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Abstract— This paper presents a new method for sampling B-
rep solid models intoLayered Depth Images (LDI). The boundary
of the sampled models represented by LDI is closed and the
sampled models are guaranteed to bound the input B-rep models
on the rays of LDI (called conservative). Our sampling method
can be fully implemented by shader programs supported by
various graphics hardware. Experimental results demonstrate
the efficiency of the proposed method, and the applications in
intersecting volume evaluation and Minkowski sum computation
are given at the end of this paper to show the versatility of our
approach.

Index Terms— Sampling, Solid Model, Image Space, Layered
Depth Images, GPU.

I. I NTRODUCTION

The representation of geometric objects based on volumetric
data structure has advantages in many applications, including
collision detection, haptic rendering and Boolean operations,
as it provides a compact and robust description of solid mod-
els. Recently, more and more approaches start to sample B-rep
models into volumetric data and store them in image space
(e.g., [1]–[5]). Many of them employ a representation called
Layered Depth Image(LDI), which is originally proposed in
[6] for rendering purpose. An LDI represents a modelH by a
2D array of pixels viewed from a single camera with parallel
rays that pass through the centers of pixels. Each LDI pixel
stores depth values of the intersection points between the ray
and the boundary surface ofH; usually there are multiple
samples on a ray (therefore multiple layers of images). An
LDI representation of solidH should always have an even
number of samples sorted by depth on its rays, and the portion
between the(2i+1)-th and(2i+2)-th samples (i = 0, 1, · · ·)
on a ray must locate inside the solidH. Thisboundary closure
property has been employed in many applications to compute
discrete forms of volumetric metrics (e.g., intersecting volume
[7]). One advantage of using LDI is that the sampling process
and other related computations can be accelerated by modern
graphics hardware equipped with aGraphics Processing Unit
(GPU). However, the existing methods may fail (e.g., [1]) or
give poor performance (e.g., [5]) when the layer-complexity
of an input model is high (e.g., the models shown in Fig.1).
In such a circumstance, the LDI sampling step would become
the performance bottleneck of the whole system.

In this paper, we present a robust and efficient algorithm
for sampling theboundary representation(B-rep) of a solid
modelH into an LDI representation. While most existing GPU
approaches (ref. [1]–[5]) require a pre-/post-sorting step in

Manuscript submitted on October 20, 2011.
Revision prepared on February 6, 2012.
Authors are with the Department of Mechanical and Automation Engineer-

ing, The Chinese University of Hong Kong, Shatin, NT, Hong Kong (Tel:
(852) 3943 8052; Fax: (852) 2603 6002; E-mail: cwang@mae.cuhk.edu.hk).

their algorithms, our method generates sorted samples during
the process. The main idea is to exploit the bitwise information
obtained from solid voxelization and fetch the depths of LDI
samples with a novel fast bit checking technique together
with the MAX/MIN blending operations. The LDI solids
generated by our approach are guaranteed to bound the input
B-rep models on the rays of LDI, therefore they can preserve
conservativenessin image space. Usually, there are two kinds
of conservativeness on a solid model, namelyoverestimated
and underestimated. An overestimated conservative sampling
means that the result along each ray encloses every interior
segment of an input object on this ray, whereas an underes-
timated sampling generates segments that lie fully inside the
input object (see Fig.2 for an illustration). In the rest of this
paper, the term conservativeness means an overestimated one
without any further specification.

Major Results:

• We present an efficient solid sampling approach in this
paper. Our approach can generate samples of Layered
Depth Images (LDI) in(2 + n/32) rendering passes for
an input solidH with n layers in the sampling direction.
Moreover, this method is scalable and does not limit the
maximal number of layers on the input solid.

• Our sampling method can generate samples ordered by
depth value without any additional sorting (or linear
search) step. It relies on a novel fast bit checking tech-
nique developed in this paper.

• LDI solids generated by this method is conservative to
an input solidH in the image space, which is very
important for many applications (e.g., collision detection
and Boolean operations).

Our paper is organized as follows. Section II provides
a literature review of related research work. Our sampling
method is detailed in Section III. Experimental results and
applications are shown and discussed in Section IV and V.
Finally, we conclude our paper in Section VI.

II. RELATED WORK

In this section, we give a literature review of relevant work
on using accelerated graphics hardware to generate LDI solids
from B-rep models. Prior work can be classified into three
groups based on when to conduct the sorting step to obtain
LDI samples ordered by depth.

