eq.(10)) and thus their positions in Υ;
13: end while
14: Lay out the feature curves in <2;
15: Computing interior meshes of each wire-patch.

3.3. Laying out feature curves and interior mesh vertices of wire-patches

After computing the optimal 2D angles on all wire-nodes, we need to lay out the wire-patches and
their interior mesh vertices in <2. The feature curves are placed first, and the positions of interior
mesh vertices are computed with the fixed boundary of wire-patches.

For placing feature curves, we need to reorder wire-patches by propagation and to store them
in a list Ψ. Starting from a seed wire-patch Ps, after inserting Ps into Ψ we check all neighboring
wire-patches of Ps. If any neighbor Pr not in Ψ is found, we insert Pr into Ψ and check the neighbors
of Pr recursively. With the wire-patches ordered in Ψ, we can place the host vertices of wire-nodes
patch by patch. The wire-nodes in a wire-patch are classified into two types: fixed nodes – those
with their host vertices’ 2D positions known, and free nodes – those whose host vertices have not
been placed yet. For the wire-nodes in a wire-patch Pi, we search them anti-clockwise and find the
first free node qe which is next to a fixed node qf . The position of qe’s host vertex v(qe) can be
determined by Eq.(8) with the positions of v(qf ) and its previous fixed node v(qf−), the edge length
of v(qf )v(qe) in <3, and the optimal 2D angle θ(qf ) at qf . Similarly, the latter free nodes on this
wire-patch Pi can be placed consecutively. No fixed wire-node can be found on the first wire-patch
in Ψ. We thus randomly choose two neighboring wire-nodes and fix them in <2 by reserving the
distance between them. In this way, we can lay out all feature curves (i.e., the boundaries of all
wire-patches).

The reason, why we do not employ the order of wire-patches determined in Algorithm 2, is because
this could lead to a wire-patch being placed incorrectly. For instance in Fig.4, after placing the 2nd
wire-patch, the 3rd wire-patch has only one fixed wire-node that leads to an unsuccessful placement
of the next free wire-node. Fig.5(a) shows an example of such failure.

The mesh vertices not associated with any wire-node (i.e., the interior mesh vertices of wire-
patches) finally need to be positioned in <2 to generate a correct mesh surface representation. Every
vertex vi is first placed at the average position of the boundary vertices of the wire-patch holding it
(e.g., Fig.5(c)). Next, the positions of vi are moved iteratively by the operator

vnew
i ← 1

w(vi)

∑

j∈N(vi)

‖vivj‖−1vj , (11)

where ‖...‖ denotes the distance of two vertices on the given surface, N(vi) represents the 1-ring
neighbors of the vertex vi, and w(vi) is the summed weights as
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Figure 5: Laying out feature curves and computing interior meshes of wire-patches: (a) a failure
example for placing wire-patches in <2 with an incorrect order, (b) a successful positioning with the
new order of wire-patches, (c) the interior mesh nodes of every wire-patch are firstly placed to its
center, and (d) the final mesh.

w(vi) =
∑

j∈N(vi)
‖vivj‖−1.

This is in fact the iterative version to solve a Laplacian-like system [27], which has been proven to
be very stable. The iteration stops when the movement of all vertices are less than 10−5, and the
number of iterations is in the range between 10 to 100. To further speed up the computation, we
introduce a relaxing factor τ = 1.5 (like the improvement of convergency using relaxation for the
Gauss-Seidel solver in [7]) to let

vnew
i ← vi + τ((

1
w(vi)

∑

j∈N(vi)

‖vivj‖−1vj)− vi), (12)

so that the number of iteration steps can be reduced by about two third in most examples. An
example result has been shown in Fig.5(d).

4. Global Warping Scheme

The progressive warping scheme works well on those surface patches that are nearly developable;
however, the industrial application sometimes wishes to flatten highly curved surfaces that are far
from developable (e.g., the wetsuit shown in Fig.9 and 10) where the progressive warping scheme
meets great difficulty in giving a satisfactory result. The major reason is that great distortion will
occur on a given warped wire-patch if the surface is far from developable. The progressive warping
scheme will accumulate the distortions on the warped wire-patches from the very beginning to the
last warped one (i.e., the wire-patch that is lastly popped from the heap Υ). Therefore, the last one
has the greatest distortion. The order of warping wire-patches can be adjusted by defining different
sets of key feature curves. However, the accumulated distortion error of all wire-patches has never
been optimized in this way. Therefore, the global warping scheme is developed for highly curved
surfaces.

