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1. Introduction

Developable surfaces are a subset of ruled surfaces which can be
unfolded (or developed) into a plane without tearing or stretching
during the process. This property, known as the developability,
eases manufacture of 3D objects. Hence, developable shapes are
widely used in industries such as sheet metal forming [1], ship
building [2,3], windshield design, and fabrication of apparels
including shoes and clothing [4,5]. Parts are first modeled with
developable strips in space. They are then flattened into a planner
pattern. The manufacturing process starts with cutting a material
according to the pattern. Unrolling the cut material simply
resumes its original 3D shape. A final step is often applied to
assemble different pieces by welding or sewing in order to form the
final product.

There have been two different approaches proposed for CAGD of
a single developable surface. The first approach represents a
surface as a tensor product of degree (1, n) with non-linear
constraints imposed by the developability. The user can thus

control the shape in a very limited manner, e.g. some but not all of
the control points. The remaining parameters must be solved from
the constrained system [6–11]. Instead, one can treat a developable
surface as an envelope of one parameter set of tangent planes. The
surface becomes a curve in dual projective space [12]. Design
methods were proposed for Bézier and B-spline surfaces based on
the duality theory [13,14]. However, they may be lacking of
practicality in CAGD applications.

Many engineering products consist of double-curved surfaces,
which are not perfectly developable. It is thus necessary to allow
certain deviations in the developability. Several studies have
developed CAGD methods that approximate 3D shape using
developable surfaces. Some concerned with interpolation and
approximation algorithms based on the dual approach [15–19].
Leopoldseder and Pottmann [16] modeled a given developable
surface by surfaces of revolution. Each pair of consecutive rulings
and tangent planes that approximates the given surface is
interpolated by smoothly linked circular cones. Their later work
allowed a point cloud as the input for applications in reverse
engineering [17,18]. On the other hand, several literatures
[20,21,22–24] were focused on increasing the developability of a
strip in the tessellation representation. Wang et al. [20] proposed a
function optimization method for increasing the developability of
a trimmed NURBS surface by adjusting the positions and weights of
the surface control points. Tang and Wang [22] introduced a
modeling algorithm that interpolates a strip defined by two given
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space curves with an aggregate of triangles. The interpolation task
was formulated as a variant of boundary triangulations and thus
transformed into the shortest-path problem [23]. Their later work
[24] optimized the result based on various objective functions
considering different CAD/CAM applications.

Strip design using developable surfaces possesses a wide
range of industrial applications. It is commonly used in design
and manufacture of sheet metal parts and apparel. Developable
strip design has recently found novel applications such as
generation of tool path in five-axis flank milling [25], simulation
of robot motions [26], and fabrication of sculptures in art [27].
However, the past studies fail to provide geometric design
methods that balance the modeling capability and usability in
practice. This paper introduces a greedy algorithm for CAGD of
strip with freeform developable patches. It calculates consecutive
quadratic Bézier patches in the conical form, consisting of
triangular and quadrilateral patches, that interpolates two given
boundary curves in space. Simple heuristics are applied to select
one optimal solution in terms of surface evaluation criteria
among the feasible patches starting with a ruling defined by two
sampling points from the curves. The patches generated connect
with only positional continuity. The next step is to perform
degree elevation on each patch. The resultant cubic patch
provides extra degrees of freedom in the strip design. G1
continuity is thus produced across the degree-elevated patches
by adjusting their control polygons while maintaining the surface
developability. Test strips defined by highly convoluted curves
demonstrate the effectiveness of the proposed method. The
influence of various design parameters on the strip shape is
discussed. In comparison with previous research that employed
triangles in the strip design, this work offers better surface
developability, simpler solution for quick implementation, and
more design handles for the shape control. It serves as a simple
but practical method for CAGD of developable strip.

