
Photometric Stereo with Near Point Lighting: A Solution by Mesh Deformation

Wuyuan Xie, Chengkai Dai, and Charlie C. L. Wang∗

Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

cwang@mae.cuhk.edu.hk

Abstract

We tackle the problem of photometric stereo under near

point lighting in this paper. Different from the conven-

tional formulation of photometric stereo that assumes par-

allel lighting, photometric stereo under the near point light-

ing condition is a nonlinear problem as the local surface

normals are coupled with its distance to the camera as well

as the light sources. To solve this non-linear problem of PS

with near point lighting, a local/global mesh deformation

approach is developed in our work to determine the posi-

tion and the orientation of a facet simultaneously, where

each facet is corresponding to a pixel in the image captured

by the camera. Unlike nonlinear optimization schemes, the

mesh deformation in our approach is decoupled into an it-

eration of interlaced steps of local projection and global

blending. Experimental results verify that our method can

generate accurate estimation of surface shape under near

point lighting in a few iterations. Besides, this approach is

robust to errors on the positions of light sources and is easy

to be implemented.

1. Introduction

Photometric stereo (PS) [1] estimates a dense field of

normals from a set of 2D images captured by a fix camera

under different illumination conditions. In the framework

of PS, it is assumed that objects to be reconstructed all have

a Lambertian surface and are illuminated by at least three

known lighting directions. As a result, the normal vector at

each pixel can be determined from the captured image in-

tensities uniquely (or by a least-square solution when more

than three images are taken). Such a simple principle makes

PS as an old but distinctive topic in computer vision devel-

oped for decades. Different from other approaches based

on the triangulation theorem, PS has advantage on captur-

ing the geometry details in high frequency but has defects

in reconstructing good overall shapes in low frequency.

Therefore, PS technique has been employed to reconstruct

geometric textures together with other triangulation-based

Figure 1. An illustration for the near point lighting (NPL) model:

different from the parallel lighting, the lighting direction in NPL

varies with the change of positions.

methods (e.g., [2]). The shape distortions generated by PS

in low frequency is mainly caused by the following three

assumptions in the framework of conventional PS computa-

tion:

• First, to make the problem simple, camera sensor is

assumed to use orthogonal projection in the framework

of PS.

• Second, to avoid considering shadow and specularity

in the radiance equation, all interested points are as-

sumed to obey Lambertian reflection ideally.

• Last but not least, light sources are assumed to be lo-

cated at infinite positions so that the illumination can

be regarded as parallel lighting.

Based on these three assumptions, the lighting model of PS

problem can be linearized into a set of linear equations to be

solved by the least-square solution. A lot of effort has been

conducted in prior research to make the real condition un-

der illumination to approach these assumptions. For exam-

ple, the projection of camera sensor can be assumed as or-

thogonal when distance between the camera and the object

under acquisition is small. Approaches have been investi-

gated to recover the regions with shadow and/or specularity

(e.g., [3,4]). To achieve parallel lighting condition, existing

approaches usually place light sources far away from the

object. However, this will make the luminance attenuate



sharply to result in images with poor quality. In this paper,

we provide a solution to the problem of near point lighting

PS (NPL-PS) to overcome this limitation.

Without loss of generality, the input of our NPL-PS ap-

proach has k images, I1, · · · , Ik, where each has the same

interested region composing of m pixels. The image Ii is

captured under the illumination of the i-th lighting source

with its position pi ∈ ℜ3 known. As illustrated in Fig.1,

different surface points have different lighting directions

under the illumination of near point lighting. The lighting

direction at a point corresponding to a pixel in the image

space not only varies with the change of image coordinates

but also changes according to the depth. In short, the radia-

tion model correlating the captured light intensities and the

height/orientation of a surface region is nonlinear.

Main Result: In this paper, we propose a simple but novel

approach to solve the NPL-PS problem that can generate a

3D mesh surface from a set of 2D images, {Ii}, under the

exposure of different near point lighting sources. Each pixel

in the interested region in input images is represented as a

polygonal facet to form a piecewise linear surface M. We

assume the surface region to be reconstructed here is C0-

continuous. The nonlinear NPL-PS problem is solved by

a mesh deformation approach with iteratively applied local

shaping and global blending steps (see Fig.2 for an exam-

ple). Our method avoids to apply either the conventional

integration (e.g., [5]) or the time-consuming nonlinear opti-

mization (e.g., [6]). Only simple linear operations are taken

during the iterations of our approach. As a result, a 3D mesh

surface can be efficiently and robustly obtained after a few

steps of mesh deformation. Both the geometric details in

high frequency and the overall shapes in low frequency can

be accurately reconstructed on the resultant mesh surface.

