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Abstract— Unorganized point clouds obtained from 3D shape
acquisition devices usually present noises, outliers, and non-
uniformities. In this article, we propose a framework to consoli-
date unorganized points by an iterative procedure of interlaced
down-sampling and up-sampling steps. After down-sampling
and up-sampling, selection operations are conducted to remove
outliers while preserving geometric details. The uniformity of
points is improved by moving the down-sampled particles and
the following refinement of point samples, and the missed regions
are filled through surface extrapolation. Moreover, an adaptive
sampling strategy is employed to speed up the iterations. Ex-
perimental results demonstrate the effectiveness of the proposed
point processing framework.

Index Terms— Unorganized point clouds, repulsion operator,
outlier removal, down-sampling, up-sampling.

I. INTRODUCTION

Three-dimensional scanning devices are commonplace
nowadays; therefore the shapes obtained by acquisition devices
have become a major source for the generation of complex
digital 3D models. Although optical scanners are the most
economical and efficient acquisition devices to obtain the
3D digital model from a real object, they always produce
incomplete and noisy point clouds due to occlusions and
physical limitations of the scanners. In the regions that are
invisible to the cameras (e.g., deep cavities and bifurcations),
the surface of the scanned model is not covered by sample
points. The under-sampled or completely missed regions on
the scanned point cloud of a real-world geometry will lead
to an imperfect shape on the surface reconstructed by most
reconstruction algorithms (see the top row of Fig.1).

We propose a point cloud processing framework to improve
the quality of point clouds and thus improve the quality
of reconstructed surfaces. The input of our approach is an
unorganized point cloud which may contain outliers, noises
and non-uniformities. Based on the point positions alone, we
focus on how to make points evenly distributed by inserting
samples into sparse regions using the down-sampling, up-
sampling and selection mechanism. A new point processing
framework is proposed. Outliers can be removed by a mean-
shift based particle section operator. As the consequence of
applying a novel particle repulsion operator in the framework,
the missed region on the given point set will be extrapolated
by the newly inserted sample points. The resultant point
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POS Poisson method of surface reconstruction [2]
RBF Radial Basis Function based surface reconstruction [3]
INT Integrating meshing method [4]
CON Consolidation of unorganized point clouds [5]
OUR Our iterative consolidation approach

Fig. 1. (Top Row) The point cloud of an Inukshuk model obtained from
the 3D scanner with incomplete sample points. The reconstructed surfaces
generated by various algorithms in literature are poor at the regions with
imperfect input samples. (Bottom Row) The quality of surfaces reconstructed
by various methods from the point cloud processed by our approach are all
improved. The oriented normal vectors are generated by [1] for the approaches
that need consistently oriented normal vectors.

cloud processed by OUR and the surfaces reconstructed by
POS, RBF and INT are shown in the bottom row of Fig.1.
Benefited from the new selection and repulsion operators,
the quality of points is incrementally improved under this
framework. Figure 2 shows the progressive results with vs.
without using the repulsion operator. It is easy to find that
simply applying down-sampling and up-sampling in the it-
erations does not complete the missed regions on the given
point cloud. The improvement comes from the newly proposed
repulsion operator (see Section IV-C). As will be shown in
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Fig. 2. The progressive results without (top row) vs. with (bottom row) using the repulsion operator. Simply down-sampling and up-sampling the points
without the newly proposed repulsion operator cannot fill samples into the missed regions on given point clouds (see the top row). On the contrary, our
framework can progressively improve the quality of the point cloud (see the bottom row). The up-sampled points are displayed in red.

Section IV-B, the outliers can be effectively removed with
the help of a mean-shift based selection operator. Geometric
details are preserved in our algorithm, which is benefitted by
a selection operator for up-sampled points (see Section IV-
D). As shown in Fig.3, our iterative consolidation framework
generates results outperforming the non-iterative consolidation
approach (CON) [5].

The main contribution of our approach is threefold:
1) an iterative framework for point cloud processing to

improve the quality of point clouds while preserving the
geometric details,

2) a new selection algorithm in the framework for removing
outliers,

3) a novel repulsion operator for extrapolating the consol-
idated points therefore completing the point sets at the
missed regions with large areas.

