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Abstract— Keeping a constant cutting force in CNC machin-
ing is very important for obtaining better stability of cutting
operation and improving topography, texture and geometry
of the machined surface. This paper presents a feed-rate
optimization approach based on Material Removal Rate (MRR).
Given a tool-path with predefined feed-rates, the geometry
of raw material, and the shape of cutter, the histogram of
MRR in very fine resolution can be efficiently computed by
using a GPU-based geometric modeling kernel. Starting from
the evaluation given on the finest histogram of MRR, error-
controlled subdivision algorithms are developed to progressively
segment the tool-path into user-specified number of sub-regions.
Different feed-rates are assigned to different sub-regions so that
nearly constant MRR can be achieved while keeping the shape
of the given tool-path unchanged. Experimental tests taken on
real examples verify the effectiveness of this method.

I. INTRODUCTION

Computer Numerical Control (CNC) machines that were

first used in the 1950s now have been widely used in

the industry to take mass production. With the help of

CAD/CAM software, CNC machining process can be well

planned beforehand and its quality and efficiency can be

predicted precisely. A lot of researches have been taken to

compute the tool-paths of CNC machining automatically so

that they can be used to control the movement of cutters

to form a designed shape by metal cutting. Recently, more

and more researchers start to work on adjusting the feed-

rate of cutter on a given tool-path to further optimize the

machining result (ref. [1]). Different control parameters such

as chip thickness, Material Removal Rate (MRR), maximal

acceleration, and resultant forces have been used to optimize

feed-rates. As lack of an efficient method to evaluate the

Boolean operations in massive number of times, MRR-based

method is only employed to adjust the feed-rate at a coarse

level in the past (e.g., [2]). With the help of a geometric

modeling kernel running on GPUs [3], we develop a new

MRR-based technique that is able to optimize the feed-rates

at any user specified level of details.

A. Problem Statement

During a machining process, MRR plays a very important

role to the product’s quality, the tool life and the process

efficiency. MRR refers to the volume of workpiece being
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removed by the moving cutting tool in a unit time. Low

MRR results in low efficiency of machining process. In the

contrary, high MRR may result in bad surface finishing and

internal stresses can be formed over the production. Tools

can be broken in severe case. Therefore, maintaining an

optimal MRR through optimizing the feed-rate of tool-path

is inevitable in a good machining process. The term feed-rate

here refers to the feeding speed of a cutting tool. The prob-

lem becomes more critical in some industrial applications,

where the process of extrusion is applied on the material of

workpiece with a large cutter (see Fig.1 for an example).

A histogram of highly varied MRR can be observed, where

higher MRR indicates a higher force applied on the cutter.

Variation of such forces generates unwanted impact on the

spindle of a machine and therefore results in deflection on

the machined part. Based on this reason, we derive the first

objective of MRR-based optimization of feed-rates.

Objective I: The MRR, R(t), is controlled within

[Rmin, Rmax] during the machining.

The target range of MRR is specified by users according

to the materials of the workpiece and the cutter as well as

the stiffness of the CNC machine’s spindle. In practice, they

are determined via experimental tests. MRR with bounded

variation during machining is achieved through adjusting the

feed-rates of cutters. However, changing the feed-rates of a

cutter too frequently within one tool-path such as what is

shown in Fig.1 will easily cause the dynamic problems of

a machine. Moreover, the software of some CNC machine

limits the lines of G-code to be executed. Therefore, we place

a second objective on our feed-rate optimization.

Objective II: While achieving a bounded MRR, R(t) ∈
[Rmin, Rmax], the number of variations on feed-rates must

be minimized.

To meet the criteria placed in these objectives, we develop

a progressive segmentation approach in this paper. First,

the histogram of MRR at very fine resolution is evaluated

with the help of GPU-based solid modeling kernel [3]. The

feed-rate scheduling to meet the requirement of R(t) on a

target MRR can then be taken at the finest resolution of tool

engagement. To meet the demand on limited times of feed-

rate adjustment, we develop a hybrid subdivision algorithm

to segment the given tool-path into sub-regions and assign

different feed-rates to each sub-regions. The subdivision is

taken in a greedy manner with controlled variation of MRR.