The rest of the paper is organized as follows. Section 2

reviews the related work of photometric stereo and mesh de-

formation based shape optimization. We analyze and com-

pare the difference between conventional PS and near point

lighting PS (NPL-PS) in Section 3. After that, the formula-

tion for solving the NPL-PS problem is detailed in Section

4. Lastly, experimental results are given in Section 5, and

our paper ends with the conclusion section.

2. Related Work

Prior works have paid a lot of attention to improve the

results of PS-based reconstruction – mainly by correcting

the aforementioned assumptions for linearization. The ex-

isting approaches can be roughly classified into three cat-

egories. The first category mainly focuses on improve the

radiance model, where the Lambertian model is replaced by

more real but complex ones (ref. [7–10]). These approaches

mainly serve for surface rendering and are not good at re-

constructing accurate 3D surfaces. The second category of

Figure 2. One step of our mesh deformation based NPL-PS: (left)

an initial mesh surface before deformation, (middle) the facets are

positioned along the orientation of target normals in the local shap-

ing step, and (right) the facets are glued together into a mesh sur-

face in the global blending step. The final result can be obtained

by applying the steps of local shaping and global blending itera-

tively. It is easy to find that our method is trivially affected by the

initial guess. When a planar initial shape (top row) or a random

initial shape (bottom row) is given, the computation converges to

the similar shape in just a few steps.

approaches [6, 11, 12] emphasize on how to deal with the

error induced by ill reflectance points (i.e., shadows and

specularities). In a typical work [6], the authors propose

to use a matrix analysis approach to solve the ill PS prob-

lem with shadows and specularities. Their methods can im-

prove the high frequency information in geometric details

but are still suffered from the distortion in overall shape

(i.e., errors in low frequency that are caused by the assump-

tion of placing point lighting sources in infinity). The third

group of methods (e.g., [13–17]) aim at improving the re-

sultant shapes of PS by correcting the lighting model into

NPL sources. When there is no shadow and specularity in-

cluded in input images, the estimated surface normals are

mainly affected by the lighting directions. If bias have been

incorporated into the estimated normals, they will be fur-

ther transferred to the reconstructed 3D shapes from nor-

mals. To reconstruct an accurate shape in all bands of fre-

quencies, it is necessary to consider a more realistic light-

ing model. However, when a realistic non-parallel lighting

model is employed, PS problem becomes nonlinear and the

numerical computation based on nonlinear optimization re-

quires other auxiliaries (e.g., some known 3D positions).

In [13], a sparse depth-map or scattered 3D feature points

are used for this purpose. Our approach presented in this

paper overcome this difficulty by using a local/global mesh

deformation technique to solve the nonlinear model.

In the literature of geometric modeling, the local/global

optimization strategy has been widely used to decouple the

problem of solving nonlinear optimization into interlaced

orthogonal linear operations (e.g., [18, 19]). Recently, the

discrete geometric processing technique has been extended

to solve the surface-from-gradients problem [20]. Inspired



by this work, we develop a new method to solve the NLP-

PS problem by mesh deformation. Unlike the conventional

pipeline of PS that computes a dense normal field first and

then conducts the surface-from-gradients technique to ob-

tain the surface shape, we provide a one-stop solution to

directly generate a 3D surface from the input 2D images.

Details can be found in Section 4.

3. Linear vs. Nonlinear Photometric Stereo

In this section, we analyze the problem of conventional

PS framework (i.e., linear PS) and then introduce the NPL-

PS model that is nonlinear.

3.1. Conventional photometric stereo

The observed appearance brightness I of a Lambertian

object under a lighting direction l ∈ ℜ3 at a surface point

x ∈ ℜ3 can be described as I(x) = ρn · l, where ρ is

the Lambertain reflection albedo and n ∈ ℜ3 is the surface

normal at x. Note that, under the assumption of parallel

lighting in conventional PS, the lighting direction does not

change in the whole domain (i.e., l is not a function of x).

