IEEE COMPUTER GRAPHICS AND APPLICATIONS

Conservative Sampling of Solids in Image Space

Yuen-Shan Leung, and Charlie C.L. WarMember, IEEE

Abstract— This paper presents a new method for sampling B-
rep solid models intoLayered Depth I mages (LDI). The boundary
of the sampled models represented by LDI is closed and the
sampled models are guaranteed to bound the input B-rep models
on the rays of LDI (called conservative). Our sampling method
can be fully implemented by shader programs supported by
various graphics hardware. Experimental results demonstrate
the efficiency of the proposed method, and the applications in
intersecting volume evaluation and Minkowski sum computation
are given at the end of this paper to show the versatility of our
approach.

Index Terms— Sampling, Solid Model, Image Space, Layered
Depth Images, GPU.

I. INTRODUCTION

their algorithms, our method generates sorted samplesagiuri
the process. The main idea is to exploit the bitwise inforomat
obtained from solid voxelization and fetch the depths of LDI
samples with a novel fast bit checking technique together
with the MAX/MIN blending operations. The LDI solids
generated by our approach are guaranteed to bound the input
B-rep models on the rays of LDI, therefore they can preserve
conservativenesisi image space. Usually, there are two kinds
of conservativeness on a solid model, namelerestimated
and underestimatedAn overestimated conservative sampling
means that the result along each ray encloses every interior
segment of an input object on this ray, whereas an underes-
timated sampling generates segments that lie fully indige t
input object (see Fig.2 for an illustration). In the rest bist

The representation of geometric objects based on volumetPP€. the term conservativeness means an overestimated on
data structure has advantages in many applications, imgudWithout any further specification.

collision detection, haptic rendering and Boolean opere;

as it provides a compact and robust description of solid mo'é‘fl-a]or Results:

els. Recently, more and more approaches start to samplp B-ree We present an efficient solid sampling approach in this
models into volumetric data and store them in image space Paper. Our approach can generate samples of Layered
(e.g., [1]-[5]). Many of them employ a representation cille ~ Depth Images (LDI) in(2 + n/32) rendering passes for
Layered Depth Imag€LDI), which is originally proposed in an input solidH with n layers in the sampling direction.

[6] for rendering purpose. An LDI represents a modieby a Moreover, this method is scalable and does not limit the
2D array of pixels viewed from a single camera with parallel ~maximal number of layers on the input solid.

rays that pass through the centers of pixels. Each LDI pixel* Our sampling method can generate samples ordered by
stores depth values of the intersection points betweenaye r depth value without any additional sorting (or linear
and the boundary surface df; usually there are multiple search) step. It relies on a novel fast bit checking tech-
samples on a ray (therefore multiple layers of images). An hique developed in this paper.

LDI representation of solidd should always have an even e LDI solids generated by this method is conservative to
number of samples sorted by depth on its rays, and the portion @n input solid H in the image space, which is very
between the2i + 1)-th and(2i + 2)-th samplesi(= 0,1, - - -) important for many applications (e.g., collision deteatio

on a ray must locate inside the solifl Thisboundary closure and Boolean operations).

property has been employed in many applications to compute

discrete forms of volumetric metrics (e.g., intersectiofume ~ Our paper is organized as follows. Section II provides
[7]). One advantage of using LDl is that the sampling procesgsliterature review of related research work. Our sampling
and other related computations can be accelerated by mod@>hod is detailed in Section Ill. Experimental results and
graphics hardware equipped withGaaphics Processing Unit applications are shown and discussed in Section IV and V.
(GPU). However, the existing methods may fail (e.g., [1]) drinally, we conclude our paper in Section VI.

give poor performance (e.g., [5]) when the layer-compiexit
of an input model is high (e.g., the models shown in Fig.1).

.
In such a circumstance, the LDI sampling step would become]))))
the performance bottleneck of the whole system. In this section, we give a literature review of relevant work

In this paper, we present a robust and efficient algorithﬂ{‘ using accelerated gr_aphics hardware to ger_u_aratg Lissoli
for sampling theboundary representatiotB-rep) of a solid from B-rep models. Prior work can be clas_smed into threg
model H into an LDI representation. While most existing GPLIroups based on when to conduct the sorting step to obtain

approaches (ref. [1]-[5]) require a pre-/post-sortingpste L|D! samples ordered by depth. .
One category is to work at a primitive level — sorting the

geometries before rasterization. Wexler et al. [8] decasepo
the scene into smaller sub-scenes and sort them from front-
to-back. The sorted sub-scenes are then extracted to form a
set of batches and classic depth peeling will be performed

RELATED WORK

Manuscript submitted on October 20, 2011.

Revision prepared on February 6, 2012.

Authors are with the Department of Mechanical and Automatingiieer-
ing, The Chinese University of Hong Kong, Shatin, NT, Hongngo(Tel:
(852) 3943 8052; Fax: (852) 2603 6002; E-mail: cwang@mae.edhkhk).