One category is to work at a primitive level – sorting the
geometries before rasterization. Wexler et al. [8] decompose
the scene into smaller sub-scenes and sort them from front-
to-back. The sorted sub-scenes are then extracted to form a
set of batches and classic depth peeling will be performed
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Fig. 1. Our goal is to efficiently sample models with complex layers
into samples sorted by depth in image space without pre- or post-sorting.
(a) Different types of models with complicated topology, which are difficult
to be modeled in conventional geometric modeling systems. (b) Scaffold of
trabecular bone consists of2× 2× 2 similar structure units; the hyperboloid
model and the nylon lattice model are both created by merging several
modeling units with complex topology. As shown in (b), when sampling
these models into image space, unsorted samples (left) give an incorrect solid
– illustrated by the blue line segments. A correct solid (right) has samples
stored on rays in the order of depth.

on each batch. A recent approach, coherent layer peeling [9],
also pre-sorts objects and then peels their sorted surfacesin
each iteration in order to achieve approximately linear running
time. However, this pre-sorting strategy is time-consuming for
models with a complex geometry (e.g., the ones shown in
Fig.1).

Some approaches sort samples at a fragment level after
rasterization. Depth peeling [10] is a classic method which
repeatedly rasterizes the same geometry to sort all possible
fragments by depth. However, when a ray intersects a silhou-
ette edge shared by two faces having different orientations, one
of the two intersections will be missed in depth peeling as they
have the same depth value. The boundary closure property,

Fig. 2. An illustration of different types of conservativeness on rays,
where the range between two crosses represents one voxel. Anoverestimated
conservative sampling on the top ray gives a 1D solid betweenp1 and
p4 by discarding the gap betweenp2 and p3 on the given solid, and the
underestimated sampling on the middle ray misses the small solid between
p3 andp4. Our sampling algorithm generates 1) two samplesp1 andp4 for
the top ray, 2) two samplesp1 andp4 for the middle ray, and 3) two samples
p1 andp2 for the bottom ray.

which requires two samples to be output here, is not satisfied.
To solve this problem, Heidelberger et al. [1] proposed a
similar framework that uses stencil buffer instead of depth
buffer to obtain LDI samples; however, this approach requires
an extra sorting step afterwards. Moreover, as all the graphics
hardware has a fixed 8-bit buffer for stencil buffer, triangles
on an input model to be sampled must be decomposed when
the layer complexity of the model is higher than28 = 256
layers. Although the strategy in [11] can be used to detect the
saturation of stencil buffer and then govern the decomposition
of input models, such an extension of [1] will further slow
down the speed as more data communication between GPU
and CPU is needed for the geometry decomposition. These
pioneering works that use graphics hardware to accelerate
the sampling process involves highly redundant passes of
rendering, which lead to the performance bottleneck. Several
recent approaches focus on reducing the number of rendering
passes, including [2]–[4]. However, they all request an extra
sorting step to reorder the resultant fragments. Performing
a post-sorting step on GPU will become a bottleneck when
sampling models with a large number of layers. Consequently,
approaches that work without additional sorting are more
attractive.

Eisemann and Decoret in [12], [13] proposed solid voxeliza-
tion schemes for fast approximating the shape of objects using
bitmask. These methods work well for volumetric rendering
effects, but voxels cannot provide detailed depth values on
samples, thus limiting the accuracy of solids in image space.
Recently, Liu et al. [4] succeeded in capturing up to 32 depth
values simultaneously with a correct front-to-back order in
one single geometry pass. Their method is good for rendering
purpose but has a similar problem as depth peeling when
rays intersect silhouette edges. Another algorithm was later
proposed by them to build a fully programmable pipeline
using CUDA instead of the conventional rasterization pipeline
– this new pipeline is called FreePipe [5]. In FreePipe, they
can handle multiple fragments and therefore sort them in one
single pass. However for a scene with a high depth complexity,
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TABLE I

COMPARISON OFDIFFERENTLDI SAMPLING APPROACHES

Stencil buffer [1] FreePipe [5] Ours
Sorting Required Yes Yes No
Layer Limitation Yes No No

this sorting step integrated with rasterization still degrades
the overall performance of sampling because of its non-linear
nature. Ideally, we wish to obtain LDI samples sorted by their
depth value in a fast way without any extra sorting step during
the sampling process. A method calledconservative sampling
which uses an optimal trade-off between speed and accuracy
is proposed in this paper for this purpose. A comparison states
the difference between existing methods and ours is shown in
Table I.