There are k images, {Ii}, of the same object under the il-

lumination of different light sources, and the above lighting

model is used to determine the value of n at each pixel in

the interested region. Specifically, when k > 3, the value of

ρn can be determined by a least-square solution of

Ii(x) = ρn · li (i = 1, · · · , k). (1)

Here, Ii is the brightness observed in the i-th image and li
denotes the lighting direction of the i-th source. Different

values of the Lambertain reflection albedo appear at differ-

ent surface points. However, the value of ρ does not change

at the same surface point under the illumination of different

lighting directions. As a result, one can solve Eq.(1) to ob-

tain the value of ρn first, and then normalize it to obtain a

unit surface normal vector n. After that, the surface-from-

gradients technique (e.g., [20–23]) is employed to recon-

struct a 3D surface from the field of normal vectors.

3.2. Near point lighting illumination

The conventional PS assumes an object to be recon-

structed is under the illumination of nearly parallel lighting.

In practice, illumination is nearly parallel only when the dis-

tance between a lighting source and the object is more than

10 times of the object’s dimension [5]. However, when a

light source is placed in a distance that far away from the ob-

ject, the luminance will attenuate sharply and hence deterio-

rate the captured image. Based on this reason, light sources

are usually placed close to the object to ensure the quality

of images. In such circumstances, parallel lighting assump-

tion leads to the significant shape distortion in coarse scale

although the geometric details in high-frequency band can

still be successfully reconstructed.

To overcome this contradiction between assumption and

practice, we adopt the near point lighting (NPL) model to

estimate the surface shape in this paper. Under the illumi-

nation of NPL, two important factors must be noticed.

• Every surface point has its own unique lighting direc-

tion, and all lighting directions at different regions con-

verge at the same point light source.

• The attenuation of luminance needs to be considered in

the Lambertian radiance model (i.e., distances between

surface points and light sources should be incorporated

into the model).

Therefore, akin to the lighting model presented in [12], we

employ a NPL model as

Ii(x) =
ρ

α‖pi − x‖2

(

n(x) ·
pi − x

‖pi − x‖

)

, (2)

where α is the attenuation coefficient, pi is the position of

the i-th light source, and therefore (pi−x)/‖pi−x‖ gives

the lighting direction li at x. The difference between this

illumination model and the conventional illumination model

in PS has been illustrated in Fig.1.

In our NPL model, the position of light sources can be

obtained by a calibration procedure [24] when the relative

position between camera and light sources are fixed dur-

ing the shape acquisition. Even after determining the po-

sitions of light sources, Eq.(2) is still non-linear due to the

unknown depth value of x for each pixel in the captured im-

ages. In the following, we investigate a method to solve the

values of n(x) and x simultaneously based on local/global

mesh deformation. Besides the positions of light sources,

our method also needs to know the corresponding width w
and height h of a pixel in the captured images – i.e., scale of

the image coordinates to the Euclidean coordinates, which

can also be obtained from the calibration procedure.

4. Formulation in Mesh Deformation

Our formulation for solving the NPL-PS problem is

based on converting each pixel (i, j) in the interested region

into a quadrangular facet fi,j , the boundary of which is de-

fined by four vertices vi,j , vi+1,j , vi+1,j+1 and vi,j+1. A

vertex vi,j has its x- and y-coordinates fixed and zi,j as an

unknown variable to be determined – that is (ox + iw, oy +
jh, oz + zi,j). Here (ox, oy, oz) specifies the shifting be-

tween the image coordinate system and the world coordi-

nate system. The initial values of zi,js can be assigned as

zi,j = 0 or be given randomly. The following formulation

will provide an efficient method to determine their values to

satisfy Eq.(2) on all facets/pixels. The collection of facets

forms a mesh surface M with C0-continuity.



4.1. Local/Global mesh deformation

Generally speaking, the strategy of local/global mesh de-

formation decouples the nonlinear optimization procedure

into interlaced steps of local shaping and global blending. A

mesh surface M is deformed iteratively to minimize an en-

ergy function defined according to the governing conditions

(e.g., enforcing normals to follow the input gradient-field).