As a result, an effective pipeline for consolidating unorganized
point clouds is developed.

The rests of the paper are organized as follows. After
reviewing the related work in Section II, the overview of our
point processing algorithm is presented in Section III. The
novel operators are detailed in Section IV. The experimental
results are shown and discussed in Section V. Lastly, our paper
ends with the conclusion section.

II. RELATED WORK

The problem of reconstructing a surface from points has
been investigated for many years and the reconstruction meth-
ods have become a standard manner of geometry creation.
A variety of techniques have been developed. However, the
points acquired by scanners are typically incomplete and
highly non-uniform. Some related approaches concerning the
reconstruction of a surface from inhomogeneous sample den-
sity or missing data are reviewed below.

Ohtake et al. [3] and Carr et al. [6] exploited the extrap-
olation properties of radial basis functions to fill regions of
sparse sampling. The work of Savchenko and Kojekine [7]
warps a given surface model towards the missing region of

the given surface using control points. This is followed by a
fairing step along the boundary of the hole. This method is not
automatic. It requires some manual interventions, and a prior
model must be given in advance. Verdera et al. [8] also used
an implicit function to represent the surface. They modelled
a PDE for the smooth interpolation of a given hole based on
the normal vector field around it. In [9] a surface is repaired
by an optimization process. It minimizes the integral of the
squared mean curvature to yield a smooth surface. Weyrich
et al. [10] extended the volumetric diffusion method proposed
by Davis et al. [11] to point-sampled models by replacing the
distance estimation with a moving least square projection step.
These methods are successful in repairing small deficiencies
in the data, but have difficulties with complex holes or when
large parts of the object are missing (e.g., the human model
in Fig.8).

The method of Kolluri et al. [12] requires filtering of the
Voronoi diagram to obtain a correct pole graph. To compute
a watertight surface, they used global normalized cuts that
smoothly complete large missing parts. The surface synthesis
methods [13], [14] complete missing parts in the surface by in-
tegrating patches which are taken from a well annotated shape
database or a given example set. If no appropriate examples
exist, the result might be poor and the process might fail. The
method of Hornung and Kobbelt [15] requires the definition
of a watertight voxel crust in which the unknown surface
is supposed to lie. To complete the crust, the authors used
flood-fill and dilation operators. Sharf et al. [16] evolved an
explicit mesh in a scalar field guided by the local feature size
in a coarse to fine manner to avoid local minima and capture
details. The method also requires a volumetric grid to evaluate
the distance transformation, and the topological change has to
be tracked. The computational implementation can be quite
intricate (especially the topology variation on the two-manifold
mesh surfaces). In [17], Sharf et al. interactively reconstructed
the surface using only the positions of raw scanned data, where
the user defines the general in/out orientation and assists the
interpretation of data in automatically detected topologically
unstable regions.
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Fig. 3. The geometric details are removed by the consolidation approach [5] –
CON+POS, and the reconstruction of CON+POS at the crotch (where sample
points are missed) merges two legs. Neither of these occurs in OUR+POS.

Different from the mesh surface reconstruction algorithms,
we focus on how to improve the quality of a given unorganized
point cloud by adding sample points to change the uniformity
of scattered points and removing outliers. After iteratively
consolidating the given unorganized point cloud, a high-quality
surface can be reconstructed from those points by various
methods.

III. OVERVIEW OF ALGORITHM

Given an unorganized set P = {pj} ⊂ <3 presenting
noises, outliers and non-uniformities, surface reconstruction
from this data may cause significant misinterpretation of the
data that leads to an erroneous surface. Our method presented
in this paper aims to recover the structural information of
P without losing the geometric details by inserting points in
sparse regions to make the points evenly distributed, adding
points into the missed regions with large area, and removing
outliers that are far away from the up-sampled surface. Such
a ‘massage’ procedure of point clouds is called consolidation
[18]. Our consolidation method consists of several steps:
down-sampling, outlier removal, repulsion, up-sampling and
selection, which are iteratively applied to the input point set
P .