4.1. Formulation

To compute a flattening of wire-patches by the means of global warping, we integrated the sub-
systems of constrained optimization (i.e., the ones presented in Eq.(2)) into a consistent system to
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warp all wire-patches together. In addition to the closed path constraint and the position coincident
constraints, the compatibility constraint is introduced so that the sum of 2D angles of the wire-nodes
associated with an interior host vertex v is 2π.

Without loss of generality, if there are total m wire-patches constructed on the given surface P , we
have

∑m
p=1 np wire-nodes where np represents the number of wire-nodes for the wire-patch Pp whose

index is p. As all wire-patches will be warped together, every wire-node will have one local index
in the wire-patch and another global index. To simplify the expression, we define a permutation
function Γp(b) for returning the global index of a wire-node on the wire patch Pp with the local index
b, and its inverse function Γ−1

p (j) that gives the local index of a wire-node qj on the wire-patch Pp.
The goal of global warping is to find constrained optimal 2D angles for wire-nodes so that the global
distortion of flattening is minimized, which can be formulated as follows.

minθi

∑
i

1
2(θi − αi)2

s.t. npπ −
∑np

b=1 θΓp(b) ≡ 2π (∀p = 1, ...,m)∑np

b=1 lb cosφb ≡ 0,
∑np

b=1 lb sinφb ≡ 0 (∀p = 1, ...,m)∑
qk∈v θk ≡ 2π (∀v ∈ Φ)

(13)

where Φ represents the collection of interior vertices on accessory feature curves, θi is the 2D angle
associated with the wire-node qi, αi represents its 3D surface angle, and lb denotes the length of an
edge on wires. In summary, if there are l wire-nodes with their 2D angles locked by the key feature
curves, the number of variables for the above problem is

nvar = (
∑m

p=1 np)− l,

and the set of free wire-nodes is defined as Qact. If there are r interior vertices on the accessory
feature curves, the total number of constraints is

ncon = 3m + r.

Using the Lagrange multipliers [29], the constrained optimization in Eq.(13) can be converted into
an augmented objective function that

J =
∑

i∈Qact

1
2(θi − αi)2

+
∑

p

[
λθp((np − 2)π −∑np

b=1 θΓp(b)) + λxp(
∑np

b=1 lb cosφb) + λyp(
∑np

b=1 lb sinφb)
]

+
∑

v∈Φ λv(2π −
∑

qk∈v θk)
. (14)

The objective function is again minimized by Newton’s method (i.e., Algorithm 1) with the sequen-
tial linearly constrained programming, where in each iteration the following linear equation system
(derived from ∇2Jδ = −∇J) is solved.




I ΛT DT

Λ
D







δθ

δλ

δv


 =




Bθ

Bλ

Bv


 (15)

The dimensions of Λ and D are 3m× nvar and r × nvar respectively, where

D = {dv,j} = { ∂2J

∂λv∂θj
} = { ∂

∂θj
(2π −

∑
qk∈v

θk)} =
{ −1 (qj ∈ v)

0 (otherwise)
, (16)

and

Λ = {Λp,j} = { ∂2J

∂λθxy∂θj
} =




∂
∂θj

((np − 2)π −∑np

b=1 θΓp(b))
∂

∂θj

∑np

b=1 lb cosφb
∂

∂θj

∑np

b=1 lb sinφb


 . (17)

Λp,j = 0 if the wire-node qj with θj is not on the wire-patch Pp, and
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Λp,j = (−1,
∑np

b=Γ−1
p (j)

sinφb,−
∑np

b=Γ−1
p (j)

cosφb)T

when qj ∈ Pp. In order to evaluate Λp,j efficiently, we can conduct the following recursive formulas.

