
IEEE COMPUTER GRAPHICS AND APPLICATIONS 1

Highly Parallel Algorithms for Visual Perception
Guided Surface Remeshing

Lianping Xing, Xiaoting Zhang, Charlie C.L. Wang,Senior Member, IEEEand Kin-Chuen Hui

Abstract— This article presents highly parallel algorithms for
remeshing polygonal models guided by cues from human visual
perception. The remeshing framework is based on meshfree
techniques for processing surface sample points. The benefit is
twofold: it is robust to input models with problematic connectivity
and the geometric processing on points is easier to run in parallel
on GPUs. The visual perception information is extracted in the
image space and then mapped back to the Euclidean space. Based
on these cues, a saliency field is generated to re-sample the input
model. Lastly, a new projection operator is developed to further
optimize the distribution of re-sampled points. As the number
of vertices on the resultant model is controlled by the down-
sampled points, this remeshing framework can also be used in
model simplification. Experimental results demonstrate that our
algorithm can remesh diverse polygonal models to well-shaped
triangular meshes with high visual fidelity.

Index Terms— Parallel algorithm, visual perception, sampling,
remeshing, simplification.

I. I NTRODUCTION

In computer graphics applications, polygon mesh has been
a prevalent form of three-dimensional geometric shape repre-
sentations. Mesh models can be created from various sources,
such as modeling software and 3D range scans. However,
due to the limitations of modeling methods, the resulting
meshes though can capture 3D shapes accurately but may
not provide satisfactory mesh quality. Some meshes may even
contain defects such as gaps, holes, self-intersected triangles,
etc. Remeshing technique is usually employed to improve
both the quality of geometry and the connectivity of meshes.
Depending on different target applications, the goal of a
remeshing approach may vary. Commonly agreed properties
of a good remeshing approach include:

• General: Its requirement on the quality of input models
should be general. The algorithm can be applied to a
variety of models such as orientable 2-manifold piecewise
linear surfaces, polygon soup, etc.

• Accurate: It generates a mesh surface that is as close
as possible to the input model, and the distribution of
vertices on the resultant mesh leads to good element
shape (e.g., nearly regular triangles). To achieve the goal
of high accuracy, the vertices usually need to distribute
adaptively according to some density functions.

Manuscript submitted in March 2013; revision submitted in August 2013.
All authors are with the Department of Mechanical and Automation

Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong.
Corresponding Author: Charlie C.L. Wang (Tel: (852) 3943 8052; Fax: (852)
2603 6002; E-mail: cwang@mae.cuhk.edu.hk).

• Efficient: The approach is fast to process huge models
with massive number of polygons within a reasonable
time.

• Simple: The algorithm is easy to implement.
In recent years, there are many research approaches of surface
resampling aiming at generating a particular type of point
distribution that captures the characteristics of the underlying
model. Different patterns are produced in different approaches
(e.g., uniform sampling, curvature adapted sampling and Pois-
son disk sampling). Most of the existing remeshing techniques
take tremendous time in computation and sequential algo-
rithms are conducted. It is hard for them to take advantage of
the computational power provided onGraphics Process Units
(GPUs). This motivates our work presented in this paper.

Three-dimensional models represented by polygonal meshes
are now ubiquitously used in a large number of human-
centered visual computing applications. The human percep-
tion cues have proved to be able to improve the reliability
and robustness of geometry processing algorithms. There is
a growing demand for incorporating insights from human
perception into mesh processing. Researchers have shown that
the comprehensibility of complex 3D models can always be
greatly enhanced by guiding the attention of users to visually
salient regions in low-level human vision. Due to its efficiency
of visual persuasion in traditional art and technical illustration,
visual perception technique has now been widely used in many
computer graphics applications, including feature extraction
and shape matching (e.g., [1]). However, there is no visual
perception guided surface remeshing approach available in
literature, which is the niche of our work.

Our remeshing framework generates quality mesh surfaces
in three major steps: 1) visual feature extraction, 2) resampling
and 3) samples optimization and meshing. Figure 1 illustrates
the whole procedure of our remeshing framework. The pro-
cessing starts from capturing the image snaps of the input
model. After that, the visual saliency features are extracted in
the image-spaces of these snaps. These visual saliency features
are mapped back onto the input model as a set of 3D samples
for visual saliency – calledvisual saliency samples. According
to the visual saliency samples, a saliency field is generated
on the input model, where the visual perception cues are
preserved in the field. Governed by the saliency field, the input
model is re-sampled so that the visually important regions
have more samples. Lastly, the positions of sample points are
optimized by applying a newly developedAdaptive Weighted
Locally Optimal Projection(AWLOP) operators. Notice that,
all the algorithms developed in these steps can be easily
parallelized to run on GPUs. By the optimized samples, a mesh



IEEE COMPUTER GRAPHICS AND APPLICATIONS 2

Fig. 1. The overview of our visual perception guided remeshing framework. The image snaps of an input model is first captured insix orthogonal views.
The perceptual features are then extracted in the image spaceand mapped back toℜ3 as saliency points– see the red ones on the model at the right of
bottom row. After that, saliency field is generated and used to govern the adaptive sampling. Lastly, the sample points are optimally positioned by AWLOP
operators and connected into a two-manifold mesh surface.

connectivity can be easily reconstructed by using the compu-
tational geometry techniques (e.g., Tight CoCone available at:
www.cse.ohio-state.edu/%7Etamaldey/cocone.html).