2. Preliminaries

2.1. Developable Bézier patch

Given two curves P(u) and Q(u) in 3D space, a ruled surface is
constructed by linking each pair of corresponding curve points
(with equal u) with a line segment PQ, referred to as a ruling. The
surface R is described as

Rðt;uÞ ¼ ð1� tÞPðuÞ þ t Q ðuÞ; ðt;uÞ 2 ½0;1� � ½0;1� (1)

where t is the parameter along the ruling. Generally the tangent
lines to the curves P(u) and Q(u) at any given point do not lie in the
same plane. If these tangent lines and the corresponding ruling
remain coplanar, then the surface becomes developable, which can
be represented in terms of the triple scalar product of the two
tangent vectors and the ruling vector P(u) � Q(u) [9]:

ṖðuÞ � Q̇ ðuÞ � ½PðuÞ � Q ðuÞ� ¼ 0 (2)

Substituting the freeform representation of both curves into
Eq. (2) leads to a complex system of equations that must be
imposed on the control points to ensure the surface developability.

Imposing proper geometric restrictions on a patch can some-
times simplify the developability constraints and the solution
process of the constrained control points. Several previous studies
[6,7,10] applied this technique to make the surface design solvable.
The resultant patches are special cases of the most general
developable patch. Certainly these pre-defined limitations con-
sume some degrees of freedom in the patch design, and thus
reduce the modeling capability of the surface. For a developable
Bézier patch, when the extensions of all the trapezoids in the Bézier

control polyhedron intersect at a point O (see Fig. 1) and vectors c0,
c1, and c2 in the patch must satisfy [9]:

c0

P0O
¼ c1

P1O
¼ c2

P2O
¼ f (3)

where f and O are referred to as the scaling factor and the
projection point, respectively. The patch becomes developable and
refers to as the generalized conical form [9]. Eq. (3) indicates that
one boundary curve is simply a scaled copy of the other curve. This
conclusion also reveals that any control point pairs must remain
coplanar. Any Bézier ruled patch with one boundary reduced into a
single point is a triangular developable patch [28]. That is, any
surface constructed by linking from a projection point to a Bézier
curve becomes developable. Despite its limited modeling cap-
ability, the conical model provides simple but useful design
methods in many applications of developable patches.

3. Modeling with developable Bézier patch

A strip is defined by two boundary curves. They are defined by
piecewise parametric curves interpolating a set of sample points.
The strip design in this work is to find a series of developable
surfaces that interpolate the two curves. Assume they are denoted
as P(u) and Q(u), the first step is to take a set of points P = {p1, p2,
. . ., pn} and Q = {q1, q2, . . . ,qm}. To interpolate P and Q with maximal
developability is a variation optimization problem [24]. This paper
proposes a different approach which does not need to solve such a
complex problem. The idea is to use developable patches to
interpolate P and Q so that the developability is automatically
preserved. At any ruling piqj, we can choose two different elements
to start with: a triangular or a quadrilateral developable patch. The
following algorithms describe how to calculate the control points
in each case.

3.1. Generation of a triangular patch

As described above, a triangular developable Bézier patch is
defined with a projection point and a Bézier boundary curve. We
choose the projection point and the end control points of the curve
from the point sets P and Q. A curve constructed in this way would
be of close proximity to the boundaries. As shown in Fig. 2, suppose
pi and pi+1 are two consecutive points in the set P, with the tangent
vectors to the original curve denoted as ti and ti+1. They serve as the

Fig. 1. A quadratic Bézier patch in generalized conical form.
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end control points of a quadratic Bézier curve. The second control
point can be determined in two different ways. The first possibility
is the intersection between the tangent lines corresponding to ti

and ti+1. If they do not intersect, which is usually the case, then the
solution is computed in a more complex manner. The middle point
over the curve segment pipi+1 (denoted as cpi), pi, and pi+1

determine a plane S. Let the tangent lines project into the plane,
forming t0i and t0iþ1. Their intersection becomes the second control
point. Note that the projection point is selected from the other
boundary (Q(u) in this case). The choice of the control point is a
heuristic rule and may not be an optimal solution. However, it
gives satisfactory solutions in the test cases shown later.

