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Abstract— Providing interactive control is a hot topic in the
research of crowd navigation. In this paper, we propose a simple
but effective way for authoring crowd scene. The movement
of each pedestrian is composed of an autonomous part and a
user specified one, the ratio between them can be interactively
adjusted. The governed part is realized by Radial Basis Functions
(RBF) based vector fields. With this governing tool, users can
easily drive the flow of crowds by sketching velocities on anchor
points in the scene. Our approach is fast enough to allow on-the-
fly modification of vector fields.

Index Terms— Crowd Animation, Navigation Control, Radial
Basis Functions, Anisotropic RBF, Vector Field.

I. INTRODUCTION

ASSIVE human crowds are ubiquitous in the real
world, which leads to the necessity for simulating
such scenarios in realistic interactive environment. In the last
decade, crowd simulation techniques have been increasingly
explored and many efforts have been made to modulate
intuitive navigation control and real crowd behaviors. Existing
navigation control techniques can be classified into bottom-
up methods that generally manipulate interactions between
independent agents, or top-down methods that in contrast
rely on the user specified global path planning scheme. The
scenarios generated by the agent based bottom-up frameworks
that focused on the individual behaviors may result in less
realistic crowd behaviors as the interactions between agents or
the environment by the guiding rules are often in a local scope.
When coupled with global navigation, this kind of methods
offers realistic pedestrian motion planning. However, with
increasing number of pedestrians, it becomes computationally
expensive. Therefore, the bottom-up methods are not appro-
priate for the real-time crowd simulation with large number
of people. Different from the agent based methods, the global
behavior of crowds can be easily designed by incorporating
the top-down methods. In this way, a road-map or a vector
field is utilized to cover the entire virtual environment and
handle the flow of crowds and long-term obstacle avoidance.
Nevertheless, controlling crowd behaviors in a global setting
without any wandering behaviors among individuals would not
be adequate.
In the research of crowds navigation, interactive path de-
sign is often a desired function during simulation. However,
most of the existing algorithms only adopt the initial-value
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Fig. 1.

A medieval siege scenario simulated with our method.

based approaches and consider changing the movement when
moving obstacles are encountered. In other words, the goals
and trajectories are specified at the beginning of simulation.
Obviously, this kind of control methods lacks flexibility and
may not be helpful in creating large crowd animation in
complex scenes. In the existing approaches such as [1], [3],
the interactivity is not as intuitive and simple as ours.

For example, in the scenario shown in Fig. 1, several groups
of pedestrians are simulated, each of which acts differently
towards different goals. The behaviors of pedestrians should
be adjusted from time to time. Here, we employ a field based
method to provide an effective and efficient control tool of
large crowd navigation. To make the behavior of pedestrians
more real, autonomous components and the local interaction
among agents is also added to each individual. Details will be
given in the implementation section.

Main Results: In this paper, we propose a simple but effective
method for interactively controlling the navigation of groups of
agents. In our hybrid architecture, each individual is modeled
as a particle with its own personality, whose actual behavior is
determined by a globally governed movement component and
an autonomous movement component. The globally governed
component is derived from a user specified vector field, which
is generated by the anisotropic RBF based vector interpolation.
The autonomous one consists of a velocity proportional wan-
dering and a weighted movement derived from the positions of
anchor points. With this practical crowd navigation controlling
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method, we can easily modify the behaviors of crowds on-the-
fly without hurting the real-time performance. In the current
implementation, we provide the following editing tools by
mouse and keyboard interactions:

1) editing, adding or removing anchor vectors of the flow
field;

2) adjusting the ratio of the governed and the autonomous
movement of each agent.

Our approach has been implemented and tested on several
scenarios, as shown in Fig. 1 and Fig. 3. Fig. 2 gives an
example showing our interactive control tools. Furthermore,
the vector field generated by our method is smooth and can
be fast recalculated during the simulation, which are very good
properties for interactive control of large crowd navigation in
virtual environment. The movement of the crowd of virtual
pedestrians is directed by the underlying continuous vector
field without the need of explicit grid-based representation.
Thus no resolution limitation is posed and a lot of memory
space is saved.

(b) The movement of pedestrians are gradually
changed when user modifies the governing field

(e) After deleting a point, some of the pedestrians

(c) The transfer of crowd can be further controlled
by changing the position and the value attached
to a point.
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(f) Deleting one more point, the crowd moves
towards right, similar to that of (a).