III. GPU ACCELERATEDCONSERVATIVE SAMPLING

The basic idea of our approach is to approximate the
volume of an input model via binary encoding and count the
occurrences of entering/leaving voxels to index each arrival
fragment that is sampled from the input watertight model
H. Samples falling in the same voxel are processed by
MAX blending algorithm so that the samples are output in a
conservative manner – only one or two samples are generated
within each voxel.

A. Algorithm Overview

Our LDI sampling algorithm consists of two phases: bitwise
mask generation and depth value retrieval.

In the first phase, we compute the solid voxelization of
a modelH with a resolution ofrx × ry × rz by graphics
hardware accelerated rasterization procedure, whererx×ry is
the same as the resolution of the LDI solid to be obtained.rz
is a parameter to be selected by users to control theLevel of
Details in Conservation(LOD-C). The largerrz is employed,
the closer the sampled result is to the exact result. When the
value of rz is small, some short line segments are neglected
on the ray (e.g., the gaps betweenp2 andp3 shown in Fig.2).
However, the 1D solid determined by the sampling will bound
the exact 1D solid ofH on the ray (i.e., conservativeness is
preserved as illustrated in Fig.2). Two bitwise masks,T1 and
T2, are obtained in this phase to govern the retrieval of depth
values for samples on each ray in the second phase, and both
masks are stored in the texture memory as 3D textures (see
Fig.3 for an illustration). The first bitwise mask is obtained
by the single pass technique of solid voxelization [13]. The
method is based on an algorithm that can be implemented as a
fragment shader to process the binary information of an array
of voxels at(x, y, z) with z = 0, · · · , rz−1. The key idea is to
let the shader generate a binary number having the value of ”1”
in all bit-positions lower thanz for every fragment, wherez is
obtained based on the fragment’s depth. This binary number
is blended into the existing information of the array of voxels
in T1 by the exclusive disjunction operator (i.e., XOR), and
the accumulated blending results in a solid voxelization ofthe
rendered modelH. However, as mentioned in [13], some very

Fig. 3. An algorithm illustration on a 32-bit integer variable. A fragment
falling in the voxel (x,y,z) undergoes Fast Bit Checking to get its depth order,
regardless of the number of layers in the model.

thin geometries will be missed inT1 by this method (e.g.,
the segment betweendf5 and df6 in Fig.3). Stimulated by
the conservative voxelization in [13], we conduct the second
pass of rendering to find out the voxels which have fragments
falling in but are missed inT1. These voxels are stored in
another textureT2 (see Fig.3).

The second phase of our algorithm outputs the sorted depth
values of the conservative LDI samples by using theMulti-
Render-Target(MRT). Eight targets where each is attached to
a 2D texture having four channels (i.e., RGBA) can output
a maximum of 32 layers of samples in each rendering pass.
Specifically, starting from the voxels with the smallest index in
the z-direction, a fragment shader is employed to output the
depth values of the fragments falling in the32 voxels from
(x, y, 32t) to (x, y, 32t+ 31) (t = 0, 1, · · · indicating thet-th
pass of rendering). The resultant samples are stored in a 3D
textureT3 with a resolution ofrx × ry ×nmax wherenmax is
the maximal number of layers of the sampled LDI solid. For
a fragment that falls in a voxel(x, y, z), we first conduct a
novel bit checking technique (see Section III-C) to detect the
number of layers of samples in front of it (i.e., in the voxels
(x, y, b) with b < z). If there arep layers ahead, the depth
value of this fragment is then merged into the depth value at
(x, y, p) (see the details in Section III-D). Starting fromt = 0,
by rendering the input modelH for m times, a total of32m
layers of LDI samples, which are sorted by depth values, can
be obtained and stored inT3.

The two phases of our conservative sampling algorithm in
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Algorithm 1 BitwiseMaskGeneration
Input: B-rep of the water-tight solid modelH
Output: T1 andT2

1: glEnable(XOR);
2: // RenderingH by calling shader programs;
3: for all fragmentsfk do
4: z ⇐ GetVoxelPosition(depth(fk));
5: Update all voxels ahead ofz in T1; // Ref. [13]
6: end for
7: glDisable(XOR);
8: glEnable(OR);
9: // RenderingH by calling shader programs;

10: for all fragmentsfk do
11: z ⇐ GetVoxelPosition(depth(fk));
12: if T1(x, y, z) = T1(x, y, z − 1) = 0 then
13: T2(x, y, z) ⇐ 1;
14: end if
15: end for
16: glDisable(OR);

pseudo-code are listed inAlgorithms BitwiseMaskGeneration
andDepthSampleRetrieval.