Our point processing method is inspired by an image
completion approach based on multi-resolution techniques
[19]. Their method is based on the observation that the lower
resolution representation of an image contains stronger struc-
tural information while the higher resolution representation
contains more details. Therefore, the structural information
are recovered at the lower resolution. The structural and non-
structural information on the 3D models represented by a set
of sample points is analogous. In our approach, the points in P
are first down-sampled into k particles, which are redistributed
on the surface defined by the samples in P . The redistribution
of the particles are performed by iteratively applying the
Weighted Locally Optimal Projection (WLOP) operator in [5].
The outliers are removed by applying a selection operator
to the particles. The oriented normals of particles can be
estimated on the cleaned particles by the method in [1] or [5],
and a new repulsion operator based on the Algebraic Point
Set Surface (APSS) [20] is then applied to extrapolate the
surface by pushing particles into the missed regions. After
that, the redistributed particles are refined into a smooth point
set surface by a

√
3-like interpolatory refinement scheme [21]

Fig. 4. Illustration of our point processing framework, where the given
unorganized points (in white small dots) are first down-sampled into particles
(in yellow) and redistributed, and then up-sampled into a dense point set (in
green small dots). Among the points generated by the up-sampling, the ones
falling in the regions that are lack of samples in the given point set are selected
(shown in red small dots) and retained. In the next iteration, the points retained
from up-sampling are down-sampled into new particles (yellow ones in the
second and the third columns), redistributed, and up-sampled into new points
(the green dots in the pictures of the last row). The iteration repeats until only
a few up-sampled points are added.

– this is an up-sampling step. The newly generated sample
points are selectively merged into the given point set P ,
while the points in P are considered as outliers and removed
if they are far away from the up-sampled points (i.e., a
smooth surface interpolating the redistributed particles). The
down-sampling, repulsion, up-sampling and selection steps are
repeatedly applied to the point set. The iteration stops when
only a few new points are inserted into the point set P . Lastly,
the orientation of the points in P after the iteration can be
obtained by their closest particle in X , and the consistently
oriented normal vectors can be obtained by the orientation-
aware Principal Component Analysis (PCA).

Nevertheless, the repeated application of down-sampling
and up-sampling to the whole set of point samples in the
framework proposed above wastes a lot of time on the regions
that have been processed in the previous iteration steps. To
reduce the redundant computations, an adaptive framework
is investigated and used here. As illustrated in Fig.4, we
only down-sample the newly added points into particles while
retaining the particles used in the previous iterations, and
only the newly added particles are up-sampled into new
points. Specifically, the pseudo-code of our point processing
algorithm is listed in Algorithm Iteration-Consolidation. In
this adaptive framework, the points/particles that are processed
in the previous iterations will not be further processed so that
a lot of computational redundancies are removed. The speedup
compared with the primary implementation introduced in the
above paragraph is about 3-5 times. We employed a hybrid
terminal condition for the iteration: 1) |P i−1|−|P i|

|P i−1| < 20% or
2) more than ten iterations have been conducted.
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Algorithm 1 Iterative-Consolidation
1: P 0 ⇐ P and i ⇐ 0;
2: Initialize a particle set X by down-sampling all points of

P into m particles;
3: repeat
4: X ⇐ X ∪Xi;
5: Repeatedly move the particles in Xi by the WLOP

operator1 (section IV-A);
6: if i = 0 then
7: Remove the outlier particles from X0 by a mean-shift

based selection operation (section IV-B);
8: end if
9: Estimate the orientation of particles by [1] or [5];

10: Apply the repulsion operator based on APSS to all
particles in Xi (section IV-C);

11: Refine the points in Xi into a set of up-sampled points
Υi (section IV-D);

12: if i = 0 then
13: Remove the outliers in P according to Υ0 (details

can be found in section IV-B);
14: end if
15: Select the points of Υi into a subset P i+1 (section IV-

D);
16: P ⇐ P ∪ P i+1 and i ⇐ i + 1;
17: Down-sample all points of P i into Xi with mi particles

(mi = 2m|P i|/|P 0| with | · · · | being the number of
points);

18: until the terminal condition is reached
19: Estimate the consistently oriented normals on the sample

points in P by [1] or [5];
20: return P ;

IV. POINT PROCESSING OPERATORS

This section presents the technical details of the operators
used in the iterative consolidation framework, which include
a voting based particle selection operator for outlier removal,
a new repulsion operator, and the selection operators for
up-sampled points. To be self-contained, the down-sampling
operator based on WLOP [5] and the up-sampling operator
based the refinement method in [20] are also briefed.