Λp,Γp(np) = (−1, lnp sinφnp ,−lnp cosφnp)
T (18)

Λp,Γp(j) = Λp,Γp(j+1) + (0, lj sinφj ,−lj cosφj)T (19)

For the right-hand side vector, since ∂φk
∂θb

=
{

0 (k < b)
−1 (k ≥ b)

, we have

Bθ = {− ∂J

∂θi
} = (αi − θi) + λθp −

np∑

b=Γ−1
p (i)

lb(λxp sinφb − λyp cosφb) + Π(i) (20)

with Π(i) =
{

λv (v(qi) ∈ Φ)
0 (otherwise)

,

Bλ = {− ∂J

∂λθxyp

} =




(
∑np

b=1 θΓp(b))− (np − 2)π
−∑np

b=1 lb cosφb

−∑np

b=1 lb sinφb


 , (21)

and
Bv = {− ∂J

∂λv
} = {(

∑
qk∈v

θk)− 2π}. (22)

All these can be evaluated very efficiently.
We start the computation by letting θi = αi, and the Newton’s algorithm always stops in less

than 10 iterations. After determining the optimal θis, the planar coordinates of vertices on feature
curves can be computed by the method presented in section 3.3. Then, the interior mesh vertices
can be placed in <2 in the same way. Note that when using Eq.(3) to compute the value of φi from
θis, the 2D angles of locked wire-nodes should be included since they also contribute to the shape
of every wire-patch. Nevertheless, they do not show up in the linear system of Eq.(15) since it only
depends on the differentiation with variables (i.e., the angles on free wire-nodes).

4.2. Analysis of numerical computations

The linear equation system above can be solved only if ncon ≤ nvar; otherwise, it becomes singular.
However, we never met the case with ncon > nvar in practice. Even if this occurs, we can still employ
the Singular Value Decomposition (SVD) [31] to find a reasonable approximation of its solution. In
the following discussion, we only concentrate on the cases that ncon ≤ nvar. Letting

H =
[

Λ
D

]
, δh =

[
δλ

δv

]
, Bh =

[
Bλ

Bv

]
,

we have (from Eq.(15))
[

I HT

H 0

] [
δθ

δh

]
=

[
Bθ

Bh

]
,

which leads to a linear equation system with smaller size and a followed substitution as

HHT δh = HBθ −Bh, (23)

δθ = Bθ −HT δh. (24)
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Figure 6: Patterns of the linear equation system in Eq.(15): (a) the pattern without optimization,
and (b) the envelope minimized pattern by the Cuthill-McKee Algorithm [11].

Figure 7: Examples for flattening the main-body of 3D shirt: (a) the color map shows the local
developability on the given surface, (b) the flattening results from the progressive warping scheme
of WireWarping, and (c) the results from the Least Squares Conformal Map (LSCM) [20].

The dimension of HHT is (3m + r) × (3m + r). Eq.(23) can only be efficiently solved by Gaussian
Elimination [31] when (3m + r) < 100, which cannot always be satisfied.

After studying the pattern of the linear equation system in Eq.(15), we find that it is in general
sparse (e.g., the one shown in Fig.6(a)) and symmetric (see Eq.(15)). When using the famous Cuthill-
McKee Algorithm [11] to reorder the elements, it can be converted into a matrix with narrower band
(see Fig.6(b)). In our tests, the semi-band-width falls in the range between 10 to more than 100 – in
other words, using the optimized narrow-band matrix [31] can speed up the computation somewhat
but not too much. We then move to the sparse direct solver – SuperLU (cf. [17]) based on a
sparse LU factorization, by which all examples shown in this paper can be finished in less than 100
microseconds per iteration on a PC with standard configuration. The computational complexity is
approximately linear to 3m + r + nvar.

5. Experimental Results and Discussion

Several examples are tested in this section to demonstrate the performance of our WireWarping
approach. Our first example is a 3D shirt which is generated from the design automation system
of 3D garment. Fig.1 shows the given 3D surfaces with darts, key feature curves and accessory
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feature curves. The flattened 2D pieces shown in Fig.1 are generated by the global warping scheme
of WireWarping – the lengths of edges on feature curves are strongly preserved during the flattening.
Fig.7(a) shows the color map for illustrating the developability on the main-body surfaces of the 3D
shirt, where the local developability at an iterative vertex v is measured by