Fig. 1. An example machining process of extrusion by a large cutter: (a)
the workpiece, the cutter, the tool-path (in blue) and G-code used in the
simulation, (b) the resultant workpiece, (c) the shape of cutter, and (d) the
MRR of this machining step changing significantly during the engagement
of cutter – where the improved MRR with optimized feed-rates is displayed
in red.

B. Related Works

To optimize the feed-rates of a tool-path in order to obtain

enhanced performance and quality, the existing approaches

can be classified into two groups: online adaptive-control

based and offline re-scheduling based (ref. [1]). Representa-

tive works are respectively reviewed below.

Online adaptive control-based optimization refers to the

methods using instant information (such as spindle speed,

vibration, cutting force etc.) over the machining process to

adjust the feed-rate simultaneously. Different types of data

are acquired by attaching sensors on CNC machines, cutting

tools or workpieces. Different methods have been proposed

to optimize feed-rates with reference to data acquired in dif-

ferent ways. For example, a fuzzy adaptive control algorithm

is applied in [4] with instant cutting force and vibration

data. In [5], a dynamic characteristic-based fuzzy adaptive

control algorithm is presented to avoid the influence of

cutting force’s variation, where the cutting force is indirectly

evaluated in real-time by monitoring the motorized spindle

current. This kind of online optimization approaches must

have additional setup attached to each CNC machine and

the cost of such setup is high. Moreover, as the approaches

need to inference the control system of CNC machines, it

can only be applied on CNC system with open architecture.

Offline re-scheduling is more widely employed to generate

an optimized tool-path based on simulation. Comparing

to the online approaches, offline methods are flexible and

versatile. No additional device except a computer is required.

Three different models were used in offline methods includ-

ing volumetric models, vector-force models, and rule-based

models. Rule-based models cannot precisely adjust feed-

rates according to the shape variation during the machining

process. Therefore, we only discuss volumetric models and

force models here. Generally speaking, researchers in the

past consider that the force-based model gives more precise

prediction comparing to the volumetric model. However,

force model is not general as various milling forces can be

produced under different cutting conditions even with the

same MRR (e.g., [6]–[9]). They are mainly developed for the

purpose of surface finishing. The force prediction is difficult

to be modeled when the machining process is extrusion with

large volume of material removal as shown in Fig.1.

The feed-rate scheduling functions used in commercial

CAD/CAM software are mainly based on MRR (ref. [1]).

Average instead of instant MRR is usually employed to

predict the cutting forces. As a result, feed-rates are only

adjusted at very rough levels. Volumetric-model based offline

optimization relies on the simulation of CNC machining,

where different representatives have been employed for

workpieces and cutters: image-space representation [2], [10],

boundary representation [11] and space-decomposition based

methods using voxel, octree and distance-field [12]–[14].

Benefited from a recently developed GPU-based geometric

modeling kernel [3] based on the representation of Layered

Depth-Normal Images (LDNI), MRR at very fine level can

be obtained efficiently. For example, the MRR in Fig.1 can

be obtained in 109 seconds on a PC equipped with graphics-

accelerated hardware at consumer level. As a result, the feed-

rate can be controlled at very fine resolution. Starting from

the MRR at finest level, progressive segmentation algorithms

are developed to generate optimized feed-rates meeting the

demands of aforementioned objectives.

C. Contribution

The major technical contribution of this paper comes from

a new segmentation algorithm for feed-rate re-scheduling in

CNC-machining, which significantly improves the quality

of production by offline optimization. Comparing to the

online feed-rate optimization techniques that require an open

architecture of numerical control, this technique can be more

generally taken on different types of CNC systems – it

therefore has higher industrial impact in practice. To the best

of our knowledge, this is the first MRR-based optimization

approach that can result in optimal feed-rates with user-

specified number of adjustments.