The main contributions of our approach are as follows:

1) a visual perception guided surface remeshing framework
which can generate mesh surfaces preserving the cues
for human perception,

2) an adaptive sampling method that generates sample
points according to the saliency field,

3) a point projection operator, AWLOP, for optimizing the
distribution of sample points,

4) highly parallel algorithms used in the remeshing frame-
work that can run on GPUs.

As a result, an effective and efficient pipeline for surface
remeshing is developed.

The rest of our paper is organized as follows. After re-
viewing the related work in Section II, the method for visual
saliency extraction is presented in Section III. Section IV
describes the construction of saliency field and how it guides
the resampling to be adaptive to visual saliency. TheAdaptive
Weighted Locally Optimal Projectionoperator is proposed
in Section V to optimize the positions of sample points.
Experimental results are shown and discussed in Section VI.
Lastly, our paper ends with the conclusion section.

II. RELATED WORK

Remeshing is a technique for improving mesh quality
in many computer graphics applications (e.g. shape editing,
animation, and numerical simulation). In recent years, it has
received considerable attention and a variety of remeshing
algorithms have been developed. Existing techniques can
roughly be classified into two categories: the approaches that
are computed in parametric domains (e.g., [2], [3]) and those
that are directly generated on 3D surfaces (e.g., [4], [5]).

The key idea of parameterization based methods is to
partition a parameter domain into sets of adjacent elements
that have the same specific properties. Gu et al [2] pro-
posed a technique that first cuts the surface into patches,
then parameterizes it using a signal-adapted technique and
finally represents the surface as a set of images that store the
geometry and other attributes used for visualization. Surazhsky
et al [3] introduced a remeshing algorithm based on local
parameterization. However, parameterizing freeform models is
challenging and always introduces severe distortions.

To alleviate the above problems, remeshing methods that
directly take sampling on 3D meshes have been proposed. In
an earlier work, Turk [4] proposed a re-tiling technique that
applies an attraction-repulsion particle relaxation procedure to
resample an input mesh. A curvature-aware adaptive sampling
method was introduced in [6], which can help to produce
high-quality meshes. Fuhrmann et al [5] presented a curvature



IEEE COMPUTER GRAPHICS AND APPLICATIONS 3

adaptive remeshing algorithm which is based onWeighted
Centroidal Voronoi Tessellation(WCVT). However, none of
these works take visual perception into consideration. On the
other aspect, these approaches are highly time-consuming and
cannot be sped up by GPU-based computing.

III. E XTRACTION OF PERCEPTIONCUES

There are a number of excellent approaches that generate
different styles of depiction for 3D shapes according to visual
requirements. Recent studies demonstrate that advanced line
drawing techniques can effectively depict 3D shape and match
the effectiveness of artist’s drawings (ref. [7]). According to
prior research, it is commonly agreed that a good depiction of
3D shape should include a wealth of other visual cues beyond
contours. In this sense, the perception cues on a given model
is not limited by its silhouettes. Some existing approaches
(e.g., [1]) are following this thread of research. However,these
methods fail to process models in the form of polygon soup. In
this section, we borrow tools from computer vision to extract
the perception cues in image space (i.e., the different views
of input models). After that, the results are mapped back to
3D models as 3D visual saliency points. Features of graphics
hardware are explored to speed up the extraction as well as
mapping.

A. Visual saliency extraction in image space

We start the remeshing procedure by taking several snap-
shots of an input model from different views. When focusing
on obtaining a mesh model have good visualization result,
six orthogonal views are adopted to generate the snapshots
(see Fig.1 for an example). The images can be efficiently
obtained through hardware accelerated graphics pipeline (e.g.,
OpenGL).

Pre-processing for problematic models
Our framework allows the models with holes and other

topological problems to be processed. The boundary of holes
will be simply treated as small features if not being processed.
To solve this problem, we apply a low-pass filter to fill the
holes for those problematic models. Specifically, a median
filter using ak×k aperture is applied. The value ofk is chosen
according to the level of noises presented on the input model.
For highly noisy model, a largerk should be used.k = 7
works well in all our tests. An example is shown in Fig.2(a)
to show the result of this pre-processing. Note that, before
applying the median filter, an RGB image must be converted
into a gray-scale one.

After applying the above pre-processing, visual saliency is
extracted on each snapshot with the help of two filters: 1) inner
feature filter and 2) silhouette feature filter.

Inner feature filter
The inner feature filter is based on spanning a Gaussian over

the image. For each pixel(i, j), its pixel value in gray scale
is denoted byP (i, j). A n× n 2D Gaussian mask

G(i, j) = αe
(i−

n−1
2

)2+(j−
n−1
2

)2

(2σ)2 (1)

Fig. 2. Pre-processing and inner feature filter: (a) pre-processing to fill the
holes on a problematic models, (b) applying the inner feature filter on an
input gray-scale image can result in a binary image containinginner features,
(c) when applying different thresholdC, different amount of features will be
extracted: (left)C = 0, (middle)C = 3 and (right)C = 6.

is adopted in our inner feature filter, where the bandwidth
parameterσ = 0.3(n−1

2 − 1) + 0.8 and α is a scale factor
chosen to let

∑
i,jǫmask G(i, j) = 1. In all our tests,n = 11

and α = 0.0242 is employed. Using this Gaussian mask, a
weighted average image,T (u, v), can be obtained by

T (u, v) =
∑

i,jǫmask

G(i, j)P (u+ i, v + j)− C (2)

with C being a threshold to control how many feature edges
can be extracted. The resultant binary image containing the
pixels of candidate features can be obtained by

F̄ = {(u, v)|T (u, v) > P (u, v)}. (3)

Using a smaller value forC will have more pixels remained
after taking the filter above.C = 3 is chosen in our implemen-
tation. The final inner features are determined by excludingthe
silhouette pixels. Figure 2(b) presents an example of applying
the inner feature filter to the horse model, and Fig.2(c) shows
the comparison by using different thresholdC.