IEEE COMPUTER GRAPHICS AND APPLICATIONS 2

Fig. 2. An illustration of different types of conservatiess on rays,
where the range between two crosses represents one voxelekestimated
conservative sampling on the top ray gives a 1D solid betweerand
pa by discarding the gap between and ps on the given solid, and the
underestimated sampling on the middle ray misses the small setidekn
p3 andpy. Our sampling algorithm generates 1) two samplesandp4 for
the top ray, 2) two samplgs; andp4 for the middle ray, and 3) two samples
p1 andps for the bottom ray.

which requires two samples to be output here, is not satisfied
To solve this problem, Heidelberger et al. [1] proposed a
similar framework that uses stencil buffer instead of depth
buffer to obtain LDI samples; however, this approach rezguir

an extra sorting step afterwards. Moreover, as all the geaph
hardware has a fixed 8-bit buffer for stencil buffer, trigegl

on an input model to be sampled must be decomposed when
the layer complexity of the model is higher thah = 256
layers. Although the strategy in [11] can be used to deteaxt th
saturation of stencil buffer and then govern the decomiowsit

of input models, such an extension of [1] will further slow
down the speed as more data communication between GPU
and CPU is needed for the geometry decomposition. These
pioneering works that use graphics hardware to accelerate
the sampling process involves highly redundant passes of
Fig. 1. Our goal is to efficiently sample models with complex taye f€ndering, which lead to the performance bottleneck. $éver
into samples sorted by depth in image space without pre- orguehg. recent approaches focus on reducing the number of rendering

(a) Different types of models with complicated topology, whigre difficult asses. includina [21-I41. However. thev all request arraext
to be modeled in conventional geometric modeling systems. (ajf@d of P ! g [2]-{4]. ' y 4

trabecular bone consists 8fx 2 x 2 similar structure units; the hyperboloid sorting step to reorder the resultant fragments. Perfaymin
model and the nylon lattice model are both created by mergingrakv a post-sorting step on GPU will become a bottleneck when
modeling units with complex topology. As shown in (b), when simp gampling models with a large number of layers. Consequently
these models into image space, unsorted samples (left) givecarréct solid . " .
— illustrated by the blue line segments. A correct solid @igras samples approa_lches that work without additional sorting are more
stored on rays in the order of depth. attractive.
Eisemann and Decoret in [12], [13] proposed solid voxeliza-
tion schemes for fast approximating the shape of objectgyusi

on each batch. A recent approach, coherent layer peeling [Siilmask. These methods work well for volumetric rendering
also pre-sorts objects and then peels their sorted surfacegffects, but voxels cannot provide detailed depth values on
each iteration in order to achieve approximately lineanimg samples, thus limiting the accuracy of solids in image space
time. However, this pre-sorting strategy is time-consupfor ~ Recently, Liu et al. [4] succeeded in capturing up to 32 depth
models with a complex geometry (e.g., the ones shown values simultaneously with a correct front-to-back order i
Fig.1). one single geometry pass. Their method is good for rendering

Some approaches sort samples at a fragment level afperpose but has a similar problem as depth peeling when
rasterization. Depth peeling [10] is a classic method whiglays intersect silhouette edges. Another algorithm waer lat
repeatedly rasterizes the same geometry to sort all pessiptoposed by them to build a fully programmable pipeline
fragments by depth. However, when a ray intersects a silhatsing CUDA instead of the conventional rasterization pipel
ette edge shared by two faces having different orientatimms — this new pipeline is called FreePipe [5]. In FreePipe, they
of the two intersections will be missed in depth peeling &y thcan handle multiple fragments and therefore sort them in one
have the same depth value. The boundary closure propesingle pass. However for a scene with a high depth complexity

IEEE COMPUTER GRAPHICS AND APPLICATIONS 3

TABLE |
COMPARISON OFDIFFERENTLDI SAMPLING APPROACHES

[| Stencil buffer [1] | FreePipe [5][Ours]]

Sorting Required Yes Yes No
Layer Limitation Yes No No

this sorting step integrated with rasterization still catgs
the overall performance of sampling because of its noratine 11
nature. ldeally, we wish to obtain LDI samples sorted byrthe

. . . S IEEEEEEEEEEEEE EEEEEEER”EEEEEEEE
depth value in a fast way without any extra sorting step @urir PREP——

(~T) < 1)1

(
which uses an optimal trade-off between speed and accur. LI LI LLLLLERETEEL LLLLLLLEETTL]

1)
is proposed in this paper for this purpose. A comparisoresta [T T[T [[T T[T TTTITTTTTTTTT] I)I [TTT]
the difference between existing methods and ours is shown T T T T T T T T T T T T T T i)
Vs, = (&((~T) < 1)|(~((=1) >» D)) K 1
Table 1 (ORI TR T B PP T T TP
TP T LTI T T T T

IIl. GPU ACCELERATED CONSERVATIVE SAMPLING Vieave = Vmasie|Ts
[T11]

The basic idea of our approach is to approximate tt e i S .
volume of an input model via binary encoding and count tr 2% = o (- « D) sttt iccou (-0 <))
occurrences of entering/leaving voxels to index each alrriy "
fragment that is sampled from the input watertight mod
H. Samples falling in the same voxel are processed |
MAX blending algorithm so that the samples are output in

conservative manner — only one or two samples are generated
ithi Fig. 3. An algorithm illustration on a 32-bit integer variabA fragment
within each voxel. falling in the voxel (x,y,z) undergoes Fast Bit Checking &t gs depth order,
regardless of the number of layers in the model.