II. MRR EVALUATION

MRR at the finest resolution for a given tool-path is

evaluated with the help of GPU-based solid modeling ker-

nel [3]. Our study focuses on the 3-axis CNC machining

although it can be generalized to handle 5-axis machining

as well. As illustrated in Fig.1, the tool-path is actually a

transformation function, T(t) ∈ ℜ3, that can be illustrated

as a 3D curve. We subdivide the whole trajectory into small

intervals with length d (e.g., d = 0.5mm). These intervals

are used to simulate the engagements of a cutting tool during

the machining process. Without loss of generality, pi is

employed to denote the starting point of the i-th interval.

That is, in this interval – also called the i-th engagement Ii,
the center of cutter’s frame moves from pi to pi+1. There



are n such intervals, which approximate the engagement of

a cutter by cascaded transformations: T1,...,n with Ti =
pi+1 − pi.

Given a 3D solid model W for the workpiece before

machining and a 3D model T for the cutter, solid modeling

operators are employed to evaluate the shape variation of

the workpiece during machining. Note that, the 3D model

of a cutter used in the simulation can be obtained by

revolution around its self-rotating axis (e.g., the model shown

in Fig.1(b)). The shape of W after k engagements of the

cutter can be obtained by Boolean operators as

Wk = Wk−1 \ Sk(T ) (1)

with Sk(T ) denoting the swept volume of T from pk to

pk+1 and ‘\’ for subtraction operation of solids. When

knowing the feed-rate of cutter in this engagement, the

material removal rate Rk can be evaluated by

Rk =
V (Wk−1)− V (Wk)

tk
, (2)

where tk is the time spent on moving T from pk to pk+1,

and V (· · ·) represents the volume of a 3D model.

Computing a general swept volume is hard. Therefore,

approximate methods are introduced to evaluate the swept

volume more effectively (ref. [13], [15]). In our application

for feed-rate optimization w.r.t. MRR at a fine resolution,

the number of intervals is large. Boolean operations on

3D models need to be intensively applied. Evaluating ex-

act Boolean operation on complex 3D models is time-

consuming. Therefore, we conduct an alternative strategy to

compute approximate MRR. First of all, Boolean operations

are taken on a sampling-based representation – Layered

Depth-Normal Images (LDNI), which is an extension of ray-

rep. With the help of LDNI representation, the computation

in 3D Boolean operations is degenerated into logic operations

in 1D and can be performed in a highly parallel manner. This

well fits the architecture of modern graphics hardware. As a

result, Boolean operations on LDNI solids can be computed

very efficiently (ref. [3]). Furthermore, when n is large (i.e.,

a small distance d is employed in our experimental tests),

we take the following approximation of Sk(T ) that

Sk(T ) = (pk+1 − p1)T ∪ (pk − p1)T . (3)

This results in a simplified method to evaluate the shape of

W after k engagements as

W̃k = W̃k−1 \ ((pk+1 − p1)T ). (4)

An experimental tests is taken to verify the accuracy of

this simplification (see the illustration in Fig.2). We use

this method to compute the shape of
⋃n

k=1
((pk+1 −p1)T ),

and it is compared with the analytically computed swept

volume of the whole trajectory (i.e.,
⋃n

k=1
Sk(T )). LDNI

representation with high resolution is employed in the tests.

Very small error is observed from the statistics shown in

Fig.2. In summary, this simplification is accurate enough to

be used in the evaluation of MRR at fine resolutions.

LDNI-based Boolean Analytic Err. (%):

d LDNI Res. Volume (Va ) Volume (Vb )
|Va−Vb|

Vb

2.0 10242 30785.7 30801.4 0.0509%

1.0 10242 30786.5 − 0.0482%

0.8 1024
2

30786.8 − 0.0473%

0.5 10242 30787.0 − 0.0467%

Fig. 2. An experimental test to verify the accuracy of the simplified evalua-
tion of MRR by LDNI representation: (left) the analytically computed swept
volume [16] and (right) the illustration for cascaded Boolean operations by
LDNI-based computation. The volume in LDNI-representation is obtained
by the average of LDNI solids in x-, y- and z-directions.