Silhouette feature filter
Thin-and-sharp features located on the silhouette (e.g, ears

and legs of the horse model) are important for representing
the shape of a 3D model. In this filter, these pixels will be
extracted and added into the pixel set of visual saliency,F̄ .
These features on silhouette are defined as foreground pixels
that satisfy:

1) having a background pixels in its 8-neighbors, and
2) with relatively small distance to the skeleton of input

model.
Therefore, to find the thin-and-sharp features on silhouette, we
need to extract the skeleton of an input model in the image



IEEE COMPUTER GRAPHICS AND APPLICATIONS 4

space and compute distances from the silhouette pixels to the
skeleton. Both can be realized in parallel with the help of a
highly parallel distance transformation algorithm.

Distance transformation uses a small mask,M , to propagate
the distances over the image in an iterative way. At the
beginning of the transformation, the distancesD at the source
pixels are assigned as zero while distances at other pixels are
all initialized as infinity. Then, the distance value at eachpixel
(u, v) is updated in parallel by

D(u, v) = min
(i,j)∈M

{Dprev(u+ i, v + j) +DM (i, j)}, (4)

whereDprev denotes the distance at a pixel in last iteration,
andDM (i, j) gives the local distance from(i, j) to the center
of a mask. Whenb×b mask is used,DM (i, j) = ((i− b−1

2 )2+

(j − b−1
2 )2)

1
2 . The update is run in parallel on all pixels for

a few iterations until no distance value is changed, which is
easy to be checked with the help of thescanprimitives. Or
a fixed number,m, of iterations are conducted.m is set as
the diagonal length of the input image divided by the size
b of the transformation maskM . Note that, a more accurate
parallel distance transformation algorithm can also be used
here. However, as accuracy is not a major concern in our filter,
we employ the above algorithm that is easier to implement.

To extract the skeleton of an input model in the image
space, we first compute a distance map from every foreground
pixel to the silhouette pixels (by letting the silhouette pixels as
sources in the above distance transformation algorithm). Four
kernels (see Fig.3(a)) are applied across the distance map to
extract the corresponding directional gradients. Among them,
if a significantly large gradient is found at a pixel, the pixel
is considered as belonging to the skeleton. Specifically, when
Ki(u, v) denotes the response of kerneli for a pixel (u, v),
the skeleton pixels can be extracted by a filter as

S̄ = {(u, v)|max
∀i

{Ki(u, v)} > λ} (5)

with λ = 8 being the threshold for selecting the significantly
large gradient. Using a largerλ will generate sparse points for
the skeleton, while a smallerλ gives dense skeleton with many
unwanted branches. An example of applying this skeleton
extraction filter can be found in Fig.3(b).

Another distance map is generated by using the skeleton
pixels as sources, the value of which on the silhouette pixels
actually presents the feature size. With this information,we
can detect the silhouette pixels with small feature size (i.e.,
less than20 in our tests on512 × 512 images). These pixels
are added into the set of feature points. Figure 3(c) shows the
result of extracting such thin-and-sharp features on a horse
model.

Highly Parallel Implementation on GPU It is not surprise
to see that implementing these image processing operators is
not difficult. All the operators can be evaluated independently
based on the neighboring pixels’ information before applying
the operators. As a result, they are realized as kernels running
on GPU with the help of CUDA SDK library.

Fig. 3. Silhouette feature filter: (a) four kernels are used for the skeleton
extraction on a silhouette distance map – from left to right: horizontal, vertical,
45-degree, and 135-degree edge extraction kernel, (b) the skeleton of an input
model (left) can be extracted in the image space by the distancemap (middle)
of its silhouette, (c) the thin-and-sharp features of a modelcan be detected on
the silhouette with the help of a distance map (middle) of its skeleton (left).

B. Image space to Euclidean space mapping

After detecting the visual saliency in image spaces, the setof
feature pixels need to be mapped back to the Euclidean space
to guide the following step of sampling. The mapping result
can be efficiently obtained with the help of hardware acceler-
ated graphics pipeline (e.g., OpenGL in our implementation).
When taking snapshots from different views, we record the
z-buffer value of every pixel. These z-buffer values can help
to un-project every pixel in the set of feature points back to
ℜ3 to serve as saliency points.

IV. V ISUAL PERCEPTIONGUIDED SAMPLING

Once saliency points are generated on a surface, a scalar
saliency field needs to be built over the entire surface domain
to govern the resampling procedure.