A. Down-sampling and relaxation

For the given point set P i, we randomly select mi points
to form a set Xi. The points in Xi are called particles, and
mi is selected as mi = 2m|P i|

|P 0| where m is a user parameter
– we usually choose m = 1

20 |P 0| ∼ 1
5 |P 0|. These m particles

are then iteratively moved to a new position which is defined
by two terms, where the first term attracts the particle to the
given point set and the second term repulses the particles away
from other particles. Details can be found in Appendix I.

A uniform support size h = 2Lavg is adopted for the
computation of particle movement with Lavg being the aver-
age distance between particles to their k-nearest neighboring
particles, therefore the computation is adaptive to the scale
of models. We choose k = 20 to balance the speed and the
robustness. When i 6= 0, only the particles in Xi are moved.

Fig. 5. An example to demonstrate the outlier removal on the Armadillo
model. (a) The given point cloud has 20% noisy points randomly distributed
in the range of 1/50 of the bounding box’s diagonal length. (b) The resultant
particles after applying the WLOP based down-sampling and relaxation. (c)
Our outlier selection operator can successfully identify the outliers and remove
them. (d) The up-sampling result generated from the cleaned particles with
less geometric details. (e) The resultant point set after removing outliers in
sample points and merging the up-sampled points. (f) The particles to be used
in the second iteration, where the blue ones are static particles and only the
red one are alive particles sampled from the newly inserted points. (g) The
mean-shifts on particles are illustrated by line segments – from left to right,
the results after one, three and five mean-shift iterations respectively, and the
identified outliers are displayed in red.

All other particles in X are involved in the computation but
with their positions fixed. Another parameter used in this
down-sampling and relaxation step is the number of particles,
m. As studied in [5], using too few particles could easily
damage the existing small features on the given point set,
while a too large value of m will slow down the computation
the relaxation as well as the following repulsion of particles.
Therefore, we suggest to use m = 1

20 |P 0| for processing a
dense point cloud and m = 1

10 |P 0| for relative sparse points.

B. Outlier removal

Although the WLOP operator can efficiently filter out the
noises by the robust down-sampling and relaxation, it however
cannot remove outliers that are far away from the real surface
of a model (e.g., see Fig.5(b)). These unwanted particles
will potentially affect the quality of the consolidation in
the downstream operations and is considered to be removed.
According to the nature that these outliers are usually far away
from the majority of their neighbors, we propose a mean-
shift based method that can detect and remove outlier particles
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Algorithm 2 Outlier-Particle-Removal
1: for all xi ∈ X do
2: Initialize x′i ⇐ xi

3: for j = 1 to b do
4: Search in X the k-nearest neighbors of x′i and let

them be the subset K;
5: x′i ⇐ 1

|K|
∑
∀ki∈K ki;{Mean-shift step}

6: end for
7: end for
8: for all xi ∈ X do
9: Search in X the k-nearest neighbors of x′i and let them

be the subset K;
10: d̄x′

i
⇐ ∑

∀ki∈K
‖ki−x′i‖
|K| ;{The average distance}

11: if ‖x′i − xi‖ > sd̄x′
i

then
12: xi is considered as an outlier particle;
13: end if
14: end for
15: Remove all outlier particles from X;
16: return X;

during the first iteration of the consolidation.

For each particle x in X , we iteratively shift it to the average
position of its k-nearest neighboring particles (k = 20). Then,
the distance from the shifted mean position to the original
position of x is compared with the average distance between
its shifted neighbors. If the difference between two distances is
significant, x is considered as an outlier particle. Pseudo-code
of the mean-shift based outlier removal algorithm can be found
in Algorithm Outlier-Particle-Removal, by which the outlier
particles are removed from X . This outlier removal step is
only performed in the first iteration of our point processing
algorithm. Noticed that the average distance between shifted
particles is computed locally so that it is adaptive to the non-
uniform distribution of particles. Based on our experimental
tests, choosing b = 3 and s = 3 gives a good balance between
speed and quality. Figure 5 gives an example about outlier
removal, where Fig.5(c) shows the result of removing outlier
particles. Also, it is found from Fig.5(g) that the mean-shift
iteration converges very fast. Therefore, using a larger b may
not change the result of outlier identification or removal.