III. FEED-RATE OPTIMIZATION

Using the aforementioned method, MRR at fine resolution

can be obtained efficiently. This section presents the algo-

rithms for re-scheduling the feed-rates so that a target MRR

can be achieved during the engagements of tools. Meanwhile,

the number of feed-rate adjustments is minimized.

A. Re-Scheduling at Fine Level

The purpose of feed-rate optimization is to obtain a smooth

and nearly constant MRR throughout the whole machining

process by altering the feed-rates accordingly. At the instant

that the cutting tool is removing small or no volume of

material, we speed up the cutting tool’s engagement to

improve the efficiency. When the cutter is removing a large

volume of material, the movement of cutter is slowed down

to reduce impact on both the workpiece and the cutter.

This can be realized easily when it is allowed to adjust the

feed-rate F during each interval of our MRR evaluation. In

general, the average MRR in the i-th interval is Vi/t with

Vi = V (Wi+1) − V (Wi) being the volume of removed

material. Here t can be obtained from the length of an

interval divided by the speed of tool’s movement as t =
d/( F

60
), and the feed-rate is scaled by 60 as its unit in G-

code is mm/min. Therefore, to meet a target MRR R̄, the

feed-rate Fi in each interval is adjusted to

Fi =
60d

Vi

· R̄. (5)

However, such kind of feed-rate scheduling taken at the fine

level results in too many times of feed-rate adjustments to

meet the demand described in Objective II.

B. Re-Scheduling by Groups

The divide-and-conquer strategy is applied to re-schedule

the feed-rates to satisfy the demands in both objectives.

Limited number of feed-rates are given to minimize the

resultant MRR in each interval with reference to the target

MRR. This can be considered as a segmentation problem to

subdivide all the n intervals into m groups with m ≪ n.

The intervals in each group Πj are assigned with a constant



feed-rate F (Πj). For i ∈ Πj , when F (Πj) is used as the

feed-rate of cutter, MRR in the interval is

Ri =
F (Πj)Vi

60d
. (6)

Ei =
(
Ri − R̄

)2
defines the MRR error on the i-th en-

gagement. Given a segmentation with groups {Πj}, the total

MRR error on the whole tool-path is then defined as

E({Πj}) =
∑

i

Ei =
∑

i

(
F (Πj)Vi

60d
− R̄

)2

. (7)

This actually defines the L2-norm between the current MRR

and the target. Minimizing E({Πj}) results in the minimal

deviation of MRR in each engagement w.r.t. R̄. From

∂E({Πj})/∂F (Πj) = 0,

we can derive the optimal value of feed-rates in each group

as

F (Πj) = 60dR̄ ·

∑
i∈Πj

Vi∑
i∈Πj

V 2
i

. (8)

Note that, in some CNC machines, the values of feed-

rates are quantized into limited levels. In such cases, F (Πj)
obtained from Eq.(8) is projected onto the nearest value in

quantization.

Now the left problem is how to find a minimal segmenta-

tion with Rmin ≤ Ri ≤ Rmax. At the same time, the feed-

rates must also be controlled within a user specified range

[Fmin, Fmax], which are constrained by the performance of

CNC machines. We first group the intervals according to

the engagements specified in G-code of the input tool-path.

Each group is assigned with a temporary feed-rate by Eq.(8).

In the case that the determined F (Πj) is out of the range

[Fmin, Fmax], a nearest feed-rate in the allowed range is

assigned to F (Πj). Next we further optimize the feed-rates

by subdividing the groups into smaller sub-groups iteratively.

The objective of this iteration is to make Rmin ≤ Ri=1,···,n ≤
Rmax be satisfied using limited number of groups and feed-

rates.

By means of subdividing a group between the engage-

ments Ii and Ii+1, we insert the point pi+1 as an intermedi-

ate location in the G-code of tool-path. As demonstrated in

Fig.3, one engagement in the input G-code has been refined

into five engagements with different feed-rates.