Edev(v) = |ϕ(v)− 2π| (25)

with ϕ(v) denoting the sum of angles at v for the polygons adjacent to v. When Edev(v) ≡ 0, v
is locally developable; otherwise, the greater value of Edev(v), the higher stretching is given at the
surface around v during flattening. It is easy to find that there are many non-developable regions
on the 3D shirt, therefore flattening results of the 3D shirt should contain distortion in some sense.
Fig.7(b) gives the results from the progressive warping scheme. For comparing our results with
the state-of-the-art approach existing in literature, we choose the Least Squares Conformal Map
(LSCM) [20] which is the core algorithm of the texture mapping function in Maya [24]. Note that
as the method of LSCM does not preserve the scale of a flattening, we add a post-processing step to
scale the flattening result so that it has the same perimeter as the given surface in <3. The results
from LSCM are shown in Fig.7(c). It is obvious that the boundaries at two-sides of the dart on the
back piece in Fig.7(c) have different lengths, which will yield annoying wrinkles when sewing a shirt
from this 2D pattern. The following two error terms are computed in our tests for measuring the
results of flattening.

Edge-Length Error The length variation of edges on the feature curves (wires) is measured by

Elen =
1

N(Ωe)

∑

e∈Ωe

|l0e − le|
l0e

, (26)

where Ωe is the set of edges on all feature curves, N(...) defines the number of elements in a set, l0e
is the length of the edge e in <3, and le is its length in <2.

Angle Error The angle variation of all polygons on the given piecewise linear surface is measured
as

Eang =
1

N(Ωa)

∑

a∈Ωa

|ϑ0
a − ϑa|
ϑ0

a

(27)

with Ωa as the collection of all polygonal angles on the given mesh surface P , and ϑ0
a and ϑa are the

values of the polygonal angle a in <3 and <2 respectively.

For an ideal flattening result, it should let both Elen and Eang be zero. However, these two error
terms in general are not compatible to each other on a non-developable surface. The results from
our WireWarping preserve Elen ≡ 0 and try to minimize the value of Eang.

Homogeneity of Distortion and Aspect Ratio The global homogeneity of distortion Eh and
the global aspect ratio Er, which were proposed by Azariadis and Sapidis in [5], are also measured in
our tests. The ideal values of both Eh and Er are one, which is only shown on an isometric mapping.
Details of their calculation can be found in [5] and are neglected here. The color maps for displaying
the homogeneity of distortion and the aspect ratio on faces are also shown in some results below.

Our second test is to flatten a pair of 3D pants by using different sets of key-feature curves (see
Fig.8). Obviously, when giving different sets of key feature curves, we can get different flattening
results. The progressive warping scheme is easier to be affected by setting different key feature
curves. In other words, it is more flexible so that we can have the ability to control the local shape
of flattened pieces. The third and fourth examples are a piece of wetsuit with highly curved non-
developable surfaces (see Fig.9 and 10). The computational statistics of all the examples are listed
in Table 1. From the statistics, we can conclude that: both the progressive warping scheme and
the global warping scheme of WireWarping can compute a flattened patch while strongly preserving
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Figure 8: Example for flattening 3D pants: (a) the given 3D surface of pants and the color map for
showing the developability – the front and back grainlines are defined as key feature curves, (b) the
results from the progressive warping scheme, (c) the results from the global warping scheme, (d) the
results from LSCM [20], (e) setting mid-thigh and the grainlines below as key feature curves, (f) the
results from the progressive warping scheme, and (g) the results from the global warping scheme.

the length of edges on feature curves. The global warping scheme gives less angle distortion since
it actually distributes the distortion error to all wire-patches but the progressive warping scheme
accumulates the error. Also, both schemes of WireWarping can be finished in an interactive speed.
The results from LSCM always give great variation of lengths on the boundaries to be sewed and the
feature curves, which can be found from both the resultant shape and the computational statistics.
The measurements on the global homogeneity of distortion Eh and the global aspect ratio Er (from
[5]) are also listed and compared in Table 1. On these two measurements, the results from our
WireWarping approach do not show more advantages than LSCM (see Table 1). This is because Eh

and Er relate to the shape of all triangles after flattening. However, our approach does not optimize
the shape of each element.