Simply deleting the outlier particles does not remove the
outliers from the input point set P successfully since the
outliers is only a small subset of the points in P . A simple
selection step can be performed to remove outliers from P .
After obtaining a set of cleaned particles and then up-sampling
them back into points in Υ0 as the samples of a smooth
surface, the points in P which are far away from the surface
represented by Υ0 are considered as outliers. Therefore, we
have:

• ∀pi ∈ P , it will be removed from P when ‖pi − qj‖ >
h (∀qj ∈ Υ0).

This simple selection operation can effectively remove outliers
embedded in the given point cloud (see Fig.5(e) for an
example).

Fig. 6. The illustration of repulsion operation: (left) the given points for a
human body with large regions missed, (middle-left) the redistributed particles
after applying WLOP, (middle-right) the redistributed particles after applying
the repulsion operator, and (right) the mesh surface tessellated from APSS
where no triangle is generated in the undefined regions. Notice that one step
of repulsion can fill up some missed regions (e.g., the arms); however, more
iterations are needed to fill the missed regions with large area (e.g., the side
of head). The final result can be found in Fig.8.

C. Repulsion of particles

The WLOP operator can evenly redistribute the particles
along the surface defined by the given point set P . However,
the movement of particles driven by WLOP stops at the
boundary of large missed regions (e.g., the missed region on
thighs in Fig.2). The same observation has also been reported
in [5]. To overcome this drawback of WLOP, we introduce
a repulsion operator below to move the particles into the
missed regions. The observation shows that the missed regions
always have their normals nearly perpendicular to the viewing
direction of scanners. Smooth extension of the known regions
that have been sampled could be a good heuristic to fill the
missed regions. In other words, we need to extrapolate the
surface defined by the existing particles along its tangential
direction.

As the particles in X after the WLOP based relaxation and
the mean-shift based outlier removal have become more uni-
form and less noisy, the consistently oriented normal vectors
can be estimated on the particles by the method in [5] or [1].
Equipped with the oriented normals, an Algebraic Point Set
Surface (APSS) [20] can be defined by the particles ∀xi ∈ X
and their normal vectors nxi . APSS is a kind of Moving Least-
square Surface (MLS). Instead of plane fitting, APSS directly
fits higher order algebraic spheres. The advantage is that APSS
yields more stable results than planar MLS at the regions with
high curvature (i.e., thin and sharp features). Details about the
APSS fitting on ∀xi ∈ X and nxi can be found in Appendix
II.

By the APSS defined on ∀xi ∈ X , we can then move the
particles along the APSS in repulsive manner. The movement
consists of two components: the tangential component and the
projective component. The tangential component of a particle
xi is determined by rotating along an axis rxi that passes
through the center cxi of the algebraic sphere corresponding
to xi.
• The tangential component of repulsion is derived from

the second term of WLOP as

l = µ
∑

xp∈(X\{xi})
(xi−xp)

wp%∑
xp∈(X\{xi}) wp%

−xi (1)

with % = θ(‖xi−xp‖)/‖xi−xp‖. Generally speaking, l
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is not perpendicular to the normal vector nxi at xi. We
thus compute the corresponding orthogonal vector to nxi

by
l′ = l− (l · nxi)nxi . (2)

• The rotation axis of the tangential component is

rxi
=

(xi − cxi
)× l′

‖(xi − cxi
)× l′‖ , (3)

and the rotation angle is obtained by
$ = ‖l′‖

2π‖xi−cxi
‖ .

The tangential component of the movement is then de-
fined by

Rrxi
($)(xi − cxi

) + cxi
− xi, (4)

where Rrxi
($) is the rotation matrix [22] around the

axis rxi
. In order to improve the stability of the particle

movement, we restrict the rotation angle by

$ = min{ ‖l′‖
2π‖xi − cxi

‖ ,
Lavg

2π‖xi − cxi
‖ ,

π

4
}, (5)

where Lavg is the average distance between particles and
their k-nearest neighboring particles (with k = 20).