C. Subdivision by Exhaustive Check

A greedy subdivision algorithm is developed to subdivide

one existing group of engagement into two sub-groups.

Specifically, the subdivision process mainly involves three

steps:

1) Selecting the next group of engagement to divide;

2) Locating a best place to conduct the subdivision;

3) Assigning feed-rates to the newly created groups of

engagement.

We repeatedly run these three steps until either of the

following two terminal conditions have been reached:

Fig. 3. Feed-rate of the input tool-path has been rescheduled by refining
one engagement into five – see the refined tool-path and the corresponding
G-code.

• MRRs in all engagements have fallen in the range of

[Rmin, Rmax];
• The number of groups has reached the maximal allowed

number η.

Here the second terminal condition would be favorable to

the CNC machines that cannot process many blocks of G-

code at a time. Moreover, having too many times of change

in feed-rate will result in bad dynamic performance during

machining.

As a greedy algorithm, a group possessing the highest

MRR error on any of its interval is selected in the first step

of each iteration. Specifically, the group to be refined is

Πact = argmaxΠj
{∀i ∈ Πj | Ei}. (9)

This selection in fact is taken according to the L∞-norm on

the MRR error.

In the second step of subdivision, among all engagements

Is,···,e inside Πact, we need to generate a partition to separate

them into two sub-groups: Is to Il (denoted by ΠL
act[l]) and

Il+1 to Ie (denoted by ΠR
act[l]). For a given l, the optimal

feed-rates can be obtained by Eq.(8) for ΠL
act[l] and ΠR

act[l]
respectively. With which, the resultant MRR error according

to the subdivision at l is

Esub(Πact, l) =

l∑

i=s

(
F (ΠL

act[l])Vi

60d
− R̄

)2

+
e∑

i=l+1

(
F (ΠR

act[l])Vi

60d
− R̄

)2

(10)

Among all the possible choices of l, the one leading to a min-

imal Esub(Πact, l) is employed to conduct the subdivision.

The right column of Fig.4 presents the progressive results

generated by this algorithm of exhaustive search.



Fig. 4. Comparison of subdivisions based on different strategies. From top
to bottom, the progressive results after taking 1, 10, 20 and 50 refinements,
where the red curves show the improved MRR. The corresponding feed-
rates are also given in the left-bottom corner of each report (in red). The
workpiece and the input G-code are shown at the bottom.

D. Subdivision by Flooding

In the algorithm introduced above, exhaustive search is

taken to locate a best place to conduct the subdivision. The

algorithm has the complexity of O(n2) for a group with n
engagements. A more efficient flooding algorithm is devel-

oped here to get a good location of subdivision with linear

complexity – O(n). Different from the subdivision using the

exhaustive search strategy, this flooding algorithm is based

on the heuristic that bounding the range of MRR variation

in both left and right sub-groups leads to a good partition.

With this partition and the optimal feed-rates obtained from

Eq.(8), the MRR error can also be reduced promptly.

Starting from the most-left engagement Is and the most-

right engagement Ie, two sub-groups are progressively en-

larged where the one introducing smaller MRR variation will

have higher priority to expand. Detail steps for generating the

partition are listed below.

1) Initialization by ΠL
act = {Is} and ΠR

act = {Ie};

2) Assign Lmin = Lmax = Rs, Rmin = Rmax = Re;

3) Evaluate the cost of expanding left sub-group as

CL = max {Rmax −Rmin,
max(Lmax, Rs+1)−min(Lmin, Rs+1)};

Fig. 5. More than thousands of CNC machines are all suffered from the
problem of unwanted impacts generated by the significant variation of MRR.

4) Evaluate the cost of expanding left sub-group as

CR = max {Lmax − Lmin,
max(Rmax, Re−1)−min(Rmin, Re−1)};

5) When CL < CR, adding Is+1 into ΠL
act, updating Lmin

& Lmax and letting s = s+ 1;

6) If CL ≥ CR, adding Ie−1 into ΠR
act, updating Rmin &

Rmax and assigning e = e− 1.