In each iteration, a local shaping step is first performed

to determine the position and orientation of each facet ac-

cording to its target normal and its current shape. The mesh

surface has been broken after the local shaping – see Fig.2

for an illustration. After that, a global blending step is

applied to glue all the facets back into a connected mesh

surface. Specifically, the global blending step minimizes

a functional to reduce the difference between z(fi,j) and

p(fi,j) on each facet fi,j , where z(fi,j) is a column vector

formed by the depths of fi,j’s four vertices

z(fi,j) = {zi,j , zi+1,j , zi+1,j+1, zi,j+1},

and p(fi,j) is its corresponding vector after applying the

local shaping step. Details for determining p(fi,j) can

be found in Section 4.2. However, enforcing z(fi,j) =
p(fi,j) is too restrictive, which could slow down the con-

vergence during the iteration. To solve this problem, the

functional is relaxed by applying the mean-subtraction tech-

nique (ref. [19]) as

Φ({zi,j}) =
∑

fi,j

‖Nz(fi,j)−Np(fi,j)‖
2, (3)

where N = I4×4 − 1

4
14×4 with 1 being a matrix with all

elements equal to 1. It is found that Eq.(3) can be reformu-

lated into a more compact form as

Φ({zi,j}) = ‖Ad− b‖2, (4)

where A is a 4m × n matrix derived from Nz(fi,j) and b

is a vector with 4m components derived from Np(fi,j) on

a mesh surface M with m quadrangular facets and n ver-

tices. All the unknown depth values of the vertices (n in

total) are listed in d. This is a standard least-square prob-

lem, which can be solved by ATAd = ATb. Moreover,

ATA does not change during the iterations as the matrix

A only depends on the connectivity of M that is invariant.

As a result, we can pre-factorize ATA at the beginning of

iterations and re-use the result of factorization in all the rest

steps – the computation only involving back substitution is

very efficient.

4.2. Local projection for NPLPS

To use the local/global mesh deformation technique, we

first formulate the local shaping step of each facet accord-

ing to the lighting model that has been derived in Section

3 for NLP-PS. Considering about a pixel (i, j) and its cor-

responding facet fi,j , two operations are taken on fi,j for

solving the NPL-PS problem in the local shaping step: 1)

determining the normal, ni,j , of fi,j and 2) rotating the facet

to following the orientation of ni,j .

The normal ni,j is determined at the center of fi,j , that

is ci,j =
1

4
(vi,j+vi+1,j+vi+1,j+1+vi,j+1). Thus, for the

k-th image, an equation can be obtained from the nonlinear

lighting model at ci,j as

(pk − ci,j) ·
ρ

α
ni,j = Ik(i, j)‖pk − ci,j‖

3 (5)

Ik(i, j) denotes the light intensity at the pixel (i, j) in the

image Ik. Incorporating all images, the normal vector ni,j

can be obtained by a least-square solution as

T(
ρ

α
ni,j) =

∑

k

‖pk − ci,j‖
3Ik(i, j)(pk − ci,j) (6)

with

T =
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 (7)

by defining ak = pk − ci,j . The superscript in {x, y, z}
indicates the x-, y- and z-components of a vector respec-

tively. The value of ρ
α
ni,j can be robustly determined from

Eq.(6) via singular value decomposition (SVD). Then, the

unit vector ni,j is computed by normalization.

After knowing ni,j , we shift the position of fi,j’s ver-

tices along the z-axis to put them on the plane Pi,j that

passes through ci,j and has the normal ni,j . A vector

formed by depth components of the four projected vertices

is defined as

p(fi,j) = {pi,j , pi+1,j , pi+1,j+1, pi,j+1}.

Here, the depth values are

pk,l = czi,j −
(k − i− 1

2
)wnx

i,j + (l − j − 1

2
)hny

i,j

nz
i,j

(8)

with k ∈ {i, i + 1} and l ∈ {j, j + 1}. Note that the NLP

model presented in Eq.(2) is nonlinear to the center of a

facet, fi,j . In our local shaping step, we simplify the com-

putation by using the current center of fi,j and leave the

position of ci,j to be updated in the global blending step of

our framework.

4.3. Iteration framework for NPLPS

The possibility allowing us to solve the NPL-PS prob-

lem by the local/global mesh deformation is based on the

observation that the values of {ni,j} determined by Eq.(6)

are similar to the ground truth when the initial values of



Figure 3. Experimental test on a saddle surface shows the pro-

gressive results of our framework. The top row gives 8 examples

of total 27 input images under the illumination of different light

sources. The ratio between the object’s dimension and the object-

to-light distance in z-dimension is 0.37, which is under the illu-

mination of NPL. Different columns show the progressive results

obtained during the iteration. The errors on reconstructed normals

are measured in terms of angle degree and displayed as color maps

(see the bottom row).