B. Voxel Classification

For fragments generated during rasterization, it is essential
to identify the type of voxel they fall in and discard frag-
ments that lack contribution to conservative results. Unlike the
common solid and empty voxels which are either fully inside
or outside the given solidH, we classify the other voxels
into four categories. Assumen fragments (f1,f2,...,fn) with
depth(fi) < depth(fi+1) are routed into one voxel(x, y, z),
the voxel is identified as

• Entering Voxel(EV): n is an odd number, andf1 andfn
are entering the solidH;

• Leaving Voxel(LV): n is an odd number, andf1 andfn
are leaving the solidH;

• Entering-Leaving Voxel(ELV): n is an even number, and
f1 is entering the solidH while fn is leavingH;

• Leaving-Entering Voxel(LEV): n is an even number, and
f1 is leaving the solidH while fn is enteringH.

Note that no fragment falls into the solid/empty voxels. The
type of voxels is very important for deciding which fragments
are generated for the conservative sampling result. According
to our definition of conservativeness, the output samples of
different types of voxels are:

• EV: f1 – the fragment with the minimal depth value;
• LV: fn – the fragment with the maximal depth value;
• ELV: both f1 andfn – two fragments with the minimal

and the maximal depth values respectively;
• LEV: ideally, the output is expected to be two endpoints

at the 1D gap with the maximal length.
This selection is implemented by MAX blending method
introduced in Section III-D. However, the blending method
can hardly generate the expected result for LEVs. To simplify
the computation, LEVs are considered as solid voxels in our
approach, which does still satisfy the conservativeness. After

Algorithm 2 DepthSampleRetrieval
Input: B-rep of the water-tight solid modelH, T1 andT2

Output: T3

1: glEnable(BLEND);
2: glBlendEquation(MAX);
3: i ⇐ 0;
4: repeat
5: // RenderingH by calling shader programs;
6: for all fragmentsfk do
7: z ⇐ GetVoxelPosition(depth(fk));
8: if z ≥ 32i and z < 32(i+ 1) then
9: p ⇐ CountLayersAhead(T1, T2, z);

10: if (x, y, z) is EV then
11: // Entering voxel
12: T3(x, y, p) ⇐ 1− depth(fk);
13: end if
14: if (x, y, z) is LV then
15: // Leaving voxel
16: T3(x, y, p) ⇐ depth(fk);
17: end if
18: if (x, y, z) is ELV then
19: // Entering-Leaving voxel
20: T3(x, y, p) ⇐ 1− depth(fk);
21: T3(x, y, p+ 1) ⇐ depth(fk);
22: end if
23: end if
24: end for
25: i ⇐ i+ 1;
26: until no fragment is rendered;
27: glDisable(BLEND);

the bitwise mask generation step of our algorithm, the type
of a voxel (x, y, z) can be easily detected by the information
stored inT1 andT2 as follows.

• EV: T1(x, y, z) = 1, T1(x, y, z − 1) = 0;
• LV: T1(x, y, z) = 0, T1(x, y, z − 1) = 1;
• ELV: T1(x, y, z) = T1(x, y, z − 1) = 0, T2(x, y, z) = 1.

Specifically, whenT1(x, y, z) = T1(x, y, z − 1) = 0, we need
to further detect whether there is any fragment falls into the
voxel (x, y, z). This information is stored in the second bitwise
mask inT2 (see Fig.3 for an illustration). In order to neglect
the computation on LEVs, we do not check the voxels with
T1(x, y, z) = T1(x, y, z − 1) = 1.

C. Fast Bit Checking

In order to generate LDI samples sorted by depth value,
for a fragmentfk falling in the voxel (x, y, z), we need to
find an efficient way to decide where the depth value offk
must be located (i.e., the value ofp in T3(x, y, p)). According
to our definition of conservativeness, every entering voxel(or
leaving voxel) generates one LDI sample and every entering-
leaving voxel (or leaving-entering voxel) has two LDI samples
generated. Therefore, for a fragmentfk falling in the voxel
(x, y, z), we can determine where to locate its depth value in
T3 by counting the number of EV, LV, ELV and LEV in front
of it (i.e., among the voxels(x, y, b) with b = 0, 1, · · · , z−1).
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Intuitively, we can obtain the result by querying the texture
column using bitmask – ‘1 ≪ i’ and the logic ‘AND’ operator
for the i-th bit. However, this method is heavy in computation
since it needs to loop through the whole column to find the
value ofp.