The last test is given on a symmetric non-developable surface – a quarter-sphere patch (see
Fig.11. The results from both the progressive warping scheme (Fig.11(b)) and the global warping
scheme (Fig.11(c)) of WireWarping are symmetric horizontally. The result from global warping is
also symmetric in the vertical direction but the progressive warping is not. The 2D piece generated
by LSCM is neither horizontally nor vertically symmetric (see Fig.11(d)).

Fig.12 shows an application of our WireWarping approach in the shoe industry. After designing
the cover of a shoe based on the shape of shoe last, the industry looks for a tool that can automatically
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Figure 9: Example for flattening wetsuit – the upper body: (a) given surface with darts and feature
curves, (b) the results from the progressive warping scheme, (c) the results from the global warping
scheme, (d) the results of LSCM [20] that the boundaries to be sewed are with different lengths, and
the color map for showing the Homogeneity of Distortion and the Aspect Ratio [5] on the results
from (e) the global warping scheme versus (f) LSCM [20].

compute the shape of leather pieces so that the shoe can be fabricated from them. In Fig.12, the
2D pieces in Fig.12(b) are generated from the 3D surface patches given in Fig.12(a) by the global
warping scheme of WireWarping. Lengths of feature curves are retained and the surface-angle
distortions along the feature curves are optimized.

5.1. Limitations

By our experience of applying the technique presented in this paper to the garment industry,
the most difficult part of using WireWarping is how to choose appropriate key feature curves. As
demonstrated in Fig.8, Fig.8(b)-(g) show that significantly different flattening results can be obtained
when choosing different key feature curves. The selection of key feature curves does very much depend
on the experience of users. Therefore, for the given model with new set of feature curves or new
topology, we usually start the study by applying the global warping scheme with all feature curves
as accessory feature curves only. After getting a first flattening result, we can then change some
accessory feature curves to key feature curves by setting their planar shapes.

Key feature curves on a given surface may not always be compatible to each other. For example
the 3D pants which were previously shown in Fig.8, if both the curves at the mid-thigh and at the
mid-calf are set to be key feature curves, they will distort other feature curves between them (see
Fig.13). Therefore, in order to get satisfactory results, we need to release some key feature curves
into accessory feature curves as the setup shown in Fig.8(e). One of our future work is to study the
conditions for setting compatible key feature curves.

There are also some extreme cases that the given surface patch cannot be effectively flattened
into a planar piece by preserving the lengths of all feature curves – even if all of them are defined as
accessory feature curves only (e.g., the quarter-sphere in Fig.14 with two feature curves). For these
cases, we may release some of the feature curves (e.g., as shown in Fig.11) so that the patch can be
flattened. We could also conduct the method presented in [37] to deform a given surface into the
shape that is more developable.
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Figure 10: Example for flattening wetsuit – the pants: (a) given surface with darts and feature
curves, (b) the results from the progressive warping scheme, (c) the results from the global warping
scheme, (d) the results of LSCM [20] that the boundaries to be sewed are with different lengths, and
the color map for showing the Homogeneity of Distortion and the Aspect Ratio [5] on the results
from (e) the global warping scheme versus (f) LSCM [20].

Figure 11: Example for flattening a quarter-sphere: (a) the given surface, (b) the result from the
progressive warping scheme, (c) the result from the global warping scheme, and (d) the result of
LSCM [20].
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Table 1: Computational Statistics

Example Piece Method Fig. Elen(×10−3) Eang(×10−3) Eh Er Topt Tall

Progressive 7(b) 0.00 7.72 0.725 0.721 31 47
Front Global 1 0.00 6.71 0.727 0.731 109 110
(1,414) LSCM 7(c) 5.36 0.486 0.952 0.970 Nil 46

Progressive 7(b) 0.00 10.4 0.922 0.921 46 47
Shirt Back Global 1 0.00 4.64 0.922 0.931 125 125

(1,234) LSCM 7(c) 8.85 0.392 0.913 0.955 Nil 63
Progressive 7(b) 0.00 21.5 0.821 0.830 ∼ 0 ∼ 0

Shoulder Global 1 0.00 21.5 0.821 0.830 ∼ 0 ∼ 0
(182) LSCM 7(c) 4.29 1.41 0.938 0.965 Nil 16