A. Algorithm Overview

Our LDI sampling algorithm consists of two phases: bitwise _ _ _ . _
mask generation and depth value retrieval. thin geometries will be missed iff; by this method (e.g.,

In the first phase, we compute the solid voxelization df€ segment betweei;; and dys in Fig.3). Stimulated by
a model H with a resolution ofr, x r, x r. by graphics the conservative voxgllzatlon in [13], we cpnduct the selcon
hardware accelerated rasterization procedure, wherer, is Pass of rendering to find out the voxels which have fragm_ents
the same as the resolution of the LDI solid to be obtaimed. falling in but are m|sseq iffy. These voxels are stored in
is a parameter to be selected by users to controLthel of another texturd’; (see Fig.3).
Details in ConservatiofLOD-C). The larger-, is employed, = The second phase of our algorithm outputs the sorted depth
the closer the sampled result is to the exact result. When t@dues of the conservative LDI samples by using Kelti-
value ofr, is small, some short line segments are neglecté&ender-Targe{MRT). Eight targets where each is attached to
on the ray (e.g., the gaps betweenandps shown in Fig.2). a 2D texture having four channels (i.e., RGBA) can output
However, the 1D solid determined by the sampling will bound maximum of 32 layers of samples in each rendering pass.
the exact 1D solid off on the ray (i.e., conservativeness i$pecifically, starting from the voxels with the smallestérdn
preserved as illustrated in Fig.2). Two bitwise masksand the z-direction, a fragment shader is employed to output the
T, are obtained in this phase to govern the retrieval of depliepth values of the fragments falling in ti3¢ voxels from
values for samples on each ray in the second phase, and Hetty, 32t) to (z,y,32t + 31) (¢ = 0,1, - - indicating thet-th
masks are stored in the texture memory as 3D textures (§88s of rendering). The resultant samples are stored in a 3D
Fig.3 for an illustration). The first bitwise mask is obtaine textureTs with a resolution ofr, x r, X nyax Wheren,,,, is
by the single pass technique of solid voxelization [13]. Thée maximal number of layers of the sampled LDI solid. For
method is based on an algorithm that can be implemented a& &agment that falls in a voxelr, y, 2), we first conduct a
fragment shader to process the binary information of aryarraovel bit checking technique (see Section I1I-C) to detéet t
of voxels at(z, y, z) with z = 0, ---,r, — 1. The key idea is to number of layers of samples in front of it (i.e., in the voxels
let the shader generate a binary number having the valug of '(z,y,b) with b < z). If there arep layers ahead, the depth
in all bit-positions lower thar for every fragment, whereis value of this fragment is then merged into the depth value at
obtained based on the fragment’s depth. This binary numies v, p) (see the details in Section 11I-D). Starting fram= 0,
is blended into the existing information of the array of visxe by rendering the input modet for m times, a total of32m
in T} by the exclusive disjunction operator (i.e., XOR), antfyers of LDI samples, which are sorted by depth values, can
the accumulated blending results in a solid voxelizatiothef be obtained and stored if.
rendered modeH. However, as mentioned in [13], some very The two phases of our conservative sampling algorithm in

IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

Algorithm 1 BitwiseMaskGeneration Algorithm 2 DepthSampleRetrieval
Input: B-rep of the water-tight solid moddl Input: B-rep of the water-tight solid modéll, T; andT;
Output: T} and Ty Output: T3
1: glEnable(XOR); 1: glEnable(BLEND);
2: /I RenderingH by calling shader programs; 2: glBlendEquation(MAX);
3: for all fragmentsf; do 3 i<=0;
4. z < GetVoxelPosition(deptlft.)); 4: repeat
5. Update all voxels ahead afin Ty; // Ref. [13] 5./l RenderingH by calling shader programs;
6: end for 6: for all fragmentsf; do
7: gIDisable(XOR); 7 z < GetVoxelPositiondepth(fi.));
8: glEnable(OR); 8: if z>32iand z < 32(: + 1) then
9: // RenderingH by calling shader programs; 9: p < CountLayersAhead(, T3, 2);
10: for all fragmentsf, do 10: if (z,y,2)is EV then
11: z < GetVoxelPositiondepth(fx)); 11 /I Entering voxel
12. if Th(z,y,2) = Ti(z,y,z — 1) =0 then 12: Ts(xz,y,p) < 1 — depth(fr);
13: To(z,y,2) < 1; 13: end if
14: end if 14: if (x,y,2)is LV then
15: end for 15: /I Leaving voxel
16: glDisable(OR); 16: T3(xz,y,p) < depth(fi);
17: end if
18: if (z,y,z)is ELV then
pseudo-code are listed Mgorithms BitwiseMaskGeneration 19: /I Entering-Leaving voxel
and DepthSampleRetrieval 20: T3(w,y,p) < 1 — depth(fi);
21: T3(z,y,p + 1) < depth(fy);
B. Voxel Classification 22: end if
23: end if

For fragments generated during rasterization, it is eggdent
to identify the type of voxel they fall in and discard frag-
ments that lack contribution to conservative results. kinthe
common solid and empty voxels which are either fully insid
or outside the given solidd, we classify the other voxels
into four categories. Assume fragments (1,/s,...,f») With

depth(f;) < depth(f;11) are routed into one voxdl:, y, z), o) ,
the voxel is identified as the bitwise mask generation step of our algorithm, the type

of a voxel (z,y, z) can be easily detected by the information
stored inT; and T as follows.