3.2. Generation of a quadrilateral patch

Given four points on the strip boundaries, the corresponding
boundary curve segments are denoted as piqi and pi+1qi+1, as
shown in Fig. 3. Since these points are constructed in Step 2 of the
above algorithm, they are coplanar—thus piqi and pi+1qi+1 intersect
at the projection point O. Recall that the control polygon of one
boundary must be a scaled copy of the other in the conical form.
Thus only three control points among pi, qi, pi+1, and qi+1 can be
freely specified once the projection point has been chosen. The end
ruling may intersect the boundary at a different point q0iþ1 from
qi+1, given that pi, qi, and pi+1 as the chosen control points. The
second control point mpi of the longer curve segment is calculated
from pi and pi+1 using the same heuristic adopted in generation of a
triangular patch. Once it has been obtained, the remaining control
point mqi of the shorter segment is then determined by Eq. (3).

3.3. Algorithm for generation of developable patches in

the conical form

Step 1: generate point sets from the boundary curves.

This step divides the given boundary curves into two point sets
with equal arc length. The number of points in P and Q does not
have to be equal.

Step 2: test feasibility of constructing a quadrilateral patch.

The proposed method adopts a heuristic in the strip design, i.e.,
we prefer use of a quadrilateral patch, following the same idea, this
step checks whether a quadrilateral patch can be constructed in the
first place, even though a triangular one always exists. Fig. 4(a)
shows that piqj is a ruling to start with. The tangent vectors to the
curves at these points are tpi and tqj. If they lie on the same side of the
triangle pipi+1qj, then go to Step 3 for testing other conditions that
must be satisfied in construction of a developable patch. The similar
test is carried out when both vectors remain on one side of the
triangle piqjqj+1. A triangular patch will be considered only when
those vectors are located on different sides of the two triangles.

Step 3: test the construction feasibility of a developable patch.

Given a ruling piqj, there are four different ways in constructing
the next patch. First, we can choose a triangular or a quadrilateral
patch. The projection point of each patch is likely to be located on
either curve. The potential solutions are referred to as candidate
patches in this paper. Their corresponding construction procedures
are described as follows:
(1) Quadrilateral patch pipi+1qj: we calculate the intersection

between the plane determined by pi, pi+1, and qj and the
boundary curve Q. The one nearest to qj (denoted as q0j) is
chosen when there are multiple solutions, as shown in Fig. 4(b).
If the distance between q0j and qj is smaller than the Hausdorff
distance specified by the user, then pi, pi+1, and qj allow the
construction of a quadrilateral developable patch. These points
cannot form a quadrilateral developable patch when there is no
intersection or the limitation of the distance is not satisfied.

(2) Quadrilateral patch piqjqi+1: we calculate the intersection
between the plane determined by pi, qi, and qj+1 and the
boundary curve P. The one nearest to pj (denoted as p0j) is
chosen when there are multiple solutions, as shown in Fig. 4(d).
If the distance between p0j and pj is smaller than the Hausdorff
distance specified by the user, then pi, qi, and qj+1 allow the
construction of a quadrilateral developable patch.

(3) Triangular patch piqjqi+1: the next point qi+1 on Q is chosen to
form a triangular developable patch along with the ruling piqj,
as shown in Fig. 4(f), with pi as the projection point. It is
necessary to check the distance between pi and qi+1 with
respect to the Hausdorff distance.

(4) Triangular patch pipi+1qj: the next point pi+1 on P is chosen to
form a triangular developable patch along with the ruling piqj,
as shown in Fig. 4(g), with qi as the projection point.
Step 4: choose an optimal solution from the candidate patches.

Step 3 may generate multiple solutions starting with piqj. Since
a quadrilateral patch has higher preference, it surpasses both
triangular patches. If there are two feasible quadrilateral patches
(with the projection point on the different sides), they are
evaluated using a given criterion. The one corresponding to a
smaller value will be selected. The similar evaluation process is
applied to choose between two triangular patches.

Step 5: repeat Steps 2 to 4 until the end ruling reaches pmqn.

4. Continuity adjustment with degree elevation

Any consecutive patches generated from the above algorithms
only guarantee positional continuity across the patch boundary.

Fig. 2. Generation of the control polyhedron for a triangular developable Bézier

patch.