After applying the tangential component on a particle xi, we
consecutively apply the following projective component on it
for three times to retain the moved particles on the APSS
defined by the particles equipped with normal vectors.

cxi + r(xi)
xi − cxi

‖xi − cxi‖
− xi (6)

The resultant particles obtained by our repulsion operator will
distribute into the missed regions. It needs to be noticed that
applying this repulsion only once cannot fill up the whole
missed region with large area (as shown in Fig.6). This is
because that the APSS defined by the particles before repulsion
is not fully defined in the missed region (which can also be
proved by the tessellation result in the right of Fig.6) – in
other words, the regions need to be filled iteratively.

D. Up-sampling and selection

An up-sampling step is conducted to generate more sample
points on the surface that interpolates the particles in Xi as
well as the normal vectors on the particles. The up-sampled
point set Υk is expected to regularize the scattered samples
and converge on a smooth surface interpolating the particles
and their normals. A good candidate up-sampling scheme
that satisfies these requirements is the interpolatory refinement
method presented in [20], which is therefore used in our
framework for generating Υk from Xi.

To fit in with our adaptive down-sampling/up-sampling
strategy, only the ‘alive’ particles (i.e., particles that can be
moved in the repulsion) and the points up-sampled from the
‘alive’ particles are used as the centers to generate refined
points. The refinement at a center is prevented if it is too close
to the neighbors (e.g., less than 1/3 of the support size h of
particles used in Section IV-A). The up-sampling is stopped
when no refinement on any center is allowed.

Fig. 7. Results of point processing: (Top) a hand model, where the missed
regions on the input cloudy points between fingers are challenging for prior
methods but can be recovered by our method, and (bottom) a Japanese lady
model, where our method does not change the region that has been well
presented in the input point cloud – see the top zoom-views.

In fact, the repulsion operator and the up-sampling operator
work together to generate the sample points on a smooth
surface extrapolating the particles generated by WLOP. Such
an extrapolatory helps to improve the uniformity of sample
points in the highly sparse regions. The points in Υk are
selected to merge into the point set P k to form a new point
set P k+1. In the next iteration of point processing, only the
particles down-sampled from these newly inserted points are
‘alive’ to be moved in the WLOP based relaxation. Therefore,
simply add all the points of Υk into P k+1 leads to too many
particles in the later iterations, which will significantly slow
down the computation. Adding too few up-sampled points
make too few ‘alive’ particles in the next iteration, which also
slow down the extrapolation generated by particle repulsion.
We merge Υk and P k by the criterion that:
• ∀qj ∈ Υk, qj should be excluded from P k+1 if ∃pi ∈

P k with ‖qj − pi‖ < 1
2Lpnt

avg ,
where Lpnt

avg is the average of distances between all samples
in P k to their nearest neighbors. Note that, according to our
experimental tests, the quality of processed point sets by using
different value for 1

2Lpnt
avg does not have significant differences.
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Fig. 9. An example of the seal model. The point cloud processed under our framework results in higher quality surfaces reconstructed by various methods.
The geometric details are preserved by our method, while the consolidation method of [5] removes the geometric details.

The value of 1
2Lpnt

avg mainly affects the speed of computation.

V. RESULTS AND DISCUSSION

To demonstrate the effectiveness of the proposed frame-
work, we have tested our method on several point clouds which
have problems in surface reconstruction according to the non-
uniformity of sample points. This defect is usually presented in
the raw data obtained from optical scanners. Our experiments
exhibit difficulties in reconstructing surfaces from the raw data
directly in the highly sparse areas, such as the legs of an
Inukshuk model in Fig.1, the parts between two fingers on a
hand in Fig.7, the armpit of a Japanese lady model in Fig.7, the
miss-scanned regions between the front and the back scans of
a human body in Fig.8. For the illustration purpose, we render
the unoriented raw scans using the normals computed by the
method in [1]. All the examples shown in this paper can be
completed in less than ten iteration steps. The computational
statistics are shown in Table 1.