A. Saliency field generation

We aim at distributing a user-specified amount of samples
over the mesh surface such that more points would be located
on the visually salient regions. Specifically, the verticesof an
input model near saliency points should have higher visual
importance. The visual importance of a saliency point is set
to 1.0 to represent the highest visual importance. Then, the
values within[0, 1) are assigned over the surface domain to
all mesh vertices.

We use an advancing front method to generate the visual
saliency field, which progressively moves a frontL from the
saliency points to their nearest neighboring vertices on the
surface and then to farther vertices until all vertices of the
input model have been travelled. Before the propagation, all
saliency points and vertices of the input model are insertedinto



IEEE COMPUTER GRAPHICS AND APPLICATIONS 5

Algorithm 1: SaliencyFieldPropagation
Input : the set of saliency pointsF

1 and a modelM
Output : the propagated depths on vertices ofM

2 Set depth-values of all points inF as zero;
3 Set depth-values of all vertex onM as∞;
4 Insert all points ofF into the frontL;
5 while L 6= ∅ do
6 foreach vi ∈ M in parallel do
7 if (vi is untravelled) AND (vi is the neighbor of a

travelled point)then
8 Setvi as a candidate vertex of ‘next-front’;
9 end

10 end
11 Compact all ‘next-front’ vertices onM into a new

setL′;
12 foreach vk ∈ L′ in parallel do
13 dvk

⇐ minj{dvj
+ 1} for all neighborsvj of vk;

14 Setvk as travelled;
15 end
16 Update the front asL ⇐ L′;
17 end
18 return ;

a kD-tree to conduct the approximate nearest neighbor search.
As a result, the neighborhood table can be constructed and
copied to the GPU side to govern the propagation of saliency
field. During the advancing process, the depthdvi

of every
vertexvi which indicates the shortest ‘distance’ to its nearest
saliency point is updated. The depths of all mesh vertices are
initialized as+∞ while the depths of saliency points are set
to zero. The pseudo-code for parallel propagation is given as
Algorithm SaliencyFieldPropagation.

Then the visual importance of every vertexvi located on
the mesh surface is set to be

Ivi
= βdvi . (6)

whereβ ∈ [0, 1]. The value ofβ approximately indicates the
smoothness of the saliency field. The larger the value is, a
smoother field is given. For all the models shown in this paper,
β = 0.7 is used and the number of neighbors is set tok = 10
to balance the speed and accuracy.

B. Adaptive sampling

We integrate the saliency field over the surface and obtain
a visual quantityVs as

Vs =
n∑

i=1

Vi (7)

wheren is the number of triangles,Vi is the visual quantity
of the i-th triangle that can be obtained by

Vi =
1

3
Ai

3∑
j=1

Ivj
(8)

with the triangle areaAi and the visual importance on vertices
asIvj

. Supposens sample points are going to be generated on
the input model, the number of samples,ni, in thei-th triangle
can be calculated byni = ⌊ Vi

Vs
ns+0.5⌋. In this formula,ni has

been rounded to an integer which therefore introduces a signed
quantization errorEr. When the sampling procedure is taken
triangle by triangle, the quantization error is accumulated and
cannot be neglected. Therefore, the number of samples in the
i-th triangle are corrected to

ni = ⌊
Vi

Vs
ns +

i−1∑
r=1

Er + 0.5⌋ (9)

by considering the quantization error

Er =
Vr

Vs
ns − nr (10)

on all previously sampled triangles.

Uniform Triangle-Sampling The samples inside a triangle
with three vertices:v1, v2 andv3 can be generated with the
help of barycentric coordinateb = (b1, b2, b3) with b1, b2, b3 ∈
[0, 1] and b1 + b2 + b3 ≡ 1. First, two random numbersr1 ∈
[0, 1] and r2 ∈ [0, 1] are generated. Then, they are used to
form a barycentric coordinate as

b = (min{r1, r2},max{r1, r2}−min{r1, r2}, 1−max{r1, r2})
(11)

so that the position of a new sample point in the triangle is
given byb. When the number of expected samples inside a
triangle is small (e.g.,ni < 5), this simple uniform triangle-
sampling can be employed as the distribution of samples
according to the visual importance is mainly contributed by
Eq.(9). However, whenni becomes big, it is also expected
that the distribution of sample points inside triangles follows
the visual importance evaluated on vertices. Then, the adaptive
triangle-sampling is employed.

Adaptive Triangle-Sampling As knowing the visual im-
portance valuesI1, I2 and I3 on the three verticesv1, v2

andv3 of a triangleT , the expected distribution of samples
can be formulated as a normalized functionJ(b) with the
help of barycentric coordinateb = (b1, b2, b3) and I(b) =
b1I1 + b2I2 + b3I3.

J(b) =
1∫

T
I(b)dT

I(b), (12)

where
∫
T
I(b)dT = A

3 (I1 + I2 + I3), A is the area of the
triangle. For a sample point following the expected distribution
J(b), the coordinatesb1 andb2 are obtained one by one.b3 =
1− b1 − b2 can be determined thereafter.