Fig. 3. Generation of the control polyhedron for a quadrilateral developable Bézier

patch.
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This may restrict the practicality of the result in many occasions.
Here we propose an effective technique to overcome this problem.
The idea is to gain additional degrees of freedom for finer
adjustment of a Bézier patch through degree elevation [11]. These
extra design handles not only allow the continuity adjustment, but
they can be also used to maintain the surface developability at the
same time. The principle of degree elevation for a Bézier patch will
be discussed as follows.

4.1. Degree elevation

Degree elevation increases the degree of a curve without
changing the shape of the curve. This technique was originally
developed for combining two curves of different degrees, thus
simplifying the complexity of geometric processing. Given a n-
degree Bézier curve with control points P0, P1, . . ., Pn, the new
control points p0i for the Bézier curve of degree (n + 1) can be

written as [29]:

p00 ¼ p0; p0nþ1 ¼ pn

p0i ¼
i

nþ 1
pi�1 þ 1� i

nþ 1

� �
pi; i ¼ 1;2; . . . ;n

(4)

For a quadratic Bézier ruled surface with A0–A1–A2 and B0–B1–B2

as the control points of its boundary curves (see Fig. 5), the new
control points for the same surface of degree three become:

A00 ¼ A0; A04 ¼ A3; B00 ¼ B0; B04 ¼ B3

A01 ¼
1

3
A0 þ

2

3
A1; A02 ¼

2

3
A1 þ

1

3
A2; B01 ¼

1

3
B0 þ

2

3
B1;

B02 ¼
2

3
B1 þ

1

3
B2 (5)

A patch degree-elevated from a patch of a lower degree still
preserves the developability of the surface, since the elevation
process only changes the parameterization of the surface, not its

Fig. 4. Generation of a developable patch at a ruling.
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shape. For a patch in the conical form, the projection point remains
the same and each control point pair satisfies the scaled relation-
ship. On the other hand, there are more design handles in the new
representation of the surface that can be utilized to modify the
control points with finer shape control. The next section will
introduce a set of algorithms that generate G1 continuity across
the patch boundaries based on this idea.

4.2. Algorithms for continuity adjustment with degree elevation

4.2.1. Continuity adjustment for quadrilateral patch

Fig. 6 shows the control points of a quadrilateral patch involved
in the adjustment process. Initially, the patch Si connects to Si�1

and Si+1 along the rulings A0B0 and A3B3, respectively, both with
positional continuity. For Si�1, the tangent vectors to the boundary
curves at A0 and B0 are tA and tB, which has been determined when
processing the patch Si�1 (i.e., they are fixed and coplanar—when Si

is a starting patch, we simply assign the average of tA and tB as the
strip tangent). To achieve G1 across A0B0, we must let (1) A1 lies in
the direction of tA, and (2) B1 lies in the direction of tB.

To achieve G1 across A3B3 is slightly tricky. Instead of the
original control polygon, a scaled copy (denoted as
A00 � A01 � A02 � A03) contains the last control point A03 located on

the boundary. We have A2A3==A02A03 in the conical form. Thus, G1
requires (1) A2 (or A02) lies in the direction of t0A, and (2) B2 lies in the
direction of t0B. To determine the control points on Si+1, t0A and t0B are
chosen as the average of the original tangent vectors on the
boundary curves at A3 (or A03) and B3. Then, we have A1 = A0 + w1tA

and A2¼A3 �w2t0A. They also specify the positions of B1 and B2.
After preserving the G1 continuity and the developability, we still
have 2-DOF for further adjustment of the shape of Si, i.e., w1 and
w2. t0A and t0B act as the starting tangent vectors for the next patch
Si+1. Note that all tangent vectors are normalized.

4.2.2. Continuity adjustment for triangular patch

When processing a triangular patch Si, the situation becomes
more complex than the quadrilateral patch—we need to analyze
the possible configurations on the next patch Si+1. As shown in
Fig. 7, if only considering about the developability on the triangular
patch Si, the tangent vectors tA, tB, t0A and t0B do not have to be
coplanar. However, we need to take into account the developability
constraints imposed by the next patch Si+1 at the same time when
choosing them. In detail,

� When Si+1 is a quadrilateral patch, we must have t0A==t0B so that
Si+1 becomes developable. Meanwhile, we need to have tB==t0B so
that the G1 continuity is preserved at B0. Therefore, in this
configuration, the tangent vectors on the end ruling must satisfy
t0B==tB and t0A==t0B.
� When Si+1 is a triangular patch with the projection point at B0 (or

A3), we give tB==t0B so that the G1 continuity is given at B0. Then,
t0A is assigned to follow the boundary curve tangent of the
strip at A3.