Progressive 8(b) 0.00 41.8 0.775 0.717 31 78
Front Global 8(c) 0.00 23.1 0.832 0.703 93 140

Pants (1,729) LSCM 8(d) 8.71 0.737 0.852 0.911 Nil 125
(with set 1) Progressive 8(b) 0.00 72.4 0.716 0.649 47 63

Back Global 8(c) 0.00 30.4 0.671 0.626 94 125
(1,729) LSCM 8(d) 42.5 1.56 0.701 0.835 Nil 125
Front Progressive 8(f) 0.00 15.2 0.796 0.745 31 63

Pants (1,729) Global 8(g) 0.00 13.8 0.801 0.730 109 156
(with set 2) Back Progressive 8(f) 0.00 38.1 0.794 0.746 31 63

(1,729) Global 8(g) 0.00 36.3 0.786 0.711 110 125
Progressive 9(b) 0.00 41.1 0.912 0.951 16 32

Front Global 9(c) 0.00 35.2 0.915 0.948 63 94
Wetsuit (658) LSCM 9(d) 113 2.82 0.985 0.992 Nil 31
upper body Progressive 9(b) 0.00 22.1 0.792 0.892 15 31

Back Global 9(c) 0.00 19.9 0.799 0.875 31 78
(928) LSCM 9(d) 39.4 1.77 0.960 0.980 Nil 31

Progressive 10(b) 0.00 65.4 0.446 0.443 32 94
Front Global 10(c) 0.00 40.0 0.464 0.452 140 187

Wetsuit (1,729) LSCM 10(d) 47.9 4.44 0.587 0.736 Nil 109
pants Progressive 10(b) 0.00 69.8 0.398 0.377 31 62

Back Global 10(c) 0.00 65.7 0.343 0.335 125 156
(1,729) LSCM 10(d) 81.7 5.17 0.456 0.664 Nil 109

Progressive 11(b) 0.00 159.1 0.394 0.511 ∼ 0 ∼ 0
Quarter (56) Global 11(c) 0.00 148.8 0.404 0.518 ∼ 0 ∼ 0
-sphere LSCM 11(d) 64.3 42.1 0.582 0.672 Nil ∼ 0

* The numbers listed in the brackets are the number of polygons on the piece. All the examples are
tested with our implementation on a PC with PIV 3.0GHz CPU + 1GB RAM. The time is measured
in microsecond. The numbers in the Topt column are the time for WireWarping without placing
the interior vertices, and the numbers in the Tall column are the overall time for computation (i.e.,
including the time to place interior mesh vertices).
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Figure 12: The application of WireWarping in the shoe industry: (a) the color map for the developa-
bility of surfaces on a designed shoe (top) and the designed model, and (b) the flattened 2D patterns
that can be used to fabricate the shoe by leather (the lengths of feature curves are preserved).

Figure 13: Too many key feature curves may be incompatible to each other such that unexpected
distortions are given on the flattening results: (a) the given 3D pants with key feature curves at the
mid-thigh, the mid-calf and the lower part of grainline, (b) results of the progressive warping scheme,
and (c) results of the global warping scheme which gives more distorted feature curves.

Figure 14: Too many feature curves (even if only serve as accessory feature curves) on a surface
far from developable can make the WireWarping approach fail: (a) the quarter-sphere with two
accessory feature curves, (b) the result from the progressive warping scheme, and (c) the result from
the global warping scheme.
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6. Conclusion

A novel approach, WireWarping, for computing the flattened planar surface patch from a given
piecewise linear surface has been presented in this paper, which can fully preserve the length of edges
on feature curves – this is very important for many industrial applications. WireWarping simulates
warping a given 3D surface patch into 2D with the boundaries and feature curves as tendon wires to
preserve the lengths of edges on them. During warping, the surface-angle variation between edges
on wires are minimized so that the shape of a piece in 2D is similar to its corresponding 3D patch.
Two schemes – the progressive warping and the global warping schemes are developed, where the
former one is more flexible for local shape control and the latter one gives better performance on
highly curved patches. Experimental results in this paper show that WireWarping can successfully
flatten given piecewise linear surface patches into 2D pieces while preserving the lengths of edges on
feature curves.
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