By introducing a marginal density ofb1,

JM (b1) =
∫
T
J(b1, b2, 1− b1 − b2)db2,

thecumulative density function(CDF) of b1 can be formulated
as

F1(x) =

∫ x

0

JM (b1)db1. (13)

According to the analysis given in [8], for a CDF,F (· · ·)
of a random variablex, if another random variabler comes



IEEE COMPUTER GRAPHICS AND APPLICATIONS 6

Fig. 4. Adaptive samples can be generated by the inversion method [8]
according to the visual importance assigned on vertices of a triangle (left
column). (Middle column) 100 samples are generated on triangles, and (right
column) 500 points are sampled.

from uniform distribution in[0, 1], the random variablez =
F−1(r)) comes from the same distribution ofx. Specifically,
for a random drawr1 ∈ [0, 1], x will follow the expected
distribution ofb1 whenF1(x) = r1 is enforced. That is,b1 = x
can be determined by solving the following equation.

ax3 + bx2 + cx = (I1 + I2 + I3)r1 (14)

with a = I2+I3−2I1, b = 3(I1−I2−I3) andc = 3(I2+I3).
Given the value ofb1, the conditional distribution ofb2 is

JC(b2) = J(b1, b2, 1− b1 − b2)/JM (b1).

Then, the CDF ofb2 is formulated as

F2(y) =

∫ y

0

JC(b2)db2 (15)

Similarly, for a random drawr2 ∈ [0, 1], y will follow the
expected distribution ofb2 when F2(y) = r2 is enforced –
that is the solution of

dx2 + ex = f (16)

with d = 1
2 (I2 − I3), e = I1b1 − I3b1 + I3 and

f = 1
2 ((I2 + I3 − 2I1)b

2
1 + 2(I1 − I2 − I3)b1 + I2 + I3)r2.

The sampling method described above can efficiently gen-
erate samples such that more points would be produced at
the region with high visual-importance, which follows the
perception cues extracted in the image space. As shown in
Fig.4, an adaptive distribution of samples can be generatedby
following the visual importance assigned at vertices.

Hybrid CPU/GPU Implementation The sampling pro-
cedure of our algorithm can be implemented in a hybrid
CPU/GPU manner. First of all, how many points need to be
sampled on each triangle are evaluated on CPU. Then, the
triangles are classified into two groups: a group of triangles
to be uniformly sampled and another group for those to be

adaptively sampled. At last, the samples for each group of
triangles are generated in parallel on GPU and inserted in a
1D array with the help of atomic operator on GPU.

V. SAMPLE DISTRIBUTION OPTIMIZATION

The samples generated by above method follows the indi-
cation presented by the saliency field. However, on the other
aspect, the samples are not distributed regularly enough to
be linked to form triangles in good shape (i.e., with nearly
equal angles on vertices). In this section, we propose an
iterative method to further improve the regularity of sample
distribution. After re-positioning the sample points, they are
connected together to form a two-manifold triangular mesh by
the Tight Co-Cone algorithm.

Our algorithm to re-position sample points is akin to the
projection operators used in point-sample surfaces – specifi-
cally, the Locally Optimal Projection(LOP) operator. Given
a data point-setP = {pj} ⊂ ℜ3, LOP projects a set of
particlesX = {xi} ⊂ ℜ3 onto the surface formed by the
set P by approximating theirL1-medians. To improve the
regularity of projected particles, Huang et al. [9] presented a
Weighted Locally Optimal Projection(WLOP) operator, which
introduces a new repulsion term to control the distributionof
particles. As a result, the particles are pushed to places which
have nearly equal distances to their neighbors. In other words,
a uniform distribution of particles is obtained.

WLOP cannot be simply applied here to optimize the
distribution of samples since it does not consider the guidance
of saliency field. To solve this problem, we extend WLOP to
an adaptive one – called AWLOP, which incorporates visual
saliency values of projected points into WLOP. Specifically,
the point-setP used here can be obtained from the input model
M by either 1) uniformly samplingM when the number of
vertices onM is small or 2) directly using the vertices of
M if the number of vertices is large. The particles inX
are actually the sample points obtained in Section IV. Every
particle xi ∈ X is moved to a new position by the formula
below. Similar to WLOP, the update of position consists of
two terms, where the first term attracts the particle to the given
point set by the weighted local density

vj = 1 +
∑

pl∈(P\{pj})
θ(‖pj − pl‖)

and the second term repulses the particles away from other
particles by a particle-distribution densitywq. The updated
position ofxi is

xi =
∑

pj∈P pj
θ(‖xi−pj‖)/vj‖xi−pj‖∑

pj∈P
θ(‖xi−pj‖)/vj‖xi−pj‖

+µ
∑

xq∈(X\{xi})
(xi − xq)

wqθ(‖xi−xq‖)/‖xi−xq‖
W

(17)

whereW =
∑

xq∈(X\{xi})
wqθ(‖xi−xq‖)/‖xi−xq‖, ‖ · · · ‖

is the L2-norm, and θ(r) = e−16r2/h2

is adopted as in
[9]. θ(r) is a rapidly decreasing smooth weight function
with the support radiush defining the size of the influenced
neighborhood.µ ∈ [0, 0.5) andh are served as two parameters
selected by users to tune the performance of the operator.