The interactive control of one vector field with arrows indicating the anchor points. The small sub-pictures show the flow field generated in each
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Two groups of pedestrians walk in the city. As they move across the streets, several agents from different groups join together.

A. Previous work

At present, the multiple motion planning solutions for
crowds are either in the top-down manner or in the bottom-
up way. In practice, top-down methods are usually employed
together with other tuning algorithms to generate more plau-
sible results (e.g., [1]), where the systems analyze and store
particular scene information which is useful for path planning
in the form of road maps, graphs or vector fields. Agents
receive scene information, keep it in mind and react to
it when they navigate to particular points or when certain
event happens. More recent articles like [12] proposed to
apply road-map based methods to dynamic virtual workspace
in relatively simple environments with moderate number of
entities. Bottom-up control often employs a rule-based scheme
and possibly provides each reactive agent with individual
and cognitive behaviors. Brogan et al [15] modeled the path
planning by using pedestrian performance statistics that were
obtained during a suite of experiments. Complicated crowd
simulation is usually a hybrid. For example, a designated path
planning algorithm combined with spacing rules based upon
social and psychological autonomy is used to generate the



plausible crowd animations in [4]. However, none of these
combined systems offers the function of interactive control of
crowd navigation.

Interactive control of human figures has been deeply inves-
tigated in game development. However, only a few approaches
in literature were devoted to the interactive control of crowd.
Crowdbrush [1], a most significant progress in crowd control
interaction design in recent years, features some fancy graph-
ical interface elements for controlling crowds. However, their
control is still limited to each individual by specifying the
property or response-rule of agents, which becomes a very
tedious work when controlling large crowds as the one shown
in Fig. 1. The Vi-Crowd system [3] controlled the crowd
motion by establishing a comprehensive hierarchical model of
the agent behaviors according to autonomy level. Nevertheless,
the control in Vi-Crowd is not intuitive — complicated scripting
skills are needed. Different from them, the navigation control
in our approach can be completed by a few sketches. Anderson
et al. [14] provided a method to generate constrained group
animation; however, as their constraints setting is agent-based
it is impractical to be applied to large crowd navigation.

Many recent behavioral control approaches focused on
global navigation with road-map or graph based methods.
The work presented in [2] employed the navigation graphs
as road-map to achieve a real-time performance. In [8], Pettré
extended his autonomous navigation method by considering
interaction between pedestrians with a predictive approach
and achieved satisfying results. Recently, adaptive road-maps
which are especially useful in complex and dynamic envi-
ronments have been proposed in [9]. Navigation Graph [10]
constructed from Voronoi diagrams also fits in real-time path
planning of multiple virtual characters. In order to handle
collision avoidance in congested scenes with moving obstacles,
Berg et al [11] approached this question based on Velocity
Obstacles concept. Each agent is navigated independently in
a decentralized manner while maintaining a cognitive map of
the entire scene. Again, no interactive control as ours is given
in these approaches.

Other crowd control algorithms are motivated by the con-
cept of fields, for example, vector field, force field and
potential field to animate the overall performance of crowds.
The flow tiles model developed by Chenney [13] ensures the
smooth flow of agents without resorting to explicit collision
detection. However, realism has been sacrificed to some ex-
tent due to the lack of interaction between them. Treuille
[5] integrated global navigation with a resolution dependent
dynamic potential field, solving the motion of crowd. However,
due to the drawback of resolution dependent representation,
users should take more care to fine tune the parameters.
Otherwise, oscillation will be observed in the simulation. In
our implementation, we tried to smooth the potential field but
we still found the simulation result not very good as most of
the pedestrians keep turning around before making the next
step. More discussions will be given in the result section.
Once again, none of them addresses the problem about how
to efficiently and intuitively generate fields for the interactive
control of crowd navigation. The work presented here extends
our previous conference publication by providing ease control

of large crowds of virtual humans.

II. VECTOR FIELD CONSTRUCTION BY RBF

A vector field can be considered as a position-to-vector
mapping in the problem domain. Thus, the problem for con-
structing a vector field can be stated as follows.

Problem 1 Find a (functional) representation of the desired
vector field I', which describes a mapping from each position
in the navigating position p to a vector v and satisfies

F(pl) = Vi, i:17"'7na

where p; and v; are the position of anchors and the user
specified vectors on anchors respectively. The anchors satisfy
that p; # p; (Vi # j).