24: end for

250 1&=1+ 1

26: until no fragment is rendered;
$7. gIDisable(BLEND);

« Entering VoxelEV): n is an odd number, ang, and f,
are entering the solid/;
« Leaving Voxe(LV): n is an odd number, angy and f, * EV: T1(2,9,2) = 1, Ti(z, 9,2 = 1) = 0;
are leaving the solid?; o W Ti(2,y,2) =0, T (2,y,2—1) = 1;
« Entering-Leaving Voxg[ELV): n is an even number, and * ELV: Tv(2,y,2) = Ta(2,y,2 = 1) = 0, Ta(z,y,2) = 1.
f1 is entering the solidd while f,, is leavingH; Specifically, wheril’ (z,y, z) = T1(z,y,z — 1) = 0, we need
« Leaving-Entering VoxglLEV): n is an even number, andto further detect whether there is any fragment falls in® th
f1 is leaving the solidd while f,, is enteringH. voxel (z, y, z). This information is stored in the second bitwise
Note that no fragment falls into the solid/empty voxels. Th@ask inT: (see Fig.3 for an illustration). In order to neglect
type of voxels is very important for deciding which fragmntthe computation on LEVs, we do not check the voxels with
are generated for the conservative sampling result. Aaegrd 1 (,9,2) =T1(z,y,z — 1) = 1.
to our definition of conservativeness, the output samples of
different types of voxels are: C. Fast Bit Checking
« EV: fi —the fragment with the minimal depth value; In order to generate LDI samples sorted by depth value,

o LV: f, — the fragment with the maximal depth value; for a fragmentf, falling in the voxel (z,y,z), we need to
« ELV: both f; and f,, — two fragments with the minimal find an efficient way to decide where the depth valuefpf

and the maximal depth values respectively; ~ must be located (i.e., the value pfn T3(z,y,p)). According
« LEV: ideally, the output is expected to be two endpoinig our definition of conservativeness, every entering vdael
at the 1D gap with the maximal length. leaving voxel) generates one LDI sample and every entering-

This selection is implemented by MAX blending methodeaving voxel (or leaving-entering voxel) has two LDI saggpl
introduced in Section 1lI-D. However, the blending methodenerated. Therefore, for a fragmefit falling in the voxel
can hardly generate the expected result for LEVs. To simplifx, y, z), we can determine where to locate its depth value in
the computation, LEVs are considered as solid voxels in oy by counting the number of EV, LV, ELV and LEV in front
approach, which does still satisfy the conservativene$grA of it (i.e., among the voxeléz, y, b) with b = 0,1,---, z—1).

IEEE COMPUTER GRAPHICS AND APPLICATIONS 5

Intuitively, we can obtain the result by querying the tegturrange[0, 1] during rasterization. Based on these observations,

column using bitmask —-1' < " and the logic ‘AND’ operator we can map the requirement for selecting the minimal depth

for thei-th bit. However, this method is heavy in computatiointo the selection of the maximal depth (by MAX blending).

since it needs to loop through the whole column to find tHepecifically, for the fragmeny with a depth valued; that

value ofp. falls in a voxel withp layers in front, the blending function
We propose a fast bit checking method to solve the probleah the texturel’s should be

for determining the number of layers in front of a voxel

(z,y,2) on a ray(z,y). The method consists of two parts: Ts(z,y,p) = {

1) arithmetic shift and logic operations on bitmask, and 2)

fast bit counting. InT}, two consecutive bits ‘10’ and ‘01’

indicate the entering and the leaving voxels respectivedy.

T be the integer variable for representing the voxelsy, b)

in Ty withb=0,1,---,r, — 1. Then, the bitmask

VmaskE = Tl&(((N Tl) < 1)|1) (1) . .
E. Implementation Details

gives some bitwise information to specify where EVs are]
located, where the part/1° is for filing the first bit of In order to reduce the number of passes, we ridatfiple

shifted T} (see Fig.3 for an illustration). Similarly, the bitwiseReénder Targe{MRT) provided by graphics hardware, which
information on LVs can be found by allows a shader program to render data to textures directly

and these textures can also be used as input to other shader
Vinaskr = (T1&(((~ T1) < D)|(~ ((=1) > 1)))) < 1, (2) programs. Our implementation is based on OpenGL Shading

with “|(~ ((—1) > 1)) filling the last bit of shifted 7. Language (GLSL). Using MRT of GLSL can output data to

Together withTs, the location of all entering samples andnultiple textures simultaneously. In the bitwise mask gane
leaving samples can be found in tion phase of our algorithm, we perform voxelization witle th

volume ofr, x r, x r, so that the 3D textures; and7> have
Venter = maskE'|T27 (3) the sizes Of‘r X Ty X Cell(?‘z/128) with GL_LRGBA32ULEXT