After determining the directions of the tangent vector on the
start and end rulings of Si, the control points A1 and A2 can be
computed by A1 = A0 + w1tA and A2¼A3 �w2t0A. In this case, we
still have 2-DOF to adjust the shape of Si after preserving G1 and
developability.

5. Implementation results

5.1. Surface evaluation criteria

Given a pair of spatial curves, different strips can be generated
and all interpolate the same curves. They should be accessed

Fig. 5. Degree elevation for a quadratic Bézier ruled surface.

Fig. 6. Continuity adjustment for a quadrilateral patch. Fig. 7. Continuity adjustment for a triangular patch.

C.-H. Chu et al. / Computers in Industry 59 (2008) 601–611 605
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quantitatively based on some criteria depending on specific
applications. These criteria also work as optimization objectives
in the design of the geometric design algorithms. A simple
objective is minimal area [30], i.e., the resultant patch set has the
minimal surface area among all the solutions. Other optimization
objectives include maximal developability, minimal bending
energy, and minimal normal variation. This paper will adopt
normal variation and bending energy as the major objectives to be
minimized in the design process.

Fig. 8 illustrates two consecutive patches connecting along the
ruling piqj. Since both patches are in the conical form, any two pairs
of the control points must be co-planar. The corresponding normal
vectors of Sk and Sk+1 at the ruling are nk and nk+1, respectively. The
normal variation (or normal twist) across piqj can be expressed as

NvðSk; Skþ1Þ ¼ 1� nk � nkþ1 (6)

It becomes null when the two vectors are in the same directions.
The total normal variation of the approximation result consisting
of M patches becomes:

NTðMÞ ¼
XM�1

k¼0

NvðSk; Skþ1Þ (7)

Note that the calculation of the normal variation is regardless of
the patch type (triangular or quadrilateral).

Energy was considered a good objective for functional
optimization of surface fairness [31] in that it gives an integral
measure of the surface curvature. This study employs bending
energy as one objective to be minimized, which can be simplified
into the following form along a ruling shared by two successive

Fig. 8. Calculation of normal variation across two consecutive patches.

Fig. 9. Calculation of bending energy across two consecutive patches.

Fig. 10. The first test result of the BBT method [24].

Fig. 12. The second test result of the BBT method [24].

Fig. 11. The first test result based on optimization of normal variation.

C.-H. Chu et al. / Computers in Industry 59 (2008) 601–611606
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patches at a small bending angle:

Uk ¼ K
A sin2u

L2
(8)

where K is a coefficient determined by the thickness of surface and
the Young’s modulus [22]. As shown in Fig. 9, L is the moment arm
of the patch Sk with respect to the rotation axis piqj. It is computed
as the maximal perpendicular distance from the patch to the axis. u
is the angle extended by the tangent planes of Sk and Sk+1 at the
ruling. A is the surface area of Sk+1. K is set to one for simplification
purpose. The total bending energy containing in an aggregate of M

developable patches can be written as

UBðMÞ ¼
XM�1

k¼0

Uk (9)

5.2. Test results

This section presents a number of examples to validate the
feasibility of the proposed method. Different input parameters are

examined to characterize their individual effects on the design
result. The same boundary curves employed by the previous work
[24] are used for comparison. The input parameters include the
optimization objective (OL), the numbers of sample point on the
boundaries (Np/Nq), the Hausdorff distance for triangular (H3) and
quadrilateral patches (H4), and the maximal length ratio between
the boundaries of quadrilateral patch (ra). The output properties
include the surface evaluation value, the number of triangular

Fig. 13. The second test example based on optimization of bending energy.

Fig. 14. Strip design with two input curves with less twist.

Fig. 15. Approximation results with different Np/Nq values.