We propose a fast bit checking method to solve the problem
for determining the number of layers in front of a voxel
(x, y, z) on a ray(x, y). The method consists of two parts:
1) arithmetic shift and logic operations on bitmask, and 2)
fast bit counting. InT1, two consecutive bits ‘10’ and ‘01’
indicate the entering and the leaving voxels respectively.Let
T1 be the integer variable for representing the voxels(x, y, b)
in T1 with b = 0, 1, · · · , rz − 1. Then, the bitmask

VmaskE = T1&(((∼ T1) ≪ 1)|1) (1)

gives some bitwise information to specify where EVs are
located, where the part ‘|1’ is for filling the first bit of
shiftedT1 (see Fig.3 for an illustration). Similarly, the bitwise
information on LVs can be found by

VmaskL = (T1&(((∼ T1) ≪ 1)|(∼ ((−1) ≫ 1)))) ≪ 1, (2)

with ‘ |(∼ ((−1) ≫ 1))’ filling the last bit of shiftedT1.
Together withT2, the location of all entering samples and
leaving samples can be found in

Venter = VmaskE |T2, (3)

Vleave = VmaskL|T2. (4)

Fig.3 gives an illustration of an example. Therefore, the
number of layers,p, in front of the voxel (x, y, z) can be
obtained by

p = bitCount((∼ ((−1) ≪ z))&Venter)
+bitCount((∼ ((−1) ≪ z))&Vleave).

(5)

Note that, the value of the above formula can be evaluated
efficiently either by thebitCount function from OpenGL
version above 4.0 or by the population count based on a
variable-precision SWAR algorithm [14]. The fast bit checking
method proposed here can achieve50− 100 times of speedup
compared with the exhaustive bitwise checks.

D. MAX Blending for Depth Value Retrieval

As mentioned above, we conduct the blending mechanism
provided by graphics hardware to select the LDI samples
among the fragments falling in the same voxel. In differ-
ent types of voxels, different requirements (i.e., fragments
with the minimal or maximal depth values) are given for
conservative sampling. However, current graphics hardware
does not support MAX and MIN blending together. Therefore,
we transform the value of depth inT3 to fit the hardware
constraint. In the resultant textureT3 which stores the LDI
samples, for a sample stored inT3(x, y, p), T3(x, y, p) gives
an LDI sample that starts to enter the solidH whenp is odd;
T3(x, y, p) is a leaving sample whenp is even. When there
are multiple fragments falling in an EV which hasp layers in
front (p should be even), the fragment with the minimal depth
will be selected. There is an even number of layers in front of
an LV. Moreover, all the depth values are normalized into the

range[0, 1] during rasterization. Based on these observations,
we can map the requirement for selecting the minimal depth
into the selection of the maximal depth (by MAX blending).
Specifically, for the fragmentf with a depth valuedf that
falls in a voxel withp layers in front, the blending function
at the textureT3 should be

T3(x, y, p) =

{

max(1− df ) if p is odd
max(df ) if p is even

(6)

In this way, the depth value of an LDI sample stored inT3 is
T3(x, y, z) whenz is even and the stored depth value becomes
1− T3(x, y, z) whenz is odd.

E. Implementation Details

In order to reduce the number of passes, we needMultiple
Render Target(MRT) provided by graphics hardware, which
allows a shader program to render data to textures directly
and these textures can also be used as input to other shader
programs. Our implementation is based on OpenGL Shading
Language (GLSL). Using MRT of GLSL can output data to
multiple textures simultaneously. In the bitwise mask genera-
tion phase of our algorithm, we perform voxelization with the
volume ofrx×ry×rz so that the 3D texturesT1 andT2 have
the sizes ofrx× ry× ceil(rz/128) with GL RGBA32UI EXT
as the pixel format. Since every pixel in the 3D texture can
have, four 32-bit channels, RGBA, a total of 128-bit can
be output per pixel. Modern graphics hardware can afford
at most 8 MRTs, thus a maximal of8 × 128 = 1024 bits
information can be generated by a fragment shader in one
pass of rendering. Therefore, a single pass voxelization can
produce voxels withrz = 1024 (i.e., LOD-C). In most cases
of conservative sampling, usingrz = 1024 generates accurate
enough LDI samples.