Vieave = Vimaskp|To- (4) as the pixel format. Since every pixel in the 3D texture can

)) .) have, four 32-bit channels, RGBA, a total of 128-bit can

Fig.3 gives an illustration of an example. Therefore, thgg output per pixel. Modern graphics hardware can afford
number of layersp, in front of the voxel(z,y,z) can be at most 8 MRTs, thus a maximal & x 128 = 1024 bits

max(1 — dy) if p is odd
max(dy) if pis even

(6)

In this way, the depth value of an LDI sample storedlinis
T3(x,y, z) whenz is even and the stored depth value becomes
1 —T5(z,y,z) whenz is odd.

obtained by information can be generated by a fragment shader in one
p = bitCount((~ ((=1) < 2))&Venter) pass of rendering. Therefore, a single pass voxelization ca
+bitCount((~ ((—1) < 2))&Vieave)- ®) produce voxels withr, = 1024 (i.e., LOD-C). In most cases

of conservative sampling, using = 1024 generates accurate
Note that, the value of the above formula can be evaluatggough LDI samplesr,) 9 ng 9

efficiently either by thebitCount function from OpenGL To b | | f the fast bit checki hni
version above 4.0 or by the population count based on_a 0 be general, formufas o the fast bit checking technique
variable-precision SWAR algorithm [14]. The fast bit chierk given in Section 1lI-C assume that the whole row of voxels

method proposed here can achié@e- 100 times of speedup (z,y,b) with b=0,1,.- -, — 1 is represented by one single
. . o binary number inr.-bits. However, the implementation in
compared with the exhaustive bitwise checks.

GLSL is based on 8 pixels with RGBA channels (i.&.x 4
integers in 32-bits). Shifting across these 32 integersl nee
D. MAX Blending for Depth Value Retrieval be carefully processed in the shader program (see the source
As mentioned above, we conduct the blending mechanisiade provided in [17]).
provided by graphics hardware to select the LDI samplesAfter the bitwise mask generation phase of our algorithm,
among the fragments falling in the same voxel. In diffewe acquire the maximal number of layers, .., before the
ent types of voxels, different requirements (i.e., fragteendepth value retrieval phase so that the resolution of thel thi
with the minimal or maximal depth values) are given foBD texture, T3, can be determined as x r, x ceil(nmax/4).
conservative sampling. However, current graphics hardwakgain, the RGBA channels of each pixel iy can store the
does not support MAX and MIN blending together. Thereforgepth values of 4 LDI samples. To obtain,.., we can add
we transform the value of depth ih; to fit the hardware one pass of rendering between the two phases of our algorithm
constraint. In the resultant textufg which stores the LDI A fragment shader that counts the layers by the function in
samples, for a sample stored Ty(z, y, p), T5(x,y,p) gives Eq.(5) is employed to render the number of layers along each
an LDI sample that starts to enter the salidwhenyp is odd; ray into the framebuffer. The maximal number among all
Ts(x,y,p) is a leaving sample whep is even. When there pixels in the framebuffer can be obtained by either reading
are multiple fragments falling in an EV which hadayers in back to CPU or the efficient prefix-sum technique [15]. Our
front (p should be even), the fragment with the minimal deptbxperimental tests by reading back to CPU can also obtain
will be selected. There is an even number of layers in front tdie value ofn,,. very efficiently on LDI with a resolution of
an LV. Moreover, all the depth values are normalized into tHe2 x 512.

IEEE COMPUTER GRAPHICS AND APPLICATIONS 6

TABLE I
COMPUTATIONAL TIME STATISTICS (IN MILLISECOND).

No. of Stencil Buffer Our Approach FreePipe

Models Fig. | Triangles LDI | Time™ LDI [Time LDI [Time™
Scaffold Trabecular-bone (x 2 x 2) 1 876K 34-42-42 781 (575)| 32-38-42 | 206 | 36-42-44 | 247 (212)
Scaffold Hyperboloid [x 1 x 4) 1 130K 12-12-32 38.9 (11) | 12-12-32 | 20.5 | 12-12-32 | 78.6 (71.1)
Lattice of Nylon ¢ x 2 x 1) 1 654K 40-32-16 174 (73) | 40-32-14 | 30.2 | 40-32-16 | 138 (125)
Chain 5 402K 6-Incorrect6 | 236 (6) 6-192-6 | 35.5 | 6-266-6 | 495 (487)
Brush 6 278K 100-42-10 | 563 (373)| 100-40-10| 63.7 | 100-44-10| 328 (294)
Geodesic 8 51.2K 24-14-20 72.2 (48) | 24-14-18 | 62.3 | 24-14-20 | 81.3 (74.2)

*Models are sampled into LDI with the resolution ®f2 x 512, and LOD-C=1024 is employed in conservative sampling.
TThe numbers shown in the brackets indicate the time spent in sorting LDjleam

TABLE Il
TIMING FOR CONSERVATIVE SAMPLING WITH DIFFERENT GRAPHIC CARDS (IN MILLISECOND).