C.-H. Chu et al. / Computers in Industry 59 (2008) 601–611 607
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patches n3, and the number of quadrilateral patches n4. NT and BE
denote ‘‘normal variation’’ and ‘‘bending energy’’, respectively, in
the results.

Note that each triangle shown in the following figures represents
a Bezier patch of the final surface. Fig. 10 illustrates the result from
the previous work using the BBT method [24]. Fig. 11 shows the strip
design generated from our method with the same parameters except
ra, which the past work does not offer. Fig. 11(a) demonstrates the
strip consisting of 33 triangular and 39 quadrilateral patches.
Fig. 11(b) shows the unfolded pattern from the patches. Our method
outperforms the BBT method in terms of the normal variation. The
second strip consists of two highly convoluted curves. Fig. 12 is the
result generated by the BBT method. Fig. 13 shows the strip
generated by our method based on optimization of bending energy.
It contains only four quadrilateral patches, as the curvature varies
radically along the curves. The distribution of the triangular patches
is different from the one in Fig. 12. The current method gives a
slightly better result in terms of bending variation. However, the BBT
method computes one energy value from two consecutive triangles
in an approximate manner, whereas the current method computes
the value from continuous integral of every single patch.

Fig. 14 shows the test result of two boundary curves with
relatively less twist. The objective is to minimize the normal twist.
The strip consists of six quadrilateral patches and eight triangular
ones. The control points of these patches are also illustrated in the
figure. The following sections will highlight the test results with
different input parameters. The focus is to illustrate how individual
parameters affect the strip, the composition of triangular and
quadrilateral patches, and the evaluation values of the approx-
imation result. We also try to provide useful insights to how each
parameter changes the final shape. All the examples interpolate
the two curves in the first test example with the same input
parameters as those in Fig. 10, except the one that is being
investigated in each case.

5.3. Numbers of sample points

Sample points with equal arc length are taken from the two
boundary curves. Each curve may have different numbers of points
due to their length difference. Fig. 15 demonstrates the corre-
sponding patch sets under different test conditions. The results are
examined from several aspects. First, the evaluation values
increase with the number of the sample points. A possible reason
is that more patches are generated (notice the successive
triangular patches are increased), and the variation of the surface

Fig. 16. Large Hausdorff distances produce skew quadrilateral patches.

Fig. 17. Approximation results with different H3/H4 values. Fig. 18. More consecutive triangular patches are produced with a larger H3 value.

C.-H. Chu et al. / Computers in Industry 59 (2008) 601–611608
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normal only occurs at the patch boundary. On the other hand, the
deviation of the strip design from the boundaries becomes evident
when the point numbers are too small.

5.4. Hausdorff distances

Hausdorff distances have a distinct influence on the composi-
tion of triangular/quadrilateral patches in the design result. They

control generation of the candidate patches by limiting the sizes of
triangular and quadrilateral patches. The distance for triangular
patch restricts the number of consecutive patches with the same
projection point. The maximal edge length of triangular patch is
reduced when the projection point is alternating. The distance also
determines the skewness of the feasible quadrilateral patches as
shown in Fig. 16. The distribution of triangular and quadrilateral
patches varies as these distances change, which corresponds to

Fig. 19. Approximation results with different ra values.
Fig. 20. Approximation results with different limitations on the triangular patch

size.

C.-H. Chu et al. / Computers in Industry 59 (2008) 601–611 609
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different shapes, appearances, and evaluation values of the strip.
Fig. 17 illustrates the patch sets corresponding to different
Hausdorff distances. The effect of these distances is somewhat
complicated. Large H3 usually produces more consecutive trian-
gular patches with the same projection point. The surface normal
has an excessive jump across the last ruling of the consecutive
patches, at which either the projection point switches to the
other side (see Fig. 18) or a quadrilateral patch is connected.
Quadrilateral patch is more likely to occur at large H4, but the
deviation from the boundaries is also increased.