This is actually a scatter data interpolation problem. Here
we will employ RBF interpolation to obtain the function I'(...)
from anchors. In the domain of crowd simulation, a desired
vector field can be either 2D or 3D. A two-dimensional field
is employed in land navigation (e.g., automobile driving) and
a three-dimensional field is used in the space navigation (e.g.,
bird flying). 2D fields are used as examples in this paper for
illustration. Two-dimensional version of the above problem is
defined below.

Problem 2 Given a set of distinct 2D points
X = {pz ?:1 C %2

and a set of vectors defined on these points as {(z;,y;)}7, C
2, we need to find a pair of interpolation functions (y%,~Y) :
(R? — R, R? — R) such that

{ Y (pi) = 4,

1=1,...,n.

7Y (pi) = vi-

From [6], we know that the Radial Basis Functions (RBFs)

are good candidates for solving this scatter data interpolation

problem. We adopt the thin-plate spline ¢(r) = r?log(r) as

the radial basis function ¢. Replacing ¢ in the general form,
we have

V(%) = P(x) + > Aillx = xi[12)* log(x — xill2) (1)

i=1

where P(x) = ¢; + (ca,c3)Tx. Substituting the positions of
anchors and the vectors defined on them into Eq.(1), we obtain
two linear equation systems (one for z-coordinate and another
for y-coordinate). Solving these equation systems, the values
of \;, ¢1, co and c3 are calculated so that the interpolation
functions (y*,~Y) can be determined. This 2D solver can be
easily extended to a 3D one by replacing the basis function
with the biharmonic (¢(r) = r) or triharmonic (¢(r) = r?)
spline.

Under most conditions, the vector function computed by
above isotropic RBF is smooth. However, relatively small
distances between scatter points can lead the linear system of
Eq.(1) to become ill-conditioned. Thus a metric-regularization
approach called anisotropic RBF [7] is employed to ease this
problem. In short, the ill-conditioned system is replaced by
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Fig. 4. A user defined vector field with arrows showing the anchor points.

a nearby, but better conditioned linear system, which is less
sensitive to irregular points distribution.

This regularization approach involves building a local co-
ordinate system by the product of a rotation matrix, and
performs anisotropic scaling along the new cartesian axes on
the interpolation data set. The basic idea is to change the
Euclidean metric ||x — x;||2 in Eq.(1) to a suitable metric
T. Using T' to measure the distance between data points, the
distances between crowded points are increased reasonably in
the new linear system so that the singularity is well prevented.
In this way, the new basis functions are no longer radial with
respect to the Euclidean norm, but considered radial regarding
to the new metric 7. After finding a non-singular 2 X 2 matrix
M following [7], T = MT M, then

Ix = xill7 = /(x — %) TMTM (x — x;) = || M (x — %)l

Thus, the new linear system is determined by

i = P(Mp:)+Y_ X (IIM(pi — py)ll2)* log(| M (p; — p;)|l2)

j=1
2
In the cases of those already uniformly distributed data
points, 7" = I and the metric regularization has no effect on
the solution.
In practice, more complicated manipulation of vector field
stated above can be achieved by the following choices:

« using multiple vector fields to help the control of large
groups of crowd navigation in complex scenes;

« changing some of the vector fields by adding, removing or
editing any anchor point by mouse dragging and keyboard
typing;

« extending the influence of 2D vector fields by incorpo-
rating time as the third component.

Different from the potential field in [5] which is defined
on 2D grids with limited resolution, the vector field defined
here has no limitation on resolution. Besides, we save a lot
of memory space as we do not store every grid’s value. The
defined vector field will be regular as long as the distinct
condition, p; # p; (Vi # j), is strongly satisfied on anchor
points. Fig. 4 gives an illustration about this continuous vector
field. The arrows indicated anchor points defining the field.

III. IMPLEMENTATION DETAILS

This section addresses the details about how to implement
the interactive control of real-time crowd navigation. Each
human in the simulation is processed as a particle with certain
characteristics which are partly driven by the underground
vector field derived in previous section. Four properties —
mass m, radius r (used as the bounding cylinder for collision
avoidance), velocity v and position p are stored for each
particle during the simulation. The status variables are updated
using explicit Euler’s scheme.

The movement of each agent in the crowd simulation is
composed of two components: the autonomous movement
and the governed movement. For each agent’s autonomous
behavior, we adopt a behavior that consists of a conventional
wandering and a weighted movement derived from all the
anchor points, where the weights are inversely proportional
to the distances between the agent’s current position and the
position of sample points — so that this movement somewhat
reflects the nature of user specified crowd movement. The
wandering behavior is realized by pointing a speed related
random value at both z and y direction. At every time current,
the 2D position of an agent is mapped to the user defined
vector field, and the governed movement is calculated. The
final movement of each agent is a synthesis of the autonomous
movement and the governed movement. The ratio of synthesis
can be adjusted interactively during the simulation to represent
different personality of the crowd.