For some point data which embeds small holes only, the
reconstruction algorithms (e.g., RBF or POS) can generate
a surface without being significantly affected by the holes.
Different from that, our aim in this paper is to construct a high-
quality point set which can recover the highly sparse regions

TABLE I
COMPUTATIONAL STATISTICS

Input Initial Iteration Total
Model Fig. Points Particle # Steps Time+

Inukshuk 1 205,858 10,293 6 3′13′′

Hand 7 194,457 38,892 8 11′19′′

Lady 7 175,514 35,103 2 4′26′′

Body∗ 8 170,346 8,518 6 + 8 15′11′′

Seal 9 889,076 44,454 2 6′59′′

+ Our prototype program is implemented by Visual C++, and the
statistics are resulted from tests running on a standard PC with Intel
Core-i5 CPU 750 at 2.67GHz plus 3.46GB RAM.
∗ To obtain a good result, we conduct the pre-processing on the
human body example in two phases – in the first phase, the
repulsion operation is not applied and a smaller value for h is used;
and in the second phase, a normal procedure is fully applied.

while preserving the geometric details. Based on this expec-
tation, high-quality surfaces are reconstructed from the point
clouds processed by our iterative consolidation framework by a
variety of surface reconstruction algorithms (see the examples
shown in Figs.1 and 9).
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Fig. 8. The quality of the point cloud of a body scan as well as the
reconstructed surface is improved by our method in the regions that are miss-
scanned – see the armpit and the feet.

Another interesting study is about the robustness of our
algorithm to the noises in different levels. As shown in Fig.10,
we apply the point processing algorithm proposed in this
paper on the Armadillo model embedding 5%, 10%, 15%
until 20% noisy points. It is easy to find that the surface
reconstruction method will generate mesh models highly af-
fected by the noises without processing the given noisy points.
After processing the points by our method, the same surface
reconstruction method can produce very smooth model and
the models still preserve geometric details on them.

In the pipeline of our point processing framework, oriented
normal vectors need to be evaluated on the particles before
applying the repulsion operation. The particles have been
processed by the WLOP-based relaxation and the outlier
removal operation. Therefore, the normal estimation on the
retained particles is robust to high frequency noises (removed
by the WLOP) and outliers (removed by the mean-shift
based selection). Consistently oriented normal vectors can be
successfully estimated by different methods (e.g., [1], [5]).
Figure 11 compares the results generated by [1] and [5] on a
highly noisy skull model, where no significant difference can
be found.

A. Limitations

One major limitation of the proposed method is that it
has problem to recover sharp/thin features, where the missed
regions cannot be repaired by a simple surface extrapolation.

Fig. 10. Example to show the performance of our outlier removal method
on the Armadillo model with different amount of noises – noisy points are
randomly distributed in the range of 2% of the bounding box’s diagonal
length. To demonstrate how the noises affect the mesh reconstruction method,
the mesh surfaces generated by the integrating meshing method (INT) [4] are
also shown.

Although new particles and points are still inserted into such
regions, the shape of the thin/sharp features may be destroyed
(see Fig.12(b) for an example). However, this problem could
be solved by adding a simple interaction. We just need to
select such regions on the input point cloud to specify the
place where the repulsion of particles must be restricted (see
Fig.12(c) for the result of such an interaction).

Another limitation of our approach is the speed. The pro-
cessing time of a point set with tens of thousand points now is
around several minutes, which is far from interactive speed. To
solve this problem, one of our near future work is to parallelize
the computation proposed in this framework and run it on the
accelerated graphics hardware.

VI. CONCLUSION

We have presented an iterative consolidation framework for
processing unorganized point clouds. Our approach comprises
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Fig. 11. The outlier removal and normal estimation on a highly noisy skull
model. From left to right, the given skull model, the particles after WLOP
based relaxation (outliers are specified in the red color), the point samples after
one iteration in our framework with particle normals generated by [1], and the
point samples after one iteration in our framework with normals estimated by
[5]. It is easy to find that using different normal estimation methods does not
significantly affect the processing result. Note that the red dot on top of the
third skull (pointed by the yellow arrow) is an outlier particle of the second
skull model.