{ci,j} are given in the working envelope of the acquisition

system. After that, when using the updated {ci,j} obtained

from the global blending to generate a new set of {ni,j}, the

shape is more similar to the real shape than the first update.

Therefore, in our framework, these two steps are iteratively

applied until the values of {ci,j} converge. The progressive

results tested on a saddle surface is given in Fig.3, where

the inputs includes 27 images illuminated by different near

point lighting sources.

5. Experimental Results

We have implemented our approach in MATLAB and

tested its performance on a variety of models. In the exper-

imental tests, we reconstruct models from 2D images un-

der the illumination of near point lighting. The results are

compared with that are reconstructed from the same set of

2D images but under the conventional parallel lighting as-

sumption. All the results are generated on an Intel i7 CPU

with 3.4GHz and 8GB RAM in around 10 to 180 seconds

at different resolutions. Results show that our new NPL-PS

framework significantly outperforms the conventional ones.

First of all, we build a virtual environment for generat-

ing the images of NPL with the help of OpenGL library. For

each model to be tested, 27 images under the NPL illumi-

nation are generated. According to the requirement of our

NPL-PS framework, the images and the coordinates of 27

light sources are used as input to our program to generate

3D models. To compare with the conventional PS with par-

allel lighting, we use the vector from a model’s center to the

positions of light sources as the parallel lighting directions

to generate a dense normal field. After that, the surface-

from-gradients (SfG) approach in [20] is employed to re-

Figure 4. Experimental tests on a cubic model with sharp features

under the illumination of NPL. The ratio between the object’s di-

mension and the object-to-light distance in z-dimension is 0.72.

The top row shows eight example images of the total 27 input ones,

the second row gives the reconstructed 3D surfaces, the third row

provides the reconstructed normal maps, and the bottom row com-

pares the reconstructed normal maps with the ground truth in the

representation of color error maps. To verify the robustness of our

approach, 5% random errors w.r.t. the working envelope’s width

has been added to simulate the calibration errors.

Figure 5. Experimental tests on a face model under the illumina-

tion of 27 near point light sources. The ratio between the object’s

dimension and the object-to-light distance in z-dimension is 0.22.

construct the surface from a normal field. As the ground

truth is known, we can evaluate errors on both the 3D shape

and the normal map obtain from the conventional PS and

ours. One example is shown in Fig.4. It is easy to find

that the reconstruction from conventional PS is largely dis-

torted as the object is put at a place very close to the light

sources. To further verify the robustness of our approach,

we randomly add errors at the level in 5% of the working

envelope’s width onto the positions of light sources. This is

to simulate the calibration errors that could be embedded.

It can be found that our NPL-PS framework can also gen-

erate very accurate results under this noisy condition. Two

more examples are also tested and shown in Figs.5 and 6.

Errors on the positions of light sources are assigned in the



Figure 7. When parallel lighting is employed to generate normal maps for NPL, the shape error in low frequency band caused by the parallel

lighting assumption cannot be resolved during the SfG reconstruction step. The results from DGP [20], Poisson [21], M-estimator [22] and

regularization [23] are shown – all have large distortion in shape when linear-PS is used.

Figure 6. Experimental tests on a kitten model under the illumina-

tion of NPL. The resultant surface is reconstructed from 27 input

image. The ratio between the object’s dimension and the object-

to-light distance in z-dimension is 0.30.

same way as the cube example. The same conclusion can

be made on these two examples – our NPL-PS framework

can greatly improve the quality of reconstruction comparing

to the conventional PS under the parallel lighting assump-

tion. In all these examples, SfG reconstruction in the con-

ventional PS is computed by [20]. To further verify that the

shape errors are not generated by SfG, we test three more

SfG techniques in Fig.7, which include Poisson [21], M-

estimator [22] and regularization [23].

Another test is taken to verify the performance of our

approach when the object to be reconstructed is placed at

different distances from the light sources. The average er-

rors on the normals estimated by our NPL-PS and the par-

allel lighting PS are measured. The testing results on the

cube example are shown in Fig.8. It is found than when the

model is placed far away from the light sources, both the

parallel PS and our NPL-PS approaches can generate accu-

rate results with small distortion. The reconstruction based

on parallel PS becomes worse and worse when increasing

the ratio between the object diameter and the object-to-light

Table 1. Statistics on Computing Time†

Time on Different Resolutions

Model Figure 128
2

256
2

512
2

Cubic 4 21.2 sec. 50.5 sec. 131 sec.