To be general, formulas of the fast bit checking technique
given in Section III-C assume that the whole row of voxels
(x, y, b) with b = 0, 1, · · · , rz − 1 is represented by one single
binary number inrz-bits. However, the implementation in
GLSL is based on 8 pixels with RGBA channels (i.e.,8 × 4
integers in 32-bits). Shifting across these 32 integers need to
be carefully processed in the shader program (see the source
code provided in [17]).

After the bitwise mask generation phase of our algorithm,
we acquire the maximal number of layers,nmax, before the
depth value retrieval phase so that the resolution of the third
3D texture,T3, can be determined asrx × ry × ceil(nmax/4).
Again, the RGBA channels of each pixel inT3 can store the
depth values of 4 LDI samples. To obtainnmax, we can add
one pass of rendering between the two phases of our algorithm.
A fragment shader that counts the layers by the function in
Eq.(5) is employed to render the number of layers along each
ray into the framebuffer. The maximal number among all
pixels in the framebuffer can be obtained by either reading
back to CPU or the efficient prefix-sum technique [15]. Our
experimental tests by reading back to CPU can also obtain
the value ofnmax very efficiently on LDI with a resolution of
512× 512.
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TABLE II

COMPUTATIONAL TIME STATISTICS (IN M ILLISECOND).

No. of Stencil Buffer Our Approach FreePipe
Models Fig. Triangles LDI Time+ LDI Time LDI Time+

Scaffold Trabecular-bone (2× 2× 2) 1 876K 34-42-42 781 (575) 32-38-42 206 36-42-44 247 (212)
Scaffold Hyperboloid (1× 1× 4) 1 130K 12-12-32 38.9 (11) 12-12-32 20.5 12-12-32 78.6 (71.1)

Lattice of Nylon (4× 2× 1) 1 654K 40-32-16 174 (73) 40-32-14 30.2 40-32-16 138 (125)
Chain 5 402K 6-Incorrect-6 236 (6) 6-192-6 35.5 6-266-6 495 (487)
Brush 6 278K 100-42-10 563 (373) 100-40-10 63.7 100-44-10 328 (294)

Geodesic 8 51.2K 24-14-20 72.2 (48) 24-14-18 62.3 24-14-20 81.3 (74.2)
∗Models are sampled into LDI with the resolution of512× 512, and LOD-C=1024 is employed in conservative sampling.
+The numbers shown in the brackets indicate the time spent in sorting LDI samples.

TABLE III

TIMING FOR CONSERVATIVE SAMPLING WITH DIFFERENTGRAPHIC CARDS (IN M ILLISECOND).

Models GeForce 9800 GTX GeForce GTX 295 ATI Radeon HD 5870
Sten. Buffer Ours FreePipe Sten. Buffer Ours FreePipe Sten. Buffer Ours FreePipe

Scaffold Hyperboloid 70.5 (10) 107 245 (208) 58.8 (11) 46.7 145 (112) 53.6 (16) 26.2 N/A
Lattice of Nylon 526 (58) 502 525 (381) 381 (68) 204 265 (189) 573 (65) 152 N/A

Chain 499 (8) 60.0 1,584 (1527) 582 (7) 58.7 596 (553) 723 (4) 42.7 N/A
Brush 539 (241) 1020 1,010 (861.7) 624 (285) 281 683 (585) 559 (16) 160 N/A

Geodesic 67.8 (35) 135 294 (255) 60.4 (35) 63.7 164 (130) 91 (74) 59.2 N/A
∗FreePipe is implemented by CUDA in [5], which cannot run on the ATI graphics cards.
+The numbers shown in the brackets indicate the time spent in sorting LDI samples.

Fig. 4. The scaffold of a trabecular-bone (left) can be inserted into the Bone
model (middle) and then fabricated by a rapid prototyping machine (right).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Our experimental tests were carried out on a computer with
Intel Core i5 CPU 750 2.67GHz + 4GB RAM and GeForce
GTX580 graphics card. All shader programs are written in
GLSL. Source code has been provided in [17].