Different from WLOP, our AWLOP defines the particle-
distribution density,wq, at a positionx as a function of visual



IEEE COMPUTER GRAPHICS AND APPLICATIONS 7

Fig. 5. For a hand model (a) with the visual saliency field shownin (b),
the sampling method presented in Section IV can generate 10k points as
shown in (c), the distribution of which is not regular. The results obtained by
applying LOP (d) and WLOP (e) have uniformly distributed particles. The
regular and adaptive distribution can be obtained by using our AWLOP (f)
wq = 1/I(cq) (g) wq = 1/I2(cq) as the particle-distribution density in the
projection operator.

importanceI(cq) at the closest vertex ofxq, cq ∈ M on
the input modelM . From the formulation in Eq.(17), we can
see that the attraction from the data point setP is conducted
by the first term, and the repulsion forces between particles
are adjusted by the particle-distribution densitywq in the
second term. To let the distribution of particles guided by
visual saliency, in the regions with high visual importance
the repulsion forces should be less strengthened. Letwq be
inverse proportional to the value ofI(xq) can reflect this
consideration, that is.

wq = 1/I(cq). (18)

For the other two parameters of AWLOP,µ and h, we set
µ = 0.45 andh = 2Lavg with Lavg being the average distance
between data points to theirk−nearest neighbors.k = 20 is
chosen here to balance the speed and the robustness.

Implementation Details and Comparisons The AWLOP
operator can be implemented in a hybrid CPU/GPU program,
where the neighborhood table of points inP and X are
constructed and updated at the CPU side with the help of ANN
library (available at: www.cs.umd.edu/%7Emount/ANN/). The
iterative update of particles’ positions is performed on GPU.
As a result, the samples can be efficiently optimized to a
regular distribution and meanwhile being adaptive according

Fig. 7. Remeshing results of the Rockerarm model are shown here, where
the original model (a) is remeshed from 121k vertices to 10k vertices by
(b) our method, (c) mesh-saliency, (d) QEM and (e) Fuhrmann’s approach
respectively. The first column shows the shading models, the middle column
gives the visual saliency extracted by [1], and the last column presents the
corresponding mesh models.

to the visual saliency field. Figure 5 illustrates the comparison
of results from LOP, WLOP and AWLOP. The input is a
hand model with saliency field (Fig.5(b)) and the sample
points generated by the method in Section IV (see Fig.5(c)).
The distributions generated by LOP (Fig.5(d)) and WLOP
(Fig.5(e)) tend to be uniform no matter what initial set shown
in Fig.5(c) is. Our AWLOP can generate particles adaptive
to visual saliency field as Fig.5(f) and (g). The particle-
distribution density,wq, is set to be1/I(cq) in Fig.5(f) and
wq = 1/I2(cq) is employed in Fig.5(g). We can see that the
distribution of the particles in Fig.5(g) is more adaptive to
visual saliency field than Fig.5(f). However, it may lead to
too sparse regions when the number of particles is very small.
Therefore, in our all further tests,1/I(cq) is used.

VI. RESULTS AND DISCUSSION

We have implemented our algorithm using C++ language
and CUDA SDK library. The implementation has been tested
on various models. The results are obtained by running the
algorithm on a PC equipped with Intel iCore-7 3.4GHz CPU
+ 8GB RAM. An implementation can be accessed at a URL
link1. All tasks of our algorithm are run in parallel on the
modern graphics hardware equipped with GeForce GTX 660
Ti GPU. With the help of highly parallel algorithms, remeshing
of all examples can be finished in less than 10 seconds on our
platform.

1www2.mae.cuhk.edu.hk/%7Ecwang/GPURemeshByVisualCues.html



IEEE COMPUTER GRAPHICS AND APPLICATIONS 8

Fig. 6. The models (a) with about 137k vertices (Kitten) and 199k vertices (MaxPlanck) are remeshed to 5k and 10k vertices respectively by (b) our method,
(c) mesh-saliency, (d) QEM and (e) Fuhrmann’s approach. The line drawings generated by the method of [1] are shown in the bottom row.

TABLE I

COMPARISON OF RUNNING TIMES, VISUAL SIMILARITY ERRORS AND GEOMETRIC ERRORS.

Model Vertex Num. Methods Time† Visual Geometric Err.‡
Input Result (sec.) Err. [10] Max Mean

Kitten 137k 5k Ours 3.635 0.9247 0.834 3.56× 10
−2

(Fig.6) Mesh-Saliency 3, 882 (×1, 068) 0.9110 0.178 1.78× 10
−2

QEM 9.752 (×2.7) 0.8984 0.189 1.44× 10
−2

Fuhrmann 126.8 (×35) 0.9048 3.14 2.64

MaxPlanck 199k 10k Ours 5.384 0.9272 1.25 0.158

(Fig.6) Mesh-Saliency 11, 740 (×2, 180) 0.9070 0.338 3.13× 10
−2

QEM 112.0 (×21) 0.8936 0.640 2.77× 10
−2

Fuhrmann 7, 403 (×1, 375) 0.9021 1.75 1.36

Rockerarm 120k 10k Ours 4.148 0.9536 2.80× 10
−3

1.66× 10
−4

(Fig.7) Mesh-Saliency 4, 539 (×1, 094) 0.9401 9.05× 10
−4

7.80× 10
−5

QEM 9.361 (×2.3) 0.9399 9.19× 10
−4

6.10× 10
−5

Fuhrmann 26.21 (×6.3) 0.9367 3.75× 10
−3

2.77× 10
−4

Cane 493k 20k Ours 8.578 0.9655 1.37 0.143

(Fig.8) Mesh-Saliency 104, 781 (×12, 215) 0.9535 0.602 4.03× 10
−2

QEM 301.0 (×35) 0.9573 0.878 3.79× 10
−2

Fuhrmann 654.0 (×76) 0.9334 11.5 6.94

Horse(Fig.9) 203k 10k Ours 4.526 - 2.58× 10
−3

9.10× 10
−5

Igea(Fig.9) 806k 6k Ours 5.755 - 9.33× 10
−4

3.90× 10
−5

†The numbers in parenthesis show the speedups of our method comparing to mesh-saliency, QEM and Fuhrmann’s approach.
‡The geometric errors are measured by the publicly available Metro tool.