Face 5 10.1 sec. 32.6 sec. 102 sec.

Kitten 6 28.3 sec. 60.1 sec. 180 sec.

†The total time of computation converging within 10 iterations is

reported, where the time of pre-factorization has been included.

distance (i.e., reducing the object-to-light distance). How-

ever, the NPL-PS method proposed in this paper is nearly

not affected. The same phenomenon is observed when the

positions of light sources have been embedded with calibra-

tion errors (see the right of Fig.8).

The local/global deformation based computation can

solve the nonlinear NPL-PS problem in a very efficient

way. Statistics of applying our approach on input images

with rectangular domain in different resolutions are listed

in Table 1. The statistics are generated on our primary im-

plementation in MATLAB. We plan to implement our ap-

proach by C++ to further improve the efficiency of compu-

tation in the near future.

To further verify the performance of our approach in

real environment, we have constructed a hardware setup for

near point lighting PS. As shown in Fig.9, ten light bubbles

are installed around a camera. The 3D object to be recon-

structed is placed on the white board to be illuminated by

these 10 near point lighting sources. We calibrate the light

sources positions in the following way. Two shiny hemi-

spheres are employed to calibrate the position of each light

source. Motivated by [13], the lighting direction of a light

source according to the center of a shiny hemi-sphere can be

obtained. When two such spheres are employed, two such

lines can be obtained. The final position of a light source

can be estimated at the point closest to both of the lighting

directions - i.e., the middle of the minimal distance segment



Figure 8. Comparison in the virtual environment by using 1) images taken in the exposure of far point lighting in the parallel PS to 2)

images taken in the NPL exposure in our framework. To obtain nearly parallel lighting in case 1), the light sources must be placed far ways

from the object to be reconstructed. This comparison is actually as using the left point on the blue curve to compare with other points on

the red curve. Here it assumes a very strong light source. In practice, when a light-source with lower intensity is employed – resulting in

very dark images, larger errors will be generated on the reconstruction from parallel PS.

between two incident rays. In this calibration, the centers of

hemi-spheres can be known by placing them at pre-defined

locations.

The 3D terrain surface from a piece of crumpled paper

has been captured by this setup and shown in Fig.10. From

10 input images, a piecewise linear 3D surface of the paper

can be successfully reconstructed. It can be found from the

hardware setup that the illumination is taken under the near

point lighting condition. The ratio between the object’s di-

mension and the object-to-light distance in z-axis is around

0.45 in this example. The surface reconstructed on this

hardware NPL-PS setup looks real and very similar to the

true surface of the crumpled paper. As lack of ground truth,

the test is taken on a flat plane. The error is quantitatively

measured by the height difference obtained from the recon-

structed mesh – 0.216mm is observed in a sensing region

with 55mm × 35mm. Moreover, we test the reconstruction

on a saw-teeth shape with teeth height 12.22mm. Our re-

construction shows a result with teeth height 9.73mm. The

error is mainly caused by the unstable lighting intensity and

the assumption of Lambertian lighting model which is not

exactly true in practice. To further measure the accuracy

of our results, ground truth of the tested surface must be

known. In our future work, we plan to first use 3D printing

to fabricate a surface according to a mesh model [25]. After

that, the fabricated model is placed on our setup to test. The

reconstructed 3D surface will be compared with the original

mesh model to verify the accuracy and the performance of

our system.

Figure 9. A hardware setup for photometric stereo with near point

lighting – 10 NPL sources are placed around a camera with very

close distance to the objects placed on the white board.

6. Conclusion

In this paper, we present a novel computational frame-

work to deal with the bottleneck of near point lighting

model in the photometric stereo. We formulate such a

nonlinear PS problem in a pure geometry way and solve

it through the local/global mesh deformation. The surface

normals and depths can be simultaneously estimated in our

approach. The effectiveness of our method has been demon-



Figure 10. Using our hardware setup for NPL-PS, the 3D terrain

surface of a crumpled paper can be successfully reconstructed.

strated using synthetic images with calibration errors con-

sidered. A hardware setup for NPL-PS has been constructed

to further verify the performance of our technique presented

in this paper. The distinct advantage of this new technique

is its ability to efficiently generate dense 3D depth maps in

high accuracy. To the best of our knowledge, this has not

been realized by any prior method.
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