A more interesting nature provided by our method is that
the movement of whole crowd can be easily adjusted on-
the-fly in an interactive rate as we provide users with ease
control of the guiding vector field during the simulation. More
specifically, users can add more anchor points to the field,
delete some of them, and modify the directions, values or
positions of existing anchor points as long as the 2D positions
of anchor points are different from each other. All of these
functions can be easily completed. Adding more points can
be done firstly by mouse clicking within the simulating scene,
then dragging to determine their directions and magnitudes.
For deleting operation, select one point with mouse, and use
"Delete’ key on the keyboard. When changing the position of
a certain point or the values attached to it, direction keys on
the keyboard are used. As the deferred field value is smooth,
the movement of pedestrians changes smoothly; no jerkiness
is observed.

After editing, a new vector field is calculated to replace the
old one. In contrast to grid-based representation that stores
discrete field values, we only need to keep parameters A;,
c1, co and c3 in the memory as stated in Problem 2. At
every simulation step, the governed portion of movement of
an agent is calculated using the current position. To speed
up the computation, GPGPU technique is employed. Firstly,
we calculate the parameters and store them along with the
position of anchor points in a texture for shader fetch. As
everyone’s governed movement is computed independently, it
can be updated in parallel. We pack all pedestrians’ positions
in another rectangular texture, then use a fragment shader
to calculate and output needed values to the third texture.



Fig. 5.

A screenshot of the medieval city simulation.

Although reading from this third texture back to the main
memory may be relatively slow, in our experiment results,
this method is quite efficient when simulating hundreds of
thousands of pedestrians.

The simulation of multiple groups of crowds can be simply
implemented by specifying one vector field for each crowd.
Therefore different crowd will have different governing vector
field to guide its crowd behavior. This is very important for
simulations as the ones shown in Figs. 1, 3 and 5.

The vector field derived by RBF-based interpolation only
preserves the smoothness but does not prevent the self-
intersection of flow lines. Furthermore, the autonomous move-
ment has also been added onto each agent; there is no
guarantee for leading to a collision-free crowd navigation.
To prevent agents from running into each other, we enforce
the minimum distances among them during the simulation.
We implement collision and obstacle avoidance by using the
function of OpenSteer. All the crowd members are stored in
a database and organized into a tree. At every refreshment
cycle, the position of each individual is changed, thus the
database is updated accordingly. For every pedestrian to avoid
obstacles, we first predict when the collision will happen with
its current velocity and insert avoidance steering force when
needed. While approaching pedestrians, position of the agent
and a user specified radius are used to query the database;
those neighbors within the defined sphere are returned. When
the distance between two neighboring agents is less than a
user defined threshold, a repelling force is employed to push
them apart.

IV. RESULTS

We have implemented our method as a C++ plug-in of
OpenSteer. Simulations for Figs. 2, 3 and 6-9 ran on an Intel
Core2 Duo 2.66GHZ CPU with Geforce 8600 GT graphic card
and 2GB memory.

Fig. 2 gives an illustration about how to change the trajec-
tory of crowd by user interaction. The crowd’s main walking
direction is guided by the anchor points interpolated vector

Algorithm 1 SimulatorAdvancement
1: for each time-step do
2:  if user modifies the samples on a vector field I" then
3 Reconstruct I' by computing the function in Eq.(2);
4:  end if
5:  for each group of crowd do

6: Compute the governed velocity vectors of agents;

7

8

9

Compute the autonomous movement of agents;
Update the locations of agents;
end for
10:  Enforce the minimum distance between agents;
11: end for

update: 0.00038 (2644 fps)
draw: 0.00499 (200 fps)

(a)

update: 0.00042 (2406 fps)
draw: 0.00536 (187 fps)

(b)

Fig. 6. Effect of the ratio between the movement governed by the vector field
and the autonomous movement. The result without (a) vs. with (b) autonomous
behavior.

field while still allow certain wandering activities. By our
method, even if collision happens during the simulation, the
whole crowd can still navigate following the user specified
path eventually.