Figure 6 shows the remeshing results of a Kitten model
(137k vertices) and a MaxPlanck model (with 199k vertices).
The original models were downsampled to 5k vertices (Kitten)
and 10k vertices (MaxPlanck) according to the visual saliency
field. Finally, the sample points were optimized and meshed.
We can observe from the result that even the model is down-
sampled to less than 4% of its original complexity, the resultant
shape still looks similar and the distribution of its vertices is
strictly adapted to its visual saliency field. More experimental
results are shown in Figs.7 and 8. We compare our results with

the results of QEM-based mesh simplification [11], saliency-
based mesh simplification [12] and the remeshing method
proposed by Fuhrmann et al. in [5] (with the contrast factor
1.5) – all based on our implementations. To compare the
quality about how well these methods are able to preserve
the visual perception, we render the original model and the
remeshed models into line drawings by one of the state-of-
the-art [1], where the non-photorealistic rendering apporach
relies on the visual perception. By the rendering results shown
in Fig.7-8, we can see that our algorithm is the best one to



IEEE COMPUTER GRAPHICS AND APPLICATIONS 9

Fig. 8. The Cane model (a) with almost 1M triangles is remeshed to20k
vertices by (b) our method, (c) mesh-saliency, (d) QEM and (e) Fuhrmann’s
approach. The first column shows the shading models, while the middle
column illustrates the extracted line drawings and the last column gives the
corresponding mesh models. Our method can preserve the visual saliency
better (see the eyes, nose, tongue and toe of the model which have been
marked out in (b)). Moreover, our remeshing framework takes only about 8
seconds with the help of highly parallel computational powerprovided by
GPU.

Fig. 9. Remeshing results of the polygon soup models: (top row)a horse
model with 204k vertices are remeshed into a two-manifold triangular mesh
with 10k vertices, and (bottom row) an Igea model with 806k vertices can be
remeshed into a mesh with 10k vertices while preserving the visual saliency.

preserve visual saliency on a remeshed model.
Quantitative statistical analysis and comparisons are given

in Table I. Using the non-photorealistic rendering result of
input models as the reference, the rendering results of models
remeshed by different methods are compared. The quantitative
similarity between the images are measured by an image
quality comparison metric simulatingHuman Vision System
(HVS) in [10]. A higher image similarity indicates a model
with more visual perceptional features remained. Moreover,
the comparisons of time are also listed in the table. When
the input model has a large number of vertices, our method
is much faster than other methods as many steps of our
remeshing pipeline are highly parallelized and run on GPUs.
In summary, our method gives the best remeshed results (with
respect to visual saliency) in the fastest speed. On the other
hand, the geometric error analysis is also given in Table I
using the publicly available Metro tool2. From statistics, we
can find that the geometric error is not consistent with the
visual saliency measurement. The mean and max errors of
our approach are similar but greater than that of QEM [11]
and saliency-based method [12]. This also proves that for
applications focusing on the quality of rendering results,visual
cues may not be fully represented by existing geometric error
metrics (e.g., [11], [12]).

Moreover, this remeshing framework can also be applied to
the mesh models having topology problems (see the zoom-
views of polygon soup models in Fig.9). This property is
provided because our algorithms do not strongly rely on the
local connectivity of the input models. Figure 9 shows the
remeshing results generated on two polygon soup models.

VII. C ONCLUSION AND FUTURE WORK

In summary, we proposed a visual perception guided surface
remeshing framework for general polygon models. Firstly, the
visual saliency extractions in different views are conducted

2http://vcg.isti.cnr.it/activities/surfacegrevis/simplification/metro.html



IEEE COMPUTER GRAPHICS AND APPLICATIONS 10

in the image space, which are mapped to 3D saliency points
thereafter. After that, a scalar saliency field is constructed,
where the field is conducting the resampling pattern adapted
to visual requirements. Finally, the positions of sample points
are optimized and the new mesh is reconstructed. In this paper,
we exploit features of graphics hardware to accelerate the
computation. Moreover, the remeshing framework based on
sample points has many tasks being able to run in a highly
parallel manner on GPU. As a result, our remeshing framework
can generate visual perception guided results in a very efficient
way on a variety of models.

In this paper, the visual saliency measurement is extractedin
the image-space, so that the selections scheme of image snap-
shots will influence the subsequent visual saliency measure.
Six orthogonal views are used to generate the snapshots for
the subsequent visual saliency extraction in 2D image space,
which may miss important features that cannot be seen in the
orthogonal views. At this implementation, the orientationof
a model is interactively selected by users. After specifying
the orientation of a model in the front-view, all the rest
five views can be generated automatically. One of our future
work is to automate the orientation selection by using visual
cues. Techniques for adaptive viewpoint selection will also be
explored in our future work to further improve the fidelity of
models processed by our remeshing pipeline. Lastly, any other
extraction algorithms based on visual perception cues can be
easily plugged into our framework – i.e., the framework is not
limited by the particular type of perception cues.