Models GeForce 9800 GTX GeForce GTX 295 ATl Radeon HD 5870
Sten. Buffer] Ours [FreePipe | Sten. Buffer[Ours [FreePipe | Sten. Buffer] Ours | FreePipe
Scaffold Hyperboloid| 70.5 (10) 107 245 (208) 58.8 (11) | 46.7 | 145 (112)| 53.6 (16) | 26.2 N/A
Lattice of Nylon 526 (58) | 502 | 525 (381) 381 (68) | 204 | 265 (189)| 573 (65) | 152 N/A
Chain 499 (8) 60.0 | 1,584 (1527) 582 (7) 58.7 | 596 (553) 723 (4) 42.7 N/A
Brush 539 (241) | 1020 | 1,010 (861.7)| 624 (285) | 281 | 683 (585)| 559 (16) | 160 N/A
Geodesic 67.8 (35) 135 294 (255) 60.4 (35) | 63.7 | 164 (130) 91 (74) 59.2 N/A

*FreePipe is implemented by CUDA in [5], which cannot run on the ATI biegp cards.
TThe numbers shown in the brackets indicate the time spent in sorting LOjleam

LOD-C=1024 is employed for conservative sampling. From
Table Il, we observed that our performance is comparable to
Heidelberger et al.'s method [1] and Liu et al.'s method [B] 0
models with a small number of layers but outperforms models
with a large number of layers (e.g. Figs.5 and 6). The main
reason is that prior methods need to perform the comparison
sort after obtaining depth lists whereas ours don’t. Uguall
the sorting step takes around 70% of the total time, which
becomes the main bottleneck in the process.

In order to study the performance of our method
comparing to other existing methods on different graphics
hardwares, we further test our benchmarks on three
other graphics cards: GeForce GTX 295, GeForce 9800

Fig. 4. The scaffold of a trabecular-bone (left) can be iregkmto the Bone
model (middle) and then fabricated by a rapid prototyping meelfright).

IV. EXPERIMENTAL RESULTS AND DISCUSSION GTX, and ATl Radeon HD 5870. According to the
public available benchmark for graphics hardwahétp
Our experimental tests were carried out on a computer witvww.videocardbenchmark.net/gpu_list.php)s

Intel Core i5 CPU 750 2.67GHz + 4GB RAM and GeForc¢heir performances are scored as GTX 580 — 3934, Radeon
GTX580 graphics card. All shader programs are written IHD 5870 — 2743, GTX 295 — 1720, and 9800 GTX — 1134,
GLSL. Source code has been provided in [17]. where the score is the higher the better. The statistics of
Firstly, three models are shown in Fig.1 to demonstrati@ning on these graphics cards are listed in Table IIl. Toget
how our work can benefit the modeling of scaffolds withwith Table II, it is easy to find that the speedup of our method
extremely complex geometries, where several unit cells aremparing to stencil buffer and FreePipe based methods is
merged. The scaffold of trabecular-bone can be inserted imhore significant on the advanced modern graphics cards (e.g.
the Bone model and then fabricated by a rapid prototypigTX 580 and Radeon HD 5870). This is because that the
machine (see Fig.4). Our second example, the Chain modpked of visiting texture memory on these cards has been
in Fig.5, has more than 260 layers. An incorrect result greatly improved, which is one trend of graphics hardware
generated by stencil buffer based method [1] (see Fig.a&))development. Moreover, tests on ATl Radeon card also verify
stencil buffer only has 8 bits and thus can only process nsodéte generality of our method, which can be applied to all
having less than 256 layers when the extension similar tp [1draphics hardware supporting OpenGL 2.0 or above. An
is not used. Another example with many layers is the Brushteresting observation is that the the speed of our method i
model shown in Fig.6. Table Il lists the computational stids slower than the stencil buffer based method on GeForce 9800
for sampling the models at the resolutionidf2 x 512 where GTX when testing the ‘brush’ model. This is also because

IEEE COMPUTER GRAPHICS AND APPLICATIONS 7

Original Mesh

L] E 2
(a) Stencil Buffer (b) FreePipe Scheme (c) Our Scheme
Scheme

Sampled Model

Fig. 5. Sampling on the Chain model by different methods: (a)hanrrect result is generated by stencil buffer scheme [1]used by inability to support
more than 255 layers in stencil buffer which has 8 bits only,albesult generated by the FreePipe scheme [5], and (c) thdesaggnerated by our scheme
which has merged some layers that are very close to each otlaecanservative manner (i.e., have less layers compared vétexact result).

i attachments to be bounded, and the number of passes in the
second phase depends on running devices — graphics hardware
o 108 Specifically, the smaller number of MRTs is allowed on graph-
ics hardware, the more rendering passes are needed. For appl
cations that need other attributes (e.g. normals, colorgjet
EoDG—6i output together with depth values, putting them togetheghini
T TR Y increase the number of passes needed and then degrade the
I//;”I/l/ ,"” i \\“\ \\\\\\\\\\ performance. In addition, undesirable mismatches woutdioc
Lopc_3 in MAX blending step. This problem may be alleviated in
M future by the new feature, SGlKlendalphaminmax, which
output all four color components but determines blending
Lop.c_i results by a comparison of the alpha component only.