5.5. Maximal length ratio of the boundaries in quadrilateral patch

This parameter limits the length difference between the
boundaries of a quadrilateral patch. It has a compound effect on
the strip design. A large value may allow generation of a
quadrilateral patch with the similar effect on the evaluation
criteria as a large number of consecutive triangular patches. Under
this circumstance, the construction process of the surface may
have fallen into a local optimum due to the selection process (see
Step 4 in Algorithm for generation of developable patches in the

conical form). Such a patch could be a better choice in the local
region of concern, but it certainly does not lead to a global
optimum. ‘‘Normal’’ quadrilateral patches are more likely to occur
when the ratio is small. They usually give more satisfying surfaces,
as shown in Fig. 19.

The strip will consist of only triangular patches by proper
combination of the input parameters. Fig. 20 shows such examples
with small H4 values. This condition always makes quadrilateral
patches infeasible in the surface construction process. The result
containing only triangular patches, especially with large H3,
usually has a larger evaluation value than the one properly made
of both triangular and quadrilateral patches. Another notable
observation is that the larger the proportion of quadrilateral
patches in the patch set, the smaller the objective function is.

Fig. 21 illustrates different test results after continuity
adjustment. According to Eqs. (7) and (9), both normal variation
and bending energy vanish across the boundary of two consecutive
developable patches with G1. The wrinkle effect becomes more
evident in the modified patches. They provide better modeling
capability of special effects like creases and folds compared to the
result that is only G0, especially when the number of sample points
is small. However, the deviation from the original boundaries
becomes more distinct. This discrepancy is less evident with more
sample points (see the result with Np/Nq = 25/35 in the figure). It is
probably true that no approximation methods can produce good
results with the sample points less than a certain degree.

6. Conclusions and future work

This paper presents a CAGD method that interpolates a strip
specified by two space curves with developable patches in the

Fig. 21. G0 and G1 approximation results with different numbers of sample points.
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conical form. The first step of the method calculates feasible
patches that connect to a given ruling defined by two points on
each curve. A heuristic is applied to select a local optimal
solution in terms of a surface assessment criterion. The
constructed strip consists of consecutive developable patches,
triangular or quadrilateral, with positional continuity across the
patch boundaries. Degree elevation is then conducted to produce
extra degrees of freedom. We propose geometric algorithms that
produce G1 continuity across the patches and preserve the
developability of the surfaces at the same time, by adjusting the
control points of the degree-elevated patches with these design
parameters.

A variety of examples are generated using different input
parameters. They demonstrate that our method outperforms the
previous method that only used triangles in the strip design. We
also discuss how each parameter influences the design result. The
surface evaluation values increase with the numbers of sample
points, as more patches are generated. The Hausdorff distances
control the number of consecutive triangular patches and the
skewness of quadrilateral patches. The ratio limitation of quad-
rilateral patch has a compound effect on how the surface is
composed of triangular/quadrilateral patches. The large values
usually cause increase of the assessment values. Only triangular
patches are obtained with smaller Hausdorff distances for
quadrilateral patch. Finally, the degree-elevated patches that have
been adjusted with G1 offer more distinct modeling effects of
wrinkle with fewer patches.

This work provides a simple but effective method for design
of a strip using developable surfaces. In comparison with
previous studies, it allows quicker implementation, better
evaluation values of surface, and more flexible shape control
of the design result. One major advantage is the ability of using
triangular and quadrilateral patches simultaneously in the strip
design. The former fits well in the highly convoluted areas
whereas the latter approximates smooth regions with fewer
patches. Another benefit is being able to perform local shape
adjustment via degree elevation. A complete (or nearly)
developable strip can be thus obtained. One major limitation
of this work is that the result is not a global optimum (if it
exists). A possible solution is to adopt some global optimization
scheme (e.g. Genetics Algorithm) that computes the strip with
the proposed methods in one iteration. A potential problem
induced by our method is a larger amount of data storage
compared with the design using triangles. Another limitation of
this work is that a large number of patches are required to
control the deviation from the input curves and to maintain G1
continuity at the same time in the strip. One solution is to
recursively subdivides a small number of patches only when it is
necessary. Finally, it is advantageous to fully utilize the extra
degrees of freedom produced by degree elevation. They allow
multiple objectives or complex objectives optimization in the
strip design, which significantly enhance the practicality of
developable strips in product realization.
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