7) Go back to step 3) until s = e− 1.

The left column of Fig.4 illustrates the progressive results

generated by this flooding algorithm.

E. Hybrid

We compare the converging speed on the MRR errors of

the above two subdivision strategies. As shown in Table

I and Fig.4, the flooding based method converges in the

same trend as exhaustive search but slightly slower. Based

on this observation, a hybrid approach is employed in our

implementation. When the number of engagements in a

group is more than z (e.g., z = 30 is used in our tests),

the flooding based subdivision is employed. Once groups

becomes small, the exhaustive search is conducted to find

the best refinement.

TABLE I

COMPARISON OF DIFFERENT SUBDIVISION STRATEGY

No. of MRR Error: E({Πj})
Groups Flooding Exhaustive Search

11 1,798,634.0 1,604,388.1
21 1,283,127.0 1,143,502.4
31 1,147,297.1 1,111,366.8
41 1,101,741.4 1,081,905.8
51 1,084,741.2 1,073,660.6

IV. RESULTS AND CASE STUDY

The whole pipeline of our MRR-based feed-rate opti-

mization approach is formed by 1) the GPU-based solid

modeling kernel for evaluating the MRR at fine resolution

and 2) the progressive segmentation approach for generating

optimal feed-rates with limited number of variations. The

GPU-based solid modeling kernel is implemented by C++

and nVIDIA CUDA Library, and source code of the kernel

is publicly accessible (ref. [17]). The optimization algorithms

are implemented by Processing [18]. Example results can be

found in Figs.1 and 4.



Fig. 6. Actuator-arm used in the case study – from left to right: the real part,
the CAD model and the definition of arm-roll for verifying the deflection.

Fig. 7. Statistical arm-rolls with target MRR: R̄ = 70 generated by trials
using optimized tool-path with different number of feed-rate variations.
Here, ‘N’ denotes the input tool-path with a constant feed-rate. MRRs
according to optimized feed-rates are also given.

Our case study is collaborated with a machining fac-

tory producing actuator-arms in hard-disk drives, which

read/write data to disks. The quality of this actuator-arm is

of paramount importance as small deflection on the actuator-

arm will lead to unwanted scratches on the disk surface

made by the magnetic head attached on the arm. Extrusion

machining is intensively employed on more than thousand

CNC machines in the factory (see Fig.5). All are suffered

from the problems of unwanted impacts generated by non-

uniform material removal rate. In our study, feed-rates in

the last machining process of extrusion are considered. The

deflection of actuator-arms is analyzed by measuring the

arm-roll on the tip of an arm (see Fig.6 for an illustration).

In our tests, the target MRR R̄ is assigned as 70. Experi-

ments are taken on the optimized feed-rates with 11, 31 and

51 adjustments respectively. The statistical measurements

of arm-rolls are shown in Fig.7 and compared with the

machining result using constant feed-rate (denoted by ‘N’).

It can be observed that our optimization results in smaller

deviation on arm-role among the product trials. Moreover,

most trials obtained from the optimized feed-rates show

tendency towards zero arm-roll.

V. CONCLUSION

In this paper, we present an approach to automatically

optimize the feed-rates of an input tool-path according to

the material removal rate (MRR). The objective of this

optimization is to adjust MRR on a resultant tool-path

as constant as possible. Another constraint on the number

of feed-rate adjustments has also been considered in this

approach by a progressive segmentation strategy. As a result,

our method can effectively reduce the variation on MRR of a

given tool-path with limited number of feed-rate adjustments.

This has also been verified by a case study on real products.

More experiments will be carried out to further verify the

effectiveness of this approach on different machines and

different materials. We plan to attach sensors on cutter to

monitor the influence over different parameters after the feed-

rate re-scheduling.

Only tool-paths of 3-axis CNC machining are considered

in this paper. However, as long as the MRR at fine resolution

can obtained, our feed-rate optimization algorithm can be

generally applied to tool-paths of 4-axis and 5-axis CNC

machining. This will be conducted in our future work.
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