Firstly, three models are shown in Fig.1 to demonstrate
how our work can benefit the modeling of scaffolds with
extremely complex geometries, where several unit cells are
merged. The scaffold of trabecular-bone can be inserted into
the Bone model and then fabricated by a rapid prototyping
machine (see Fig.4). Our second example, the Chain model
in Fig.5, has more than 260 layers. An incorrect result is
generated by stencil buffer based method [1] (see Fig.5(a))as
stencil buffer only has 8 bits and thus can only process models
having less than 256 layers when the extension similar to [11]
is not used. Another example with many layers is the Brush
model shown in Fig.6. Table II lists the computational statistics
for sampling the models at the resolution of512× 512 where

LOD-C=1024 is employed for conservative sampling. From
Table II, we observed that our performance is comparable to
Heidelberger et al.’s method [1] and Liu et al.’s method [5] on
models with a small number of layers but outperforms models
with a large number of layers (e.g. Figs.5 and 6). The main
reason is that prior methods need to perform the comparison
sort after obtaining depth lists whereas ours don’t. Usually,
the sorting step takes around 70% of the total time, which
becomes the main bottleneck in the process.

In order to study the performance of our method
comparing to other existing methods on different graphics
hardwares, we further test our benchmarks on three
other graphics cards: GeForce GTX 295, GeForce 9800
GTX, and ATI Radeon HD 5870. According to the
public available benchmark for graphics hardware (http:
//www.videocardbenchmark.net/gpu_list.php ),
their performances are scored as GTX 580 – 3934, Radeon
HD 5870 – 2743, GTX 295 – 1720, and 9800 GTX – 1134,
where the score is the higher the better. The statistics of
timing on these graphics cards are listed in Table III. Together
with Table II, it is easy to find that the speedup of our method
comparing to stencil buffer and FreePipe based methods is
more significant on the advanced modern graphics cards (e.g.,
GTX 580 and Radeon HD 5870). This is because that the
speed of visiting texture memory on these cards has been
greatly improved, which is one trend of graphics hardware
development. Moreover, tests on ATI Radeon card also verify
the generality of our method, which can be applied to all
graphics hardware supporting OpenGL 2.0 or above. An
interesting observation is that the the speed of our method is
slower than the stencil buffer based method on GeForce 9800
GTX when testing the ‘brush’ model. This is also because
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Fig. 5. Sampling on the Chain model by different methods: (a) an incorrect result is generated by stencil buffer scheme [1] – caused by inability to support
more than 255 layers in stencil buffer which has 8 bits only, (b) a result generated by the FreePipe scheme [5], and (c) the samples generated by our scheme
which has merged some layers that are very close to each other ina conservative manner (i.e., have less layers compared with the exact result).

Fig. 6. Sampling the Brush model - with different LOD-Cs. The samplings
with LOD-C in 1024, 128, 64, 32 and 16 take 63.7, 34.5, 26.3 and24.2 (ms)
respectively. The blue regions illustrate the bounding volumes given by the
conservative LDI samples.

of slow 3D texture memory visit provided on GeForce 9800
GTX.

To further speed up the sampling procedure, we can sample
the scene with a smaller LOD-C, especially when we know the
samples on rays are distributed sparsely. Fig.7 shows how the
value of LOD-C affects the sampling result. It is obvious that a
smaller LOD-C gives faster performance and bigger bounding
volume. But it doesn’t mean that the result must look bad. We
compared the appearance of sampling results in two different
levels of conservativeness. In Fig.6, the sampling resultsfrom
LOD-C=1024 and LOD-C=128 have similar appearance and
interior volume.

A. Discussion

To capture samples simultaneously, we need to attach dif-
ferent color targets in framebuffer to several textures. Unfor-
tunately, current specification only allows a fixed number of

attachments to be bounded, and the number of passes in the
second phase depends on running devices – graphics hardware.
Specifically, the smaller number of MRTs is allowed on graph-
ics hardware, the more rendering passes are needed. For appli-
cations that need other attributes (e.g. normals, colors) to be
output together with depth values, putting them together might
increase the number of passes needed and then degrade the
performance. In addition, undesirable mismatches would occur
in MAX blending step. This problem may be alleviated in
future by the new feature, SGIXblendalphaminmax, which
output all four color components but determines blending
results by a comparison of the alpha component only.

V. A PPLICATIONS

We test the LDI solid sampling technique presented in this
paper on two applications: intersecting volume evaluationand
Minkowski sum.