Fig. 6 shows the effect of different ratios between the gov-
erned behavior and the autonomous behavior on the trajectory
of crowd simulation. It can be concluded that the one with
more autonomous factors is closer to nature; however, we
need to find a balance to avoid the movement of crowd to be
far from what users designed on the vector field. Meanwhile,
the speed of changing parameters and vector field needs to
be controlled to avoid artifacts. Usually, we employ a linear
interpolation between the one before modification and the
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A scene of four groups of pedestrians crossing each other. The four group of pedestrians and anchor points are rendered with similar colors.
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Totally 400 pedestrians are driven by four vector fields with our method(a), vs. by 40 * 40-grid potential field(b) and 100 * 100-grid potential field

(c) with method used by Treuille. As can be deduced from the pictures, Treuille’s method is grid-resolution dependent.

modified one in a short period to improve the smoothness of
change. Navigation of crowds in a medieval siege simulation
(see the screenshots in Fig. 1 and Fig. 5) cannot be real without
the autonomous behavior.

Often in complex virtual environment, different groups of
crowds are simulated. The pedestrians walk along different
paths until goals are finally reached. To deal with this situation,
we employ different vector fields to govern their movement.
As shown in Fig. 7, we simulate four groups of pedestrians
entering the simulation workspace from four different direc-
tions, crossing from one side to another. In this example,
we appoint five anchors points for each field. Similarly, we
simulate four hundred pedestrians by our method (see Fig.
8(a)), the ratio of governed part is 50%, and compare it to the
method proposed in [5]. The time performance of Treuille’s
method depends on how many grids are used to partition
the virtual environment. Simulating with 40 % 40 uniform
grids (Fig. 8(b)), real-time performance is achieved. However,
this level of space partition introduces artifacts in the final
result as pedestrians may be uniformly spaced due to the
coarse resolution of driving potential field. A better solution is
to employ some high resolution workspaces. The simulation
result of 100 x 100 grids is illustrated in Fig. 8(c). As seen

TABLE I
UPDATING RATES OF TREUILLE’S METHOD

Grids Num
Performance

40*40
26 fps

50*50
18 fps

80*80
6 fps

100*100
3 fps

150*150
1 fps

* The number of agents tested is 500.

from Table I, the frame rate per second has dropped to about
three. Moreover, it is difficult for novices like us to adjust
the parameters; severe oscillations reduce the quality of result
shown in the accompanied video demo by our implementation
of [5].

In order to prevent the rare unnatural vector field brought
by putting anchor points too close to each other, our extension
with Anisotropic RBF construction provides a better solution.
In Fig. 9(a), around the middle area indicated by two cross-
ing yellow vector, pedestrians pass through smoothly. In the
Isotropic RBF integration result shown in Fig. 9(b), instead of
walking downside, some of them walk towards the opposite
direction or cycled around as indicated by orange cycle.

Experiments of update rates are shown in Tables II to IV. As
shown in Table II, the calculation of vector field is quite fast. In
Table III, the updating time of our CPU version is nearly linear
proportional to the number of pedestrians simulated. This



TABLE 11
COMPUTATION TIME OF ONE VECTOR FIELD

Anchors 50 100 150 200 300 500
Time <Ilms 2ms Sms 10ms 28 ms 96 ms
TABLE III

UPDATING RATES OF OUR METHOD, CPU VERSION

500 Agents 1000 Agents 1500 Agents
10 Anchors 145 fps 67 fps 35 fps
20 Anchors 131 fps 63 fps 33 fps
30 Anchors 124 fps 56 fps 30 fps
50 Anchors 105 fps 48 fps 28 fps
100 Anchors 82 fps 35 fps 22 fps

field governing method is appropriate for animating moderate
number of crowds, while for large groups of crowds the GPU
implementation is more efficient (see Table IV).

Our method is very easy to be implemented, and the
simulation of crowds can be updated in an interactive rate
because of its simplicity. The renderings of complex scenes
as shown in Fig. 1 and Fig. 5 are performed as a post-process
and can be time consuming. More specifically, we first export
the simulation data, including crowd behaviors along with the
chosen path into files. Next, the vivid soldier models and
scenes generated by art designers are used to replace the
ones stored in the previous step. We are planning to adopt
some real-time rendering techniques in our framework. A good
candidate is mixing LOD human model with image based
impostor, geopostor or polypostor. When taking a close look
at the scene, implementing ‘instancing’ on GPU would be a
better choice. Futhermore, the current numerical solver of RBF
in our system is implemented by the MATLAB API functions.
In the next step, we will develop our new solver on GPU to
achieve better time performance.
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