Fig. 12. The extrapolation of point sets generated by the repulsion operator
may lead to mismatched surfaces: (a) the given fish model and (b) the particles
move out of the model along the tangential direction driven by the repulsion
operators (see the particles inside the red circle). The problem can be solved
by interactively specifying the region where the particles should be static
during the iteration (see the black regions in (c)). The blue ones in (c) are the
points inserted by our approach after constraining the movement of particles
in the black regions.

the processes of down-sampling, repulsion, up-sampling and
selection. The down-sampling step generates a set of points
which preserve the structural information of the original
points. The up-sampling step creates the linkages between the
samples and recovers the structure based on the result obtained
from the down-sampling step. The iterative framework of the
two steps incrementally recovers the structure of the original
data. We have demonstrated the utility of our framework with
several examples, and have obtained quite encouraging results.
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APPENDIX I
POSITION UPDATE IN WEIGHTED LOCALLY OPTIMAL

PROJECTION (WLOP)

In WLOP, every particle xi ∈ Xk is moved to a new position
by the formula below. The update of position consists of two
terms, where the first term attracts the particle to the given
point set by the weighted local density

vj = 1 +
∑

pl∈(P\{pj}) θ(‖pj − pl‖)
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and the second term repulses the particles away from other
particles by the density

wp = 1 +
∑

xq∈(X\{xp}) θ(‖xp − xq‖).
The updated position of xi is

xi =
∑

pj∈P pj
θ(‖xi−pj‖)/vj‖xi−pj‖∑

pj∈P
θ(‖xi−pj‖)/vj‖xi−pj‖

+µ
∑

xq∈(X\{xi})(xi − xq)
wqθ(‖xi−xq‖)/‖xi−xq‖

W

(7)

where W =
∑

xq∈(X\{xi}) wqθ(‖xi−xq‖)/‖xi−xq‖, ‖ · · · ‖
is the L2-norm, and θ(r) = e−16r2/h2

is adopted as in
[5]. θ(r) is a rapidly decreasing smooth weight function
with the support radius h defining the size of the influenced
neighborhood. µ ∈ [0, 0.5) and h are served as two parameters
selected by users to tune the performance of the operator.
During our tests, the default values µ = 0.45 and h = 2Lavg

work well on all models with Lavg being the average distance
between particles to their k-nearest neighboring particles – we
choose k = 20.

APPENDIX II
ALGEBRAIC POINT SET SURFACE (APSS) FITTING

Using u = [u0, . . . , u4] as the vector of scalar coefficients
describing a general algebraic sphere in <3, the solution of
algebraic sphere fitting at a given point x ∈ <3 can be
evaluated by

u = arg min
u,u 6=0

‖W 1
2 (x)u‖2. (8)

The solution of u can be found by solving the following linear
equation system (details can be found in [20]).

W
1
2 (x)Du = W

1
2 (x)b (9)

The coefficient matrices have 4n rows where n is the number
of particles.

W(x) =




. . .
wi(x)

βwi(x)
βwi(x)

βwi(x)
. . .




D =




...
...

...
1 xT

i xT
i xi

0 eT
0 2eT

0 xi

0 eT
1 2eT

1 xi

0 eT
2 2eT

2 xi

...
...

...




and b =




...
0

eT
0 nxi

eT
1 nxi

eT
2 nxi

...




Here, the weight function wi(x) = φ(‖x−xi‖
h ) describes the

weight of the particle xi for the local evaluation of the APSS
at the position x with

φ(r) =
{

(1− r2)4 |r| < 1
0 |r| ≥ 1 .

h is the support size of the repulsion where the same value
is chosen as the orientation-aware WLOP above and {ek}

represents the unit basis vector of the coordinate system.
β = 106h2 is adopted as suggested in [20] to compensate the
variance of scaling. Note that, in practical computations, only
the particles whose distance to x is less than h are employed
to determine the coefficients in u since the weight function
wi(x) only shows non-zero values on these particles. After
computing the u vector, the center c and the radius of the
algebraic sphere can be calculated as

c = − 1
2u4

[u1, u2, u3]T and r =
√

cT c− u0/u4.