ACKNOWLEDGMENT

This research is supported by the HKSAR RGC/GRF Grant
(Ref.: CUHK/417109) and CUHK Direct Research Grant (Ref.
CUHK/2050518 and Ref. CUHK/2050492). The horse poly-
gon soup model is used by the courtesy of Tao Ju. The Kitten,
Rockerarm, MaxPlanck and Cane models are downloaded
from the AIM@SHAPE shape repository.

REFERENCES

[1] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. Santella, “Sug-
gestive contours for conveying shape,”ACM Transactions on Graphics,
vol. 22, no. 3, pp. 848–855, 2003.

[2] X. Gu, S. J. Gortler, and H. Hoppe, “Geometry images,”ACM Trans-
actions on Graphics, vol. 21, no. 3, pp. 355–361, 2002.

[3] V. Surazhsky, P. Alliez, and C. Gotsman, “Isotropic remeshing of
surfaces: A local parameterization approach,” inProceedings of 12th
International Meshing Roundtable, 2003, pp. 215–224.

[4] G. Turk, “Re-tiling polygonal surfaces,” inProceedings of the 19th
annual conference on Computer graphics and interactive techniques,
1992, pp. 55–64.

[5] S. Fuhrmann, J. Ackermann, T. Kalbe, and M. Goesele, “Direct resam-
pling for isotropic surface remeshing,” inProceedings of the Vision,
Modeling, and Visualization Workshop, 2010, pp. 9–16.

[6] Y. Miao, R. Pajarola, and J. Feng, “Curvature-aware adaptive resampling
for point-sampled geometry,”Computer-Aided Design, vol. 41, no. 6, pp.
395–403, 2009.

[7] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,
S. Rusinkiewicz, and M. Singh, “How well do line drawings depict
shape?” inProceedings of ACM SIGGRAPH 2009 papers, 2009, pp.
28:1–28:9.

[8] W. Hörmann, J. Leydold, and G. Derflinger,Automatic Nonuniform
Random Variate Generation. Springer Berlin Heidelberg, 2004.

[9] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consol-
idation of unorganized point clouds for surface reconstruction,” ACM
Transactions on Graphics, vol. 28, no. 5, pp. 176:1–176:7, 2009.

[10] Y.-J. Liu, X. Luo, Y.-M. Xuan, W.-F. Chen, and X.-L. Fu, “Image
retargeting quality assessment,”Computer Graphics Forum, vol. 30,
no. 2, pp. 583–592, 2011.

[11] M. Garland and P. S. Heckbert, “Surface simplification using quadric er-
ror metrics,” inProceedings of the 24th annual conference on Computer
graphics and interactive techniques, 1997, pp. 209–216.

[12] C. H. Lee, A. Varshney, and D. W. Jacobs, “Mesh saliency,” ACM Trans.
Graph., vol. 24, no. 3, pp. 659–666, 2005.

Lianping Xing received the BSc degree in com-
puter science from Harbin Institute of Technology,
China and the MS degree in computer science from
Tianjin University, China. She is currently a PhD
candidate in the Department of Mechanical and Au-
tomation Engineering, at The Chinese University of
Hong Kong. Her research interests include computer
graphics, CAD and geometric processing.

Xiaoting Zhang is currently a Ph.D. student at the
Department of Mechanical and Automation Engi-
neering, the Chinese University of Hong Kong. She
gained her M.Phil. degree in Mechanical Engineer-
ing and Automation from the Harbin Institute of
Technology. Her current research interests include
geometric modeling, image processing and computer
vision.

Charlie C.L. Wang is currently an Associate Pro-
fessor at the Department of Mechanical and Au-
tomation Engineering, The Chinese University of
Hong Kong. He gained his B.Eng. in Mechatronics
Engineering from Huazhong University of Science
and Technology, M.Phil. and Ph.D. in Mechanical
Engineering from The Hong Kong University of Sci-
ence and Technology. He is a Fellow of ASME. Dr.
Wang serves on the editorial board of a few journals
including Computer-Aided Design, ASME Journal
of Computing and Information Science in Engineer-

ing, and International Journal of Precision Engineering and Manufacturing.
His research interests are geometric modeling, design and manufacturing, and
computational physics.

Kin-Chuen Hui received his B.Sc and Ph.D in Me-
chanical Engineering in 1979 and 1990 respectively
from the University of Hong Kong. Before joining
the Chinese University of Hong Kong in 1992, he
was a consultant in the CAD Services Centre of the
Hong Kong Productivity Council. He is currently
a Professor of the Mechanical and Automation En-
gineering Department at the Chinese University of
Hong Kong, and is the director of the Computer-
Aided Design Laboratory. He is an editorial board
member of the Journal of Computer-Aided Design.

He is a member of the Institution of Mechanical Engineers, British Computer
Society, Hong Kong Computer Society, and a fellow member of the Hong
Kong Institution of Engineers. He worked closely with the local industry,
and was a founding member of the Hong Kong Game Industry Association.
He served as Chairman of the Hong Kong Game Industry Association in the
period 2009 - 2012, and is currently serving as Honorary Consultant of the
same association.