M A
YA

Fig. 6. Sampling the Brush model - with different LOD-Cs. Thenplings)))]]
with LOD-C in 1024, 128, 64, 32 and 16 take 63.7, 34.5, 26.32h@ (ms) We test the LDI solid sampling technique presented in this

respectively. The blue regions illustrate the boundingur@s given by the paper on two applications: intersecting volume evaluatind
conservative LDI samples. . .
Minkowski sum.

V. APPLICATIONS

of slow 3D texture memory visit provided on GeForce 9800
GTX. A. Intersecting Volume Evaluation

To further_speed up the sampling prqcedure, we can sampl%ur LDI sampling algorithm enables a fast query of in-
the scene with a smallgr L,OD'C' especially yvhen we know tl?grsecting LDI volume of two overlapped models based on
samples on rays are distributed sparsely. Fig.7 shows hew Iy, o, ansion of intersecting volume evaluation by voxets. F
value of LOD-C a_ffects the sampling result. It |s_0bV|ousttih1a_tW0 models) 4 and Mg, we can use the solid voxelization
smaller LOD_—C gives faster performance and bigger bo“nd"?@chnique in [13] to compute the solid voxels in one rendgrin
volume. But it doesn’t mean that the.result musF look qu. ss for each model, and store the results in two textiires
compared the appearance of sgmpllng results_ln two d|ffer%[hd Ts. Another rendering pass with a quadrangle can be
levels of conservativeness. In Fig.6, the sampling re$tdts oo 1o activate the fragment shader to compute the Boolean
LOD-C=1024 and LOD-C=128 have similar appearance aftersection result of’4 andTs. The resultant solid voxels are

interior volume. stored in the third 3D texturd,.,. Using T, as the texture
)) T, of our DepthSampleRetrievalgorithm with triangles of
A. Discussion both M4 and My passed to the fragment shader will result

To capture samples simultaneously, we need to attach dif-LDI samples of the overlapped volume. See Fig.8 for an
ferent color targets in framebuffer to several texturestodn example of how the intersecting volume in LDI representatio
tunately, current specification only allows a fixed number a§ computed for two models in different locations.

IEEE COMPUTER GRAPHICS AND APPLICATIONS

Sampling Time (ms)

N

14

12

10

8

61

2
A

1024 512 256 128 64 32 16 8 4

2 1

LOD-C

LOD-C= 1024
(14.4ms)

LOD-C =1
(4.7ms)

LOD-C=512
(9.5ms)

©

| Locatons | (@ [(b
LOD-C: 128 | 144 ms| 17.2 ms| 28.6 ms
LOD-C: 1024 | 34.6 ms| 40.3 ms| 38.9 ms

LOD-C =256
(6.6ms)

LoD-C=2
(4.7ms)

Fig. 8.

Computing the intersecting volume between the Handsemod

(with 30k triangles) and the Geodesic model (with 51k triasylin different

locations. From the zoomin views of the resultant intersectiolume in LDI
samples, it is easy to find that using a higher LOD-C generatedume that
can capture more details. The computational statistics anersin the table.

LOD-C=128 wDC=1

(5.3ms) (4.7ms) TABLE IV
TIMING FOR COMPUTING LDl SAMPLES FROMVOXELS OF MINKOWSKI
Fig. 7. Comparisons of bounding volume (displayed in blue) sampling SUM
time when different LOD-Cs are used.
Model M 4 Model Mg VBO Time No. of
]]) [Trgl. [Trgl Trgl. | in Sec.| Samples
B. Minkowski Sum Computation Bunny | 25.3k | Ball | 05Kk | 68.0k | 0.072s| 602.0K
The same strategy in our scheme can be used to compute theull | 12.4k | Knot | 0.99k | 372.5k| 0.137s| 517.2k
Minkowski sum, M4 & Mg, of two polygonal mesh models GEatr) 829-2": gra;“‘i %%Z?(k 5255-85kk 0-10295 13?)‘;-%(
: rate . rate . . As .
My and Mp. The method presented in [16] computes the'op ™| 72 oy | Torus | 1.6k | 4747k | 0.052s| 139.6k

solid result of M4 @ Mg and stores it in a 3D texturé},.
Their method consists of three steps: 1) polygon culling for

generating the superset of polygon soup, 2) surface vaxelizature of our algorithm contributes to the high-speed perfo
tion to convert the polygon soup into voxels and 3) voxeletlas mance of this approach. Experimental results show that our
flooding to generate solid results in voxel representa@dirof approach is faster than other sampling methods in gengratin
which can run on graphics hardware. Again, the resultanévoxf | p| solids. Lastly, we demonstrate the versatility of our
setT’y is employed ad in the second phase of our algorithmnethod by two applications - intersecting volume evaluatio
DepthSampleRetrievaBy adding the passes of rendering bothng Minkowski sum computation.