A. Intersecting Volume Evaluation

Our LDI sampling algorithm enables a fast query of in-
tersecting LDI volume of two overlapped models based on
an extension of intersecting volume evaluation by voxels. For
two modelsMA andMB , we can use the solid voxelization
technique in [13] to compute the solid voxels in one rendering
pass for each model, and store the results in two texturesTA

and TB . Another rendering pass with a quadrangle can be
used to activate the fragment shader to compute the Boolean
intersection result ofTA andTB . The resultant solid voxels are
stored in the third 3D texture,Tres. UsingTres as the texture
T1 of our DepthSampleRetrievalalgorithm with triangles of
both MA andMB passed to the fragment shader will result
in LDI samples of the overlapped volume. See Fig.8 for an
example of how the intersecting volume in LDI representation
is computed for two models in different locations.
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Fig. 7. Comparisons of bounding volume (displayed in blue) andsampling
time when different LOD-Cs are used.

B. Minkowski Sum Computation

The same strategy in our scheme can be used to compute the
Minkowski sum,MA ⊕MB , of two polygonal mesh models
MA and MB . The method presented in [16] computes the
solid result ofMA ⊕ MB and stores it in a 3D textureTM .
Their method consists of three steps: 1) polygon culling for
generating the superset of polygon soup, 2) surface voxeliza-
tion to convert the polygon soup into voxels and 3) voxel-based
flooding to generate solid results in voxel representation,all of
which can run on graphics hardware. Again, the resultant voxel
setTM is employed asT1 in the second phase of our algorithm
DepthSampleRetrieval. By adding the passes of rendering both
MA and MB , we can obtain LDI samples as the result of
MA ⊕MB , which is more accurate than the results in voxels.
Fig.9 shows the results of applying our method to further
enhance results obtained from [16], and Table IV shows the
computational statistics in the resolution of512× 512× 512.
Note that only the time of ourDepthSampleRetrievalalgorithm
is listed in Table IV as this is the cost of improving the
accuracy of Minkowski sum.

VI. CONCLUSION

We present a novel technique in this paper to efficiently con-
vert voxels obtained from solid voxelization into theLayered
Depth Image(LDI) representation, which is more accurate.
The sampling result is conservative of the input model. Our
algorithm can be implemented fully on accelerated graphics
hardware that supports the shading language. The parallel

Locations (a) (b) (c)
LOD-C: 128 14.4 ms 17.2 ms 28.6 ms
LOD-C: 1024 34.6 ms 40.3 ms 38.9 ms

Fig. 8. Computing the intersecting volume between the Hands model
(with 30k triangles) and the Geodesic model (with 51k triangles) in different
locations. From the zoomin views of the resultant intersecting volume in LDI
samples, it is easy to find that using a higher LOD-C generates avolume that
can capture more details. The computational statistics are shown in the table.

TABLE IV

TIMING FOR COMPUTING LDI SAMPLES FROMVOXELS OFM INKOWSKI

SUM

Model MA Model MB VBO Time No. of
Trgl. Trgl. Trgl. in Sec. Samples

Bunny 25.3k Ball 0.5k 68.9k 0.072s 602.0k
Bull 12.4k Knot 0.99k 372.5k 0.137s 517.2k
Ear 32.2k Frame 0.096k 55.8k 0.089s 544.8

Grate2 0.94k Grate1 0.54k 425.5k 1.4s 1402.3k
Helix 74.0k Torus 1.6k 474.7k 0.052s 139.6k

nature of our algorithm contributes to the high-speed perfor-
mance of this approach. Experimental results show that our
approach is faster than other sampling methods in generating
of LDI solids. Lastly, we demonstrate the versatility of our
method by two applications - intersecting volume evaluation
and Minkowski sum computation.
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APPENDIX I
POPULATION COUNT (ONES COUNT)

In order to be self-contained, we would like to list the
pseudo-code from [14] that efficiently counts the number of
one in a binary numberx. This is based on 32-bit recursive
reduction using SWAR, but the first step is mapping 2-bit
values into sum of two 1-bit values in a sneaky way.

1) x− = ((x ≫ 1)&0x55555555);
2) x = (((x ≫ 2)&0x33333333) + (x&0x33333333));
3) x = (((x ≫ 4) + x)&0x0f0f0f0f);
4) x+ = (x ≫ 8);
5) x+ = (x ≫ 16);
6) return (x&0x0000003f).