M, and Mg, we can obtain LDI samples as the result of

M4 @ Mg, which is more accurate than the results in voxels. ACKNOWLEDGMENT

Fig.9 shows the results of applying our method to further This research is su

X pported by the HKSAR Research Grants
enhance results obtained from [16], and Table IV shows tl?fbuncil (RGC) General Research Fund (GRF) Grants (Ref.:
computational statistics in the resolution ®f2 x 512 x 512. CUHK/417109 and CUHK/417508). Most models tested in
Not_e that.only the time of ou_DepthSampIeRetru_evalgor_nhm this paper are downloaded from Internet, and the helix model
is listed in Table IV as this is the cost of improving th%vas made by the software — JewelCAD. The authors also
accuracy of Minkowski sum. would like to thank the group of Prof. Pheng-Ann Heng for

sharing the ATI Radeon HD 5870 graphics card.
VI. CONCLUSION

We present a novel technique in this paper to efficiently con- REFERENCES
vert voxels obtained from SO|Id. voxehz_aﬂqn into thayered 1) g peidelberger, M. Teschner, and M.H. Gross, “Real-tigwumetric
Depth Image(LDI) representation, which is more accurate. intersections of deforming objectsProc. of VMV 2003 pp.461-468,
The sampling result is conservative of the input model. Oyr 2003.

| ith piing be i | d full |p d h'r‘,z L. Bavoil, S.P. Callahan, A. Lefohn, J.L.D. Comba, and CSilva,
algorithm can be implemented fu _y on accelerated graphi “Multi-fragment effects on the GPU using the k-buffeRtoc. of ACM
hardware that supports the shading language. The paralleli3D'07, pp.97-104, 2007

IEEE COMPUTER GRAPHICS AND APPLICATIONS

Fig. 9. Examples of using our LDI sampling approash2 x 512 x 512) to
improve the accuracy of results obtained from voxel-basedkbivski sum
computation on GPU.

[3] K. Myers, and L. Bavoil, “Stencil routed A-buffer,Proc. of ACM

SIGGRAPH 2007 Sketches (SIGGRAPH ,04ixicle 21, 2007.

B. Liu, L.-Y. Wei, Y.-Q. Xu, and E.-H. Wu, “Multi-layer dpth peeling via

fragment sort,Proc of 11th IEEE International Conference on Computer-

Aided Design and Computer Graphjqsp.452-456, 2009.

F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu, “FreePipe: pro-

grammable parallel rendering architecture for efficient rAudtgment

effects,” Proc. of the 2010 ACM SIGGRAPH Symposium on Interactive

3D Graphics and Gamepp.75-82, 2010.

[6] J. Shade, S. Gortler, L.-W. He, and R. Szeliski, “Layedesgth images,”

Proc. of SIGGRAPH '98pp.231-242, 1998.

F. Faure, S. Barbier, J. Allard, and F. Falipou, “Imageds collision

detection and response between arbitrary volume objetsg. of the

2008 ACM SIGGRAPH/Eurographics Symposium on Computer gknim

tion, pp.155-162, 2008.

D. Wexler, L. Gritz, E. Enderton, and J. Rice, “GPU-aezated

high-quality hidden surface removal,Proc. of the ACM SIG-

GRAPH/Eurographics Conference on Graphics Hardware 7-14, 2005.

N. Carr, R. Mech, and G. Miller, “Coherent layer peelingr ftrans-

parent high-depth-complexity scenedtoc. of the 23rd ACM SIG-

GRAPH/Eurographics Symposium on Graphics Hardwapp.33-40,

2008.

[10] C. Everitt, “Interactive order-independent transgay,” Technical re-
port, NVIDIA Corporation, 2001.

[11] L. Bavoil, and K. Myers, “General purpose z-buffer CS&hdering with
consumer level hardwareTechnical Report 2000-003/RVis, 2000.

[12] E. Eisemann, and X. Decoret, “Fast scene voxelizatiahagplications,”
Proc. of the 2006 ACM Symposium on Interactive 3D Graphicd an
Games pp.71-78, 2006.

[13] E. Eisemann, and X. Decoret, “Single-pass GPU solid koxton for
real-time applicationsProc. of Graphics Interface 200®p.73-80, 2008.

[14] H.G. Dietz, “The aggregate magic algorithmgggregate.Org Online
Technical ReportUniversity of Kentucky.

[15] S. Sengupta, A. Lefohn, and J.D. Owens, “A work-effitistep-efficient
prefix sum Algorithm,” Proceedings of the 2006 Workshop on Edge
Computing Using New Commaodity Architectyrpp.26-27, 2006.

[16] W. Li, and S. McMains, “A GPU-based voxelization appcbato 3D
Minkowski sum computation,ACM Symposium on Solid and Physical
Modelling pp.31-40, 2010.

[17] Y.-S. Leung, and C.C.L. Wang, Conservative LDI Samplihgp:
Iiww?2.mae.cuhk.edu.hk/ ~ cwang/ConLDISampling.html ,
The Chinese University of Hong Kong, 2012.

[4]

(5]

(7]

8]

[9]

APPENDIXI
POPULATION COUNT (ONES COUNT)

In order to be self-contained, we would like to list the

pseudo-code from [14] that efficiently counts the number of
one in a binary numbez. This is based on 32-bit recursive
reduction using SWAR, but the first step is mapping 2-bit
values into sum of two 1-bit values in a sneaky way.

1)
2)
3)
4)
5)
6)

z— = ((z > 1)&0x55555555);
(x> 2)&0233333333) + (2&0233333333));
(x> 4) + 2)&020f0f0f0f);

(x> 8);

(x> 16);

return (z&0xz0000